
In: Proc., Third Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Morgantown, WV, April 1994, IEEE Computer Society Press, pp. 53-64.

Inverting X: An Architecture for a
Shared Distributed Window System

John Menges Kevin Jeffay

Department of Computer Science
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175
{menges,jeffay}@cs.unc.edu

Abstract: Shared window systems have become a
popular vehicle for supporting distributed, synchronous
collaboration. At present they are difficult to build and
they support limited paradigms of multi-user interaction
with shared applications. We believe this difficulty is
largely due to the inverted nature of the client/server
architecture of most distributed window systems. The
architecture is inverted in the sense that the user is nearer
the server than the client; this hampers attempts to share
windows. By comparing the traditional client/server
architecture of distributed file systems with the inverted
architecture of distributed window systems we argue that
it is possible to develop window systems where the user is
nearer window system clients than servers, and that this
architecture greatly facilitates the sharing of windows
among users.

Introduction

A cursory comparison of the architecture of a typical
distributed file system (DFS) (Figure 1) with the
architecture of a typical distributed window system (DWS)
(Figure 2) reveals that while both are “distributed” in
similar ways, the effect of this distribution on users is
quite different. Both systems are object management
systems oriented around the client/server model, with
objects being represented in and managed by servers and
used by clients. Both also allow client access to servers
over a network transparently, i.e., in the same way as if the
client and server were co-located on one machine. But in
the case of the distributed file system (DFS), the user is
located nearest the client, while in the distributed window
system (DWS) case, he is located nearest the server.

Consider first the trivial case where there is only one
server and one client (Figures 1 and 2). In the case of the
DFS, distribution allows a client application (and therefore
a user) to be in a different location from the files being
accessed. This is important in the case of files, because
files, unlike applications and users, are often represented
on heavyweight physical devices (disks) that have location

and movement restrictions. In the DWS case distribution
means that an application can be in a different location
from the windows (and therefore the user) with which it is
associated. This is important because applications often
need computational ability not commonly available in a
workstation, where the server must reside because of its
tight association with the display.

Figure 1: A Typical Distributed File System Architecture.

Figure 2: A Typical Window System Architecture.

Now consider the case where there is a single server and
multiple clients (Figures 3 and 4). In the DFS case, this
allows applications and users in different locations to
share files. In the DWS case, different applications can
share windows, but not different users. This is of limited
utility; it makes client window managers possible but is
otherwise rarely used.

Finally, consider the case where there is a single client and
multiple servers (Figures 5 and 6). In the DFS case, this
allows a single application to access files in different
locations. In the DWS case, it allows a single application
to access windows on different displays, and therefore
allows different users to access the same application.
This, then, is the way that real-time collaborative systems
are typically built today. What is shared is the application,
which must be aware of the various users among which it
is being shared. (Collaboration toolkits are often provided
to make it possible to isolate this knowledge from the

2

Figure 3: A DFS with Multiple Clients.

Figure 4: A DWS with Multiple Clients.

Figure 5: A DFS with Multiple Servers.

Figure 6: A DWS with Multiple Servers.

Figure 7: Proposed SDWS Architecture.

application proper.) Windows themselves are not shared,
although particular applications can simulate window
sharing by duplicating windows on different displays.

In summary, a comparison of the traditional client/server
architecture of distributed file systems with the inverted
architecture of distributed window systems reveals that,
while both allow the separation of applications from the
objects being referenced (files and windows, respectively),
only the traditional architecture allows the sharing of these
objects among multiple users. Window sharing must be
accomplished via the sharing of applications that are able
to simulate the sharing of windows.

The inverted nature of typical distributed window systems
is not, however, intrinsic to window systems. It is forced
by the desire (possibly motivated by efficiency considera-
tions) to tightly couple the physical representation of win-
dows on displays with their abstract representation in
memory. The physical representation of windows must, of
course, be co-located with the users of those windows.
The abstract representation, however, can be located any-
where. The traditional client/server model, with its desir-
able sharing characteristics, can be achieved by placing the
abstract representation of windows in a window server and
the physical representation in a client of the window server
that is closely associated with the display (Figure 7). We
call this type of client the display client, to distinguish it
from the application client, whose relative position in the
architecture is left unchanged.

Note that the server is still between the user and his
application, but now the display is managed by a client of

the window server rather than by the server itself. This
architecture makes it possible to directly share windows
among multiple users. In particular, the windows of any
application can be shared, without the need for special
knowledge of window sharing in the application or
collaboration toolkit. This is the appropriate architecture
for a shared distributed window system (SDWS).

2. Characteristics of a SDWS

Given the desirability of a window system directly
supporting window sharing, what should be the
characteristics of a SDWS? In this section we first
discuss those DFS characteristics that are also applicable
to the SDWS, and then the characteristics that are unique
to the SDWS.

3

2.1. DFS Characteristics Applicable to the SDWS

Borrowing once again from the DFS, three characteristics
come to mind immediately: naming, access control, and
concurrency control.

Naming of windows can be similar to naming of files.
Windows, like files, are usually arranged in a hierarchy, so
the typical character-string representation of a path
through a hierarchy of objects can apply to windows as
well as files. In current window systems windows are
typically not named symbolically. This is primarily
because the lack of window sharing renders such naming
of little value; windows can easily be identified within a
single application by pointers or integer IDs. Windows
also open up the possibility of graphical naming (point to
the window or some simplified drawing of the window in
its context and click), but this is not a substitute for string-
oriented naming, because applications need to be able to
name windows without user intervention.

Access controls for file systems determine what operations
a particular user may perform on a particular file. These
operations typically include name lookup, creation,
deletion, reading, and writing. Window operations are
similar. Drawing by an application client and event
generation by a display client are both write operations,
and reception of events by application clients and
reception of drawing requests by display clients are both
read operations. (In fact, there is no reason to distinguish
between application and display client types, except to
draw analogies to the X Window System. Any client
should be able to read and write both events and drawing
requests, subject to access controls.) Since reads and
writes are more highly structured for window systems than
for file systems, finer-grained access controls are
desirable. For example, access controls for write requests
that make structural changes to a window might be
different from access controls for drawing in a window.

Concurrency control for file systems is usually
accomplished by the explicit setting of read and write
locks. A similar mechanism may also be sufficient for
windows. For example, A display client could put a write
lock on a window as a means of obtaining floor control.

In file systems, access rights and concurrency controls are
sometimes inherited from ancestors in the file hierarchy, to
simplify the specification of access rights and to make
their implementation more efficient. Similar inheritance
mechanisms would also be useful for window systems.

In addition to naming, access control, and concurrency
control, one might at first think of persistence as another
DFS characteristic applicable to the SDWS. Windows,

however, are not intended to represent permanent state
information; they are only intended as a means of
delivering a graphical interface to some portion of an
application’s state. There seems therefore to be little point
in implementing persistent windows. Applications can use
files to store any state specific to windows (their layout,
color scheme, access restrictions, names, etc.) that must be
retained across application instantiations.

Finally, some form of mounting distributed window
systems and/or linking between one part of the name space
and another will prove to be desirable, but this discussion
must be delayed until the concept of a SDWS is further
developed.

2.2. Characteristics Unique to the SDWS

Exactly what does it mean to share a window? This
question can be answered by defining the coupling
possibilities between multiple representations of a shared
window. That is, when a window is shared, are the
apparent attributes of the various physical representations
of the window (size, appearance, colors, etc.) identical? If
not, what are the possibilities for variation among physical
representations? In many circumstances, a tight coupling
between physical representations are essential, but the
boundaries of the usefulness of window sharing are
determined by the degree to which looser coupling of
windows can be supported.

2.2.1. Tightly-Coupled Window Sharing

First consider the tightest coupling possible, where all
attributes are shared. In this case, sharing a window
means that the window’s appearance on multiple displays
(including the appearance of any subwindows) must be
identical in all respects, i .e. , colors, fonts, sizes
resolutions, etc. For the moment, let’s assume a
homogeneous display environment where different display
resolutions, color capabilities, etc. are not a problem. The
only thing that may vary is the context in which the
window is placed. That is, the surrounding environment
of the window need not be the same on each display.
Once again, we can borrow DFS semantics to accomplish
this type sharing. A specially-typed link (or mount) from
a stub in one portion of the window hierarchy to a window
in another portion fulfills our purpose. The link must be of
a special type to ensure that the hierarchical constraints of
the name space are not violated. Figure 8 demonstrates
such a link: window /L/N/Q is a link to window /A/D/F.

