
In Proc. Joint IEEE Wrkshp on Real-Time Operating Systems and Software and IFAC/IFIP Wrkshp on Real-Time Prog-
ramming, Atlanta, GA, May 1991, Real-Time Systems Newsletter, Vol. 7, No. 4, (Fall 1991), pp. 8-13. Republished
in “Real-Time Programming,” W. Halang and K. Ramamritham, eds., Pergamon Press, Oxford, UK, 1992., pp. 7-12.

YARTOS
Kernel support for efficient, predictable real-time systems*

Kevin Jeffay, Donald L. Stone, Daniel E. Poirier

University of North Carolina at Chapel Hill,
Department of Computer Science, Chapel Hill, NC, USA

Abstract. YARTOS is an experimental real-time operating system kernel that provides
guaranteed response times to tasks. It is currently used as a vehicle for research in the design,
analysis, and implementation of real-time applications. It is a micro-kernel with an
underlying formal model based on sporadic tasks with response time requirements and shared
software resources. It is distinguished by the programming model it supports and by its use
of a novel processor scheduling and resource allocation policy. The implementation of
YARTOS is outlined and two real-time applications that run under YARTOS are described.

Introduction

To be considered correct, a real-time computer system
must perform its computations and I/O operations in a
time frame defined by processes in the environment
external to the computer. In the real-time domain the
environment is viewed as imposing a set of constraints
–– commonly referred to as “timing constraints” –– on
the correct operation of the system. For example,
when manipulating live digital video, a real-time
system must process video data at the (precise) rate of
30 video frames a second in order to preserve the
fidelity of the image.

The existence of timing constraints distinguish real-
time systems from more traditional multi-programmed
systems. A real-time operating system therefore
differs from a more conventional operating system in
that it should provide mechanisms for ensuring that
timing constraints are not violated. Our view is that a
real-time operating system must support the notion of
a predictable computation. In much the same manner
as (sequential) programming language constructs have
well defined semantics that enable a programmer to
prove logical properties of a program, a real-time
operating system should have a temporal semantics for

* This work was supported in parts by grants from the
National Science Foundation (numbers CCR-9110938 and
ICI-9015443), and by a Digital Faculty Program grant
from Digital Equipment Corporation.

its services that will enable a programmer to reason
about temporal properties of a program.

In this paper we present an overview of an operating
system kernel called YARTOS (Yet Another Real-
Time Operating System) that supports the
construction of efficient, predictable real-time systems.
Initially we are focusing on the problem of designing
and constructing hard-real-time systems. Hard-real-
time systems are real-time systems that require
guaranteed adherence to timing constraints. These are
systems in which the cost of failing to interact with
the external environment in real-time is high. This
high cost can be measured in monetary terms (e.g., an
inefficient use of raw materials in a process control
system), aesthetic terms (e.g., unrealistic output from
a computer music or computer animation system), or
possibly in human or environmental terms (e.g., an
accident due to untimely control in a nuclear power
plant or fly-by-wire avionics system).

In recent years, numerous real-time operating systems
have been developed (see [Zhