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Abstract:  Real-time operating system services are required to support
multimedia systems that rely heavily of the workstation processor for control
of the audio and video processors and movement of audio and video data.
Such services are typically not available in existing workstation operating
systems.  This note comments on the requirements for such services and
briefly describes the YARTOS kernel; an operating system kernel that provides
real-time communication and computation services.

Introduction

Recent advances in video compression algorithms –– and their realization in  silicon –– have

made it possible to consider introducing streams of digitized audio and video into the

processing workload of workstation operating systems.  For example, by outfitting

workstations with off-the-shelf video cameras, microphones, digital video and audio

acquisition and compression hardware, and audio amplifiers, it is possible to construct

multimedia applications such as integrated voice/video/text documents and browsers [Hopper

90] as well as communication utilities such as workstation-based video and/or audio

conferences [Terry & Swinehart 88, Jeffay & Smith 91].

While the hardware for such systems is readily available, existing operating systems and

network communication protocols are inadequate for supporting multimedia applications such

as browsing a video document or conferencing.  This is due to the real-time processing

requirements of digital audio and video, specifically, rigid throughput and latency

requirements.  For browsing or conferencing in a distributed system, frames of video must be

acquired at a remote workstation (either from a camera or from a disk file) and transmitted so

as to arrive at the local workstation and be displayed at the (precise) rate of one frame every 33

ms.  Problems such as these have stimulated programs of basic research in many of the
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traditional areas of operating systems such as file systems [Rangan & Vin 91], and scheduling

and inter-process communication [Anderson et al. 90, Govindan & Anderson 91, Jeffay et al.

92b].

My interest lies in the development of operating system infrastructure for the processing of

live digital audio and video, specifically, workstation-based conferencing.  Applications

requiring live digital audio and video, such as conferencing, are unique in that their real-time

throughput and latency requirements are particularly demanding.  A conferencing application

fundamentally requires that the audio and video data be processed as it is generated (i.e., with

zero or one buffer).  To do otherwise implies that either portions of the conference will not be

reproduced (e.g., frames will be dropped) or that artificial latency is imposed between

acquisition and display processes.  In order for a system to be usable as a conferencing tool,

one should minimize, if not avoid altogether, the occurrence of these events.  Ideally a

workstation-based conferencing system should be indistinguishable from the more traditional

analog (i.e., non-computer based) system.

At UNC we have constructed an experimental network of workstations capable of processing

live digital audio and video and are using this system to experiment with operating system and

network support for continuous-time media.  In designing the system and application software

for our network, the approach has been to view the problem as one of real-time resource

allocation and control.  Rather than try to add a “real-time scheduling algorithm” to existing

operating systems (or resurrect real-time UNIX) I have been considering what an operating

system specifically biased to providing real-time services might look like.

This brief note outlines one assessment of the salient requirements for next generation

operating systems that will support multimedia (and other real-time) applications.  The ideas

presented here are based on experiences with the design and implementation of the YARTOS

(Yet Another Real-Time Operating System) workstation operating system kernel and with the

use of this kernel to construct such multimedia applications as a workstation-based

conferencing system and a simple VCR program [Jeffay et al. 92a,b].  A brief description of

the YARTOS kernel is also presented.

Real-Time Requirements for Multimedia

The extent to which multimedia applications will require real-time computation and

communication services from an operating system depends in large part on the architecture of

the audio and video (A/V) subsystem; in particular, the relationship between the A/V
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subsystem and the CPU.  At one extreme are systems wherein digital or analog video and

audio signals are acquired by largely autonomous A/V processors that are capable of

delivering A/V data directly to the workstation frame buffer with little, if any, intervention by

the CPU.  In a workstation with an autonomous A/V subsystem the CPU typically

communicates with the A/V subsystem via a high-level device control interface (e.g.,

StartVideoStream, StopVideoStream) and none of the movement of A/V data is done under

direct CPU control.  Examples of such systems include the direct attachment of off-the-shelf

teleconferencing video CODECs to workstations [Bosco 91].  Such multimedia architectures

have the advantage that they typically do not require modifications to the workstation operating

system.  The disadvantage of such hardware solutions is that they are expensive and of rather

limited use as A/V data is typically not visible to user processes.

At the other extreme are computer systems wherein the CPU is intimately involved in the

control of the A/V processors and in the communication of A/V data between the processes

controlling the A/V processors.  An example of such a system is the video conferencing

system we have developed using IBM-Intel ActionMedia 750 products [Jeffay et al. 92b,

Harney et al. 91].  In this system the CPU directs the acquisition, compression, and

transmission of each frame of audio and video including all movement of A/V data within the

system.  At this time such “dependent” A/V subsystems are significantly cheaper than

autonomous systems.  More importantly, within a dependent A/V subsystem, A/V data is

available to user processes on a frame by frame basis thereby allowing user applications to

perform operations such as filtering, compositing, and authentication on A/V streams.  The

primary drawback of dependent A/V subsystems is that they are harder to use effectively with

existing operating systems because operating systems do not support the real-time demands of

these A/V devices and applications.

The present work is aimed at workstations with dependent A/V subsystems.  The effective use

of these A/V subsystems requires that real-time services be provided at a number of levels

within the kernel.  At the lowest level real-time device control is required to acquire,

manipulate, and display digital audio and video.  For example, for a conferencing application

using ActionMedia hardware, each video frame propagates through a three stage pipeline:

digitization of the video frame, compression of the digitized image, and transmission of the

compressed data over the network.  Each stage of the pipeline is implemented on a separate

physical processor that is controlled by processes (e.g., device drivers and application

programs) that execute on the CPU.  The timing of the execution of these processes is critical

to the correct functioning of the pipeline.  For example, a single late control signal will result

in a stall and resynchronization of the pipeline and will create a noticeable “glitch” (e.g., an
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audible “pop”) in the outgoing A/V stream.  Therefore, application and device driver processes

must be scheduled so as to ensure guaranteed response times to events (e.g., message

arrivals, hardware interrupts).  Moreover, sufficient amounts of software resources such as

buffers must be guaranteed to be available to these processes when they are scheduled.  These

requirements are not met by existing workstation operating systems.

On Real-Time Services

While scheduling and resource allocation are clearly needed (and receive most of the attention

in the real-time systems literature) a general statement of the operating system/application

interface is missing.  Scheduling alone is too primitive a tool to construct applications such as

video conferencing that require the use of multiple, CPUs, I/O devices and controllers in

concert.  A kernel must provide real-time computation and communication services that enable

programmers to both specify both real-time throughout and latency requirements for individual

processes and to assess real-time performance issues such as end-to-end latencies.  Moreover,

a kernel should support a tasking model for which it is possible to determine a priori if

sufficient processing resources are currently available to meet an application’s requirements.

While the notion of real-time services for which one provides a priori guarantees of

performance may not be necessary for all applications, it is important to understand the cost of

providing such services.  For example, as indicated above, if ActionMedia processes are not

scheduled in real-time then it is likely that a less than full fidelity stream of audio and video

will be generated.  While by some measures this may not adversely effect the use of the

system, it is fundamentally up to the application designer or end user to define such measures

of goodness for the performance of applications.  The operating system’s explicit goal (and

that of its designer) should be to accommodate these requirements whenever possible.  Ideally

we would like to provide a range of real-time services from “guaranteed response time” to

“best effort” and and allow application programmers to decide if the cost of the real-time

service is worth its perceived benefit.  In our experience the “cost” of hard-real-time services

typically takes the form of a restricted programming model for real-time processes and

possibly degraded performance for non-real-time processes.

Moreover, beyond the desire for predictable computation services, it is important to

understand the cost of real-time computing in order to effectively trade-off computing

resources for application performance requirements when the computing resources are scarce.

It is quite easy to design real-time applications that saturate available computing resources.

This is especially true for current multimedia systems when users desire to interact with
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multiple streams of digital audio and video simultaneously.  It is difficult, if not impossible to

effectively ameliorate the effects of saturation without a good understanding of how

application performance requirements would be met on systems with theoretically sufficient

processing capacity.

Kernel Support for Predictable Real-Time Computing

The YARTOS kernel was developed to experiment with the design and implementation of real-

time communication and computation services.  These services are realized through a

paradigm of process interaction called the real-time producer/consumer (RTP/C) paradigm

[Jeffay 89].  The RTP/C paradigm defines a semantics of inter-process communication that

provides a framework for reasoning about the real-time behavior of programs.  This semantics

is realized through an application of some recent results in the theory of deterministic

scheduling and resource allocation.  The claim is that YARTOS is a “general purpose” real-

time operating system kernel.  (In addition to the conferencing application, YARTOS

prototypes have been used in a 3-dimensional interactive graphics system used for research in

virtual realities, and a HiPPI data link controller.)

The programming model supported by YARTOS is an extension of Wirth’s discipline of real-

time programming [Wirth 77].  In essence it is a message passing system with a semantics of

inter-process communication that specifies the real-time response that an operating system

must provide to a message receiver.  This allows a programmer to assert an upper bound on

the time to receipt and processing of each message.  The exact response time requirement is a

function of such factors as the rate with which a process receives messages on a given input

channel.  Ultimately, these rates are functions of the rates at which data arrives from external

sources.  These semantics provide a framework both for expressing processor-time-dependent

computations and for reasoning about the real-time behavior of programs.

YARTOS itself supports two basic abstractions: tasks and resources.  A task is an independent

thread of control (i.e., a sequential program) that is invoked in response to the occurrence of

an event.  An event is a stimulus that may be generated by processes external to the system or

by processes internal to the system.  We assume events are generated repeatedly with a (non-

zero) lower bound on the duration between consecutive occurrences of the same event.

Events are realized through a message abstraction.  When an event is generated a message is

sent to a task (or tasks) that has registered with the kernel as being interested in the event.

Ultimately tasks are reactive in the sense that they execute only in response to the arrival of

messages (i.e., events).  The processing of each message by a task must be completed before
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a well-defined deadline.  The invocation intervals and deadlines for a task are derived from

constructs in the higher-level programming model.

For many applications, the coupling of timing constraints and message arrivals is unnecessary

and often undesirable.  YARTOS provides a facility for non-time constrained communication

based on shared memory.  A resource is a software object (e.g., an abstract data type) that

encapsulates shared data and exports a set of procedures for accessing and manipulating the

data.  Like a monitor, resources guarantee mutually exclusive access to the data they

encapsulate.  Resources are accessed indirectly through the kernel.  Support for resources is

included in the kernel to ensure priority inversions do not occur –– a phenomena in which low

priority processes exclude high-priority processes from accessing time-critical data, thus

causing the high priority processes to miss deadlines [Sha et al. 90].

YARTOS allows applications to specify the real-time rate at which they desire to make

progress.  A rate is defined as the minimum number of executions of a task that must be

completed within a finite length interval of time.  For example, a common rate specification is

one execution every p time units.  Such a rate is used for tasks controlling the video

digitization hardware (1 execution every 33 ms.).  Since tasks are reactive, the specification of

a processing rate is, in essence, a specification of the expected rate at which events will be

generated.  For example, the digitization processor generates 1 event every 33 ms.  A more

interesting rate specification is used in an application that reads video data from a disk and

displays it in real-time on a display.  At a high level there is a user task which initiates the

display of a frame of video that executes once every 33 ms. (clocked off the the display

hardware).  The video data that is display is generated by a set of device control tasks that

execute b times every 33 ms. (clocked off the disk controller) where b is the number of disk

blocks required to store a single frame.  Note that the digitization task in the former example is

responding to events in true real-time.  That is, frames are being digitized as they are

generated.  Because of this YARTOS need not (and indeed does not) buffer events for the

task.  In the case of the disk control task, YARTOS must be prepared to buffer b events.

For a given workload (a set of tasks and resources), the goal of YARTOS is to guarantee that

(1) all requests of all tasks will complete execution before their deadlines and (2) no shared

resource is accessed simultaneously by more than one task.  We have developed an optimal

(preemptive) algorithm for sequencing such tasks on a single processor [Jeffay 90].  The

algorithm is optimal in the sense that it can provide the two guarantees whenever it is possible

to do so (i.e., whenever the processor is not overloaded).  Moreover, an efficient algorithm

has been developed for determining if a workload can be guaranteed a correct execution.  This

algorithm forms the basis for a resource reservation protocol that is executed prior to the
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execution of YARTOS tasks (e.g., prior to the start of a video conference by workstations

participating in the conference).

In addition to its academic value, the optimality of the YARTOS resource allocation policies

are important for effectively trading-off processing requirements for guaranteed response time.

If YARTOS cannot guarantee a correct execution to a process, feedback can be provided on

why the guarantee is not possible.  The optimality properties ensure that the reasons for the

lack of a guarantee are fundamental in nature.  A programmer can typically achieve a

compromise guarantee either by (1) relaxing the response time requirements, by (2) improving

the execution time of one or two specified processes (e.g., by using a different algorithm or

requiring less precision in the outputs of an algorithm [Lin et al. 87]), or by (3) relaxing the

rate at which processes make progress (e.g., by reducing the rate at which video frames are

generated).  In the latter case, events will be generated that the process will be unable to

respond to (the task will not be scheduled in response to events that occur too frequently for

its current rate specification).  Applications must be written to deal with this situation.

Summary

To be effective and desirable, multimedia applications require real-time computation and

communication services from an operating system kernel.  The extent to which applications

require such services will be a function of the interactive nature of the application and the

architecture of the audio and video subsystem.  I believe a salient requirement to be that of

guaranteed processing rates of data from external devices or peer processes –– where the rate

is precisely defined by an application program.

The YARTOS kernel supports such a notion of guaranteed processing rates.  While in practice

this basic mechanism has not seamlessly supported the real-time requirements of multimedia

applications such as a workstation-based conferencing system, it has been sufficient to

construct the system.  In particular, the accuracy of the YARTOS schedulability analysis has

been most useful as it has allowed us to concentrate on issues of logical correctness within the

application while ignoring altogether efficiency/performance considerations.  The desired

processing rate of each task is made known to the kernel and the kernel provides a guaranteed

response time to each task that is sufficient for ensuring the required processing rate is

achieved.
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