Note that some window system operations require
knowledge about the parent of a particular window. For
example, a display client needs to know the location of a
window relative to its parent’s location. The correct parent

4

Figure 8: Tightly Coupled Window Sharing.

Figure 9: Customization via Attribute Inheritance.

depends on the path taken to get to the child. In this
respect window links are more akin to Network File
System (NFS) mounts than links.

2.2.2. Support for Heterogeneity

Of course, assuming display homogeneity is unrealistic.
The color capabilities, sizes, and resolutions of displays
vary widely. How can we accommodate display hetero-
geneity in a SDWS? Display accommodation can take
place in either the application client or the display client.
We will call the ability to make these accommodations
application flexibility or display flexibility, depending on
where it is done. Both methods should prove useful, and
both require server support. Display flexibility, however,
falls under the broader category of display customization,
discussed later. For now, let us consider how application
flexibility can be accomplished.

A flexible application is aware that its windows may be
simultaneously displayed on multiple displays with
different capabilities. It takes control of how the window
will be physically represented on the different displays.
This is accomplished through conditional window
attributes, supported by the window server. For example,
suppose a window is to have a blue background on a color
display, but a dark background on a monochrome display.
The background attribute for the display is conditional: IF
color THEN blue ELSE dark.

Note that flexible applications are not the same as
applications that simulate window sharing by knowing
about the various observers and duplicating windows on
multiple displays. Flexible applications need never be
aware of the types of displays on which their windows are
being rendered at any particular point in time. They
simply give their windows conditional attributes so that
the server can perform the adaptation for display type.

Simple conditional attributes have their limitations, how-
ever, since no application can be expected to explicitly
specify conditional attribute values for every conceivable
type of display. For example, suppose text is to be dis-
played in a text editor window. One type of display has
300 dots per inch resolution, while another has only 100
dots per inch. If we hold fixed the size of the window in
pixels in both cases, the window on the high resolution
display will be 1/9th its size on the low resolution display,
which is probably unacceptable. If, however, we hold
fixed the size of the window in inches, different fonts
should be used on the different types of displays to ensure
that the fonts are attractive and legible. This type of prob-
lem can be resolved by specifying certain attributes as pat-
terns rather than as fixed values. A pattern can specify the
characteristics required of a font without explicitly naming
the font, and the server or display client can complete the
selection of a particular font meeting the requirements.

2.2.3. Display Customization

It is sometimes desirable for the display client rather than
the application client to specify coupling constraints on
windows, either to accommodate for heterogeneity or to
allow a user to customize his view of windows. As an
example of the former, the user viewing a window may
wish to decide whether the size of the window in pixels or
its size in inches is fixed, in the presence of differences
between the resolution of the window as created by the
application client and that of his display. A user may also
want to customize his view of windows in minor ways

5

(e.g. by changing colors), or in more elaborate ways by
changing the arrangement of subwindows or even the set
of subwindows displayed (by adding his own subwindows
or excluding certain subwindows of the shared parent
window). Some such customization is be automatic,
because the viewer may not have permission to access all
of the subwindows of a shared window. Other customiza-
tions must be performed at the request of the viewer.

Customization by the viewer can be supported in the
server by an attribute inheritance mechanism (Figure 9).
Windows can specify their own attributes explicitly or
inherit individual attributes from other windows. Window
Q specifies its background color to be gray, but otherwise
inherits all attributes from F (except for its children, which
are also attributes). It specifies that it does not have
windows I or J in order to avoid inheriting them directly
from F, and specifies a new window, R. R, in turn,
inherits everything from F/I except its location, which is
specified explicitly.

Since the contents (pixels) of window Q are inherited from
window F, drawing into either window has exactly the
same effect: any other physical windows inheriting the
contents of either of these windows will see the drawing
requests. Events work similarly; events sent to either
window are sent to both and to any other window
inheriting from either. Window contents and event
inheritance can be overridden by setting explicit attribute
values. We have not yet developed a complete
understanding of the proper exact semantics of various
types of attribute inheritance.

Now note that tightly-coupled window sharing, discussed
in Section 2.2.1, is just a special case. It can be
accomplished by simply having one window inherit all the
attributes of another without specifying any explicitly.
Conditional attributes still apply, so that even tightly-
coupled windows can be viewed on displays with different
capabilities if the application client creating the window is
flexible.

Note also that attribute inheritance can be used to
implement certain characteristics of existing window
systems, such as inheriting attributes (e.g., background
color) down and propagating events (e.g., button presses)
up the window hierarchy.

2.2.4. Window Management

Given a SDWS with the characteristics described in the
preceding sections, window management (as viewed by
the X Window System) becomes trivial. It is simply a
matter of customizing the top levels of the window
hierarchy to add title bars and borders and the operations

associated with them (window placement, movement and
resizing, for example). Window management,
traditionally restricted to top-level application windows,
can also be combined with management of sub-windows
for customization purposes.

As mentioned earlier, there is really no difference between
application and display clients, other than to make a rough
distinction between the clients that are creating “original”
windows, drawing in them, and responding to events
occurring within them (application clients) and clients
primarily responsible for creating a physical image of a
window hierarchy (display clients). In the above
discussion, we have chosen to assign display
customization to the display clients. Customization can,
however, be performed by a third party client (as is done
with window management in X), since it just involves
manipulating the window database in a server; the display
client can just display the hierarchy constructed by the
third party. Using a third party client might be desirable
if, e.g., customizations themselves are to be shared.

3. Designing a Non-Inverted Window System

We claim that the architecture of the X Window System in
particular, and most distributed window systems in
general, makes sharing windows among users difficult
because the window database is maintained by a server
that is tightly coupled with an individual display.
Separating the window server from the display and
implementing display-specific functions in a client of this
window server facilitates direct sharing of windows
among users.

We are currently implementing a shared distributed win-
dow system prototype having the proposed architecture,
and demonstrating that it has substantially better window-
sharing properties than X. In particular, we will demon-
strate the following, none of which are available in X:

• A hierarchical window name space for accessing
windows from application and display clients.

• A suite of access controls for windows sufficient for
implementing a variety of volatile and non-volatile
window system operations and conference control
(e.g., floor control) functions.

• Support for heterogeneity (e.g., accommodating
displays with different color attributes and
resolutions) through conditional object attributes.

• An attribute inheritance mechanism for window
attribute sharing — a powerful tool for supporting
display customization in the form of both non-
structural (e.g., color) and structural (e.g., subwindow
rearrangement) customization.

6

Figure 10: Logical Implementation of the
SDWS Prototype.

Figure 11: Process Architecture of the SDWS Prototype.

• Window management mechanisms that can be
naturally extended to include customization of the
views of all windows, not just top-level application
windows.

• Overall flexible and lightweight window-sharing, the
ability to drag arbitrary windows into and out of
shared virtual screen windows and to “park” a virtual
screen and pick it up again on a different display.

3.1. Overall Implementation Strategy

We now describe the overall implementation of our
SDWS prototype. The system uses the X Protocol Engine
Library (XPEL) [13], a C++ class library we’ve developed
for constructing X pseudo-servers (XPSes).

The prototype SDWS is built top of the existing X
Window System, utilizing existing X clients and servers.
Logically, X clients and servers are augmented by XPSes
(Figure 10) to make them application and display clients,
respectively. (An XPS is a process placed on the
communication link between an X client and server, which
appears to the client to be a server, and vice versa. It
manipulates the X protocol streams between client and
server to add capabilities to the window system.)
Information not supplied by existing servers and clients is
provided by initialization files for the XPSes. Window
management functions are performed by the display client,
perhaps utilizing an existing third party window manager
connected to the display client. The SDWS server itself is
implemented as another XPS.

To reduce round-trip latency to 4 hops instead of 8
between X clients and servers in the implementation (in
order to get the same number of hops as an SDWS
implementation “from scratch”), the process architecture
for the prototype is as indicated by Figure 11, with the

gray ovals representing processes. XPEL supports
collapsing adjacent XPS processes in this way.

The XPS process (the combined SDWS Server,
Application Client, and Display Client, in the figure) is
implemented using XPEL. The SDWS Server, Application
Client, and Display Client are each a composite filter
composed of some network of lower-level filters.

3.2. Limitations of the Chosen Strategy

The decision to build on top of X is a practical one; it
eliminates the need to implement applications and display
drivers and also makes the prototype useful in existing
environments. The primary drawback to this approach is
that certain desirable window sharing functions cannot be
fully implemented using this approach.

For example, one property a SDWS must have is the
ability to perform request/reply transactions in both
directions between clients and servers (Figure 12). (Such
request/reply transactions are only supported from client to
server and back in the X protocol. This has proven
inadequate even in X, as Inter-Client Communication
Conventions above and beyond the X protocol have had to
be developed to implement copy and paste operations.)

For an example of how request/reply transactions from
server to client and back are needed, consider
implementing efficient and non-distracting window
damage repair of shared windows. To avoid storing huge
numbers of pixel values in the server (or display client),
window systems like X require that, on request, an
application redraw portions of a window that have been
damaged by being obscured by another window and then
revealed. In X, applications are notified of window
damage by a one-way event. The drawing requests sent in

7

Figure 12: Symmetric Request/Reply
Transactions. Figure 13: An X Pseudo-Server.

response to the event are not distinguished from other
drawing requests. In a shared window environment, this
means that the redrawing must be done on every physical
display, not just the one where the damage occurred; this
is inefficient and distracting. A two-way window damage
request/reply transaction would enable redrawing to occur
only on the damaged display.

A more elaborate example is when a user pulls down a
menu using a mouse button. Under certain window
coupling models, only the user invoking the action should
see the menu; the others should only see the effect of the
action invoked (if any) on less transient windows. This
suggests that the response of a client to any event should
indicate the event that triggered the response.

It is impossible in general to implement such request/reply
transactions from server to client and back using existing
X clients. To demonstrate the desirability of the proposed
approach, we make an attempt to identify client responses
to events using per-application heuristics described in the
application client’s initialization file.

3.3. The X Protocol Engine Library

The X Protocol Engine Library (XPEL) is a C++ class
library supporting the design and implementation of
XPSes using the X Protocol Engine Architecture (XPEA).

An XPS is a process interposed between an X server and
client that adds capabilities to the X window system by
manipulating the protocol streams passing between client
and server (Figure 13). It is a common means of adding
window sharing and tracking/replay capabilities to X. The
advantage of this approach is that existing X clients and
servers need not be changed to take advantage of the new
capabilities, so the new capabilities are made available to
all existing clients and servers. The primary limitation of
this approach is that it is not adequate for implementing

capabilities that require applications to be aware that they
are being used collaboratively.

XPSes can be difficult to design, implement, and maintain.
Attempts to date have resulted in systems that are large
and complex but low in function and reliability [3]. XPEA
was developed to provide an organizing framework for the
design of XPSes. XPEL supports the XPEA architecture
and dramatically simplifies the implementation of XPSes
by enabling the programmer to work at a higher level of
abstraction and by encouraging code reuse.

XPEA is an object-oriented architecture that uses a model
of interconnected protocol manipulation filters, like that
sometimes used in the implementation of inter-process
communication facilities [12, 8, 14, 18]. The task of
implementing a particular window system capability can
be broken down into component tasks performed by small
filters. These filters can then be combined in series to
accomplish the larger task (Figure 14).

The XPEL class library includes predefined filter classes
to perform various X protocol manipulation functions.
Programmers can choose from these filters and write fil-
ters of their own to piece together into solutions to larger
problems. The object-orientation of the class library also
allows decomposition of solutions in the class inheritance
dimension. Thus, all user-defined filters are sub-classes of
at least the top-level filter super-class in the library, which
implements generic filter functions.

XPEL also includes a message class for each protocol unit
(X message type). Message objects are created as the
messages arrive on the communications link; they also can
be created by filters and inserted into a message stream.
The object-oriented nature of XPEL makes it possible for
many message manipulations to be performed
polymorphically, where the individual message types
implement generic operations as they apply to that
particular message type. A scheduler is provided that

8

Figure 14: An XPEA-based XPS.

Figure 15: Filter Network Structure in an
XPEA-based SDWS.

schedules the handling of events such as message arrivals,
and the movement of messages through the filter network.

In the XPSes developed to date, message streams have
been passed all the way through the XPS, with the streams
being monitored and/or multiplexed along the way, as
show in Figure 14. Thus, the sharing or tracking/replay
capabilities have been implemented on a per application
basis; all windows created by a given application are
affected together. In the SDWS, individual windows must
be shared rather than whole applications. This requires the
SDWS to be an endpoint of the message streams (Figure
15). Conversion to this architecture would likely be very
difficult in existing XPSes; the organization imposed by
the XPEA makes it easy.

4. Related Work

There are three distinct areas of related work. The first is
the area of collaboration support systems for collabora-
tion-aware applications. The second area covers the work
in shared window systems, which have been designed
primarily to allow single applications to be used by multi-
ple users. The last area involves filter-based protocol
manipulation systems similar in architecture to XPEL.

4.1. Supporting collaboration-aware applications

A collaboration-aware application is an application that is
aware that it is being used collaboratively. This usually
means that it is a multi-user application, although single-
user applications utilizing a shared data object can also be
collaboration-aware. Collaboration-aware applications are
sometimes implemented in an ad-hoc manner without the
support of collaboration toolkits, but a better approach is
to isolate the data- and view-sharing functions into a
collaboration toolkit. It is sometimes possible to keep

collaboration awareness out of the toolkit’s programming
interface, thus removing it from the application proper.

A number of collaboration support systems (e.g.,
Rendezvous [17], MMConf [5], and Suite [6]) facilitate
the development of collaboration-aware applications via
language extensions or toolkits that allow the programmer
to develop his applications at a high level of abstraction,
leaving details such as synchronization and shared state
management to the support system. Most such systems
provide both user interface and data sharing functions,
since the user interface components are often displaying
shared data; they may even be the “data” that is to be
shared.

The SDWS described in this paper attempts to separate the
sharing of user interface components (windows) from the
sharing of data. It does not provide mechanisms for
sharing data objects other than windows. But it is not
possible to solve all collaboration problems by simply
sharing single-user applications or their windows; often
other data objects must be shared. Thus a SDWS cannot
take the place of collaboration support systems for
collaboration-aware applications. It can, however, ease the
development of such support systems by taking over the
problems of window naming, access control, concurrency
control for shared windows, replication of shared
windows, display heterogeneity, and simple view
customization. It also has the advantage of being able to
bring existing single-user applications into the
collaborative environment.

It should be possible to push higher-level user interface
abstractions (widgets) into the SDWS server, thus making
not only the lower level abstraction of windows sharable,
but also the higher-level abstraction of widgets. This in
turn would solve a common problem with interactive user

9

interfaces — the fact that they often can be manipulated
only by people. Sharable widgets could be directly
manipulated by applications.

4.2. Shared Window Systems

Many attempts have been made to implement window
sharing using the X Window System: SharedX [7],
Shadows [15], and XTV [1], to name a few. Some are
implemented as modified window system libraries; as such
they need to be linked into an existing application. Most,
however, are implemented as XPSes.

The problems encountered when designing and
implementing X-based shared window systems are many,
but they are fairly well known and documented [15, 16, 9,
10, 2]. They include both problems regarding design
decisions and problems in implementing chosen designs.
(Implementability, of course, affects the design decisions
that are possible.)

Design decisions for shared window systems include:

• Floor control. Who can interact with a window at a
given point in time?

• Annotation. Can a user make notes over the top of a
window?

• Telepointing. How many pointers are visible to all
users? None? One? One per user?

• Workspace Management. Can shared windows be
independently positioned by each user, or is a whole
workspace containing multiple windows shared [11]?

• Cut and Paste. What should be the cut and paste
semantics in a shared window environment?

• Window Sharing Granularity. Are all the windows
associated with an application shared as a unit, or top-
level windows individually, or all windows
individually?

• Window attribute coupling [6]. To what degree is
there flexible coupling in the sharing of window
attributes, both structural (e.g., subwindow
arrangement) and non-structural (e.g., colors)?

Implementation issues include:

• Late-comers, Spontaneous Sharing, and User
Migration. How can a new participant be added to
the set of users sharing a set of windows after a
conference has begun [4]? How can a non-shared
window be made sharable (and vice-versa)? How can
a user move a window from one display to another
(park it and pick it up elsewhere)? These are all
similar problems with similar solutions.

• Heterogeneity. How can we accommodate displays
with different capabilities?

• Window Damage Control. How can window
damage (which occurs when windows are partially
obscured and then revealed) be repaired efficiently
and non-disruptively?

• Coordinate Mapping. If windows are not positioned
identically on different displays, how can we get the
coordinates right? This is especially difficult with
transient windows, which have an implied
relationship to non-transient windows that is not
reflected in the X protocol stream.

• Resource Mapping. Different X servers have
different identifiers for windows and other resources.
How can we map between these name spaces?

• Sequence Numbers. Since X uses an asynchronous
protocol, X clients rely on sequence numbers to
match messages from servers to the corresponding
client request. When message streams are modified
(and especially when they are multiplexed), how can
the sequence numbers be kept correct so clients don’t
get confused?

Even though these problems have been known for some
time, existing window-sharing systems continue to be
large, complex, and unreliable, while they are difficult to
use and the features they support are few [3]. Why is this
the case? We suggest the following three reasons:

• Lack of a Good XPS Architecture. Even when the
set of problems and their solutions are well known,
combining them into a functioning shared-window
system is complex. The XPEA architecture addresses
this problem by providing a structuring mechanism
that allows problems to be decomposed into small,
easily understood components that can be solved
individually and pieced together into the solutions to
larger problems.

• Lack of a Good Shared Window System
Architecture . The common view of a shared
window system implementation as an XPS that
simply modifies and distributes X protocol streams
between clients and servers is deficient. The
client/server architecture of the window system itself
needs to be reorganized as proposed in this paper.
This reorganization allows individual windows rather
than entire applications to be shared.

• The X Protocol is Inadequate for Window
Sharing. Certain problems simply cannot be solved
in systems built on top of the X protocol, without
creating elaborate extensions to X that all clients must
be modified to use. An example is the fact that reply/
request transactions directed toward applications are
not supported in the protocol. We hope to define the
necessary characteristics of a shared window system
protocol.

In summary, the proposed SDWS is a new shared window
system, mostly but not totally implementable as an XPS.

10

Our prototype promises to do a better job of providing
window sharing capabilities because it is modeled on a
better window system architecture and a better XPS
implementation architecture than previous attempts. It
also points the way toward how a complete SDWS might
be implemented.

4.2. Other Filter-Based Architectures.

Filter-based protocol manipulation systems like XPEL
have been used in several inter-process communication
(IPC) facility implementations. Three of these are the x-
Kernel [8], Packet Filters [14], and Eighth Edition Unix
Streams [18]. (For a detailed comparison of XPEL and
these systems, see [12].) Briefly, the high-level
architectures of all four systems are similar; all use a
network of filter-manipulation objects through which
message streams are passed and by which they are
manipulated. XPEL, because it is the latest of the systems
to be designed, makes better use of object-oriented
concepts. This is most notable in the use of “smart”
messages that can be manipulated polymorphically.
Several concepts used in some of the other systems pose
intriguing possibilities for future enhancements to XPEL;
these include special in-stream control messages, multi-
protocol support (required for the SDWS implementation),
and multi-thread support.

At first it appears that XPEL is the only one of the systems
not primarily designed for implementing IPC facilities.
The proposed SDWS architecture, however, suggests a
different view. Shared windows can be, and perhaps
should be, viewed as a high-level, specialized IPC facility
tailored to the sharing of the window abstraction among
processes.

5. Summary

To date, shared window systems have been inflexible in
their support for synchronous collaboration and difficult to
build. We have argued that the essential problem with
such systems lies in their inability to directly support the
sharing of windows as abstract objects. This sharing is
unnecessarily impeded by the inverted nature of the
client/server architecture of the underlying distributed
window system.

By applying standard, well established abstractions and
mechanisms from the distributed file system domain, we
have developed an architecture for a true shared,
distributed window system wherein all objects managed
by the window system can be shared in a flexible,
straightforward manner. A prototype of a such is shared
distributed window system is being developed on top of

the X Window System using tools for the efficient,
modular construction of pseudo servers.

Acknowledgments

This work is supported in part by the National Science
Foundation (Grant # IRI-9015443), and a Graduate
Fellowship from the IBM Corporation.

6. References

[1] H. M. Abdel-Wahab and Mark A. Feit. XTV: A
Framework for Sharing X Window Clients in
Remote Synchronous Collaboration. In Proceedings
of Tricomm ‘91, April 1991.

[2] Hussein M. Abdel-Wahab and Kevin Jeffay. Issues,
Problems, and Solutions in Sharing X Clients on
Multiple Displays. Internetworking –– Research and
Practice, 5(1), (March 1994) pp. 1-15.

[3] John Eric Baldeschweiler, Thomas Gutekunst, and
Bernhard Plattner. A survey of X Protocol
Multiplexors. ACM SIGCOMM Computer
Communication Review, pages 16-24, April 1993.

[4] Goopeel Chung, Kevin Jeffay, and Hussein M.
Abdel-Wahab. Dynamic Participation in a Computer-
based Conferencing System. Computer Comm-
unications, 17(1), (January 1994) pp. 7-16.

[5] Terrence Crowley, Paul Milazzo, Ellie Baker, Harry
Forsdick, and Raymond Tomlinson. MMConf: An
Infrastructure for Building Shared Multimedia
Applications. In CSCW ‘90 Proceedings, 1990.

[6] Prasun Dewan and Rajiv Choudhary. Flexible
Interface Coupling in a Collaborative System. In
Proceedings ACM CHI ‘91, pages 41-48, New
Orleans, LA, April 1991.

[7] P. Gust. Shared X: X in a Distributed Group Work
Environment. Unpublished paper presented at the
Second Annual X Technical Conference, January
1988.

[8] Norman C. Hutchinson and Larry L. Peterson. The x-
Kernel: An Architecture f or Implementing Network
Protocols. IEEE Transactions on Software
Engineering, 17(1):64-76, January 1991.

[9] J. Chris Lauwers. Collaboration Transparency in
Desktop Teleconferencing Environments. Technical
Report CSL-TR-90-435, Computer Systems
Laboratory, Departments of Electrical Engineering

11

and Computer Science, Stanford University,
Stanford, California 94305-4055, July 1990.

[10] J. Chris Lauwers and Keith A. Lantz. Collaboration
Awareness in Support of Collaboration
Transparency: Requirements for the Next Generation
of Shared Window Systems. In CHI ‘90
Proceedings, 1990.

[11] Jin-Kun Lin. Virtual Screen: A Framework for Task
Management. In Proceeding s of the Sixth Annual X
Technical Conference, January 1992.

[12] John Menges. A Comparison of the Architectures of
the X Protocol Engine Library and Three Related
Systems. Technical Report TR93-047, University of
North Carolina, Chapel Hill, North Carolina, May
1993.

[13] John Menges. The X Engine Library: A C++ Library
for Constructing X Pseudo- Servers. In Proceedings
of the Seventh Annual X Technical Conference,
January 1993, pp. 129-141.

[14] Jeffrey C. Mogul, Richard F. Rashid, and Michael J.
Accetta. The Packet Filter: An Efficient Mechanism
for User-level Network Code. In Proceedings of the
Eleventh ACM Symposium on Operating System
Principles, pages 39-51, November 1987.

[15] J. F. Patterson. The Good, the Bad, and the Ugly of
Window Sharing in X. In Proceedings of the Fourth
Annual X Technical Conference, January 1990.

[16] John F. Patterson. What Does Window Sharing Say
About Virtual Terminals? Unpublished paper written
at Bellcore.

[17] John F. Patterson, Ralph D. Hill, Steven L. Rohall,
and Scott W. Meeks. Rendezvous: An Architecture
for Synchronous Multi-User Applications. In CSCW
‘90 Proceedings, 1990.

[18] D. L. Presotto and D. M. Ritchie. Interprocess
Communication in the Eighth Edition Unix System.
In Proceedings of the 1985 USENIX Association
Summer Conference, pages 309-316 , June 1985.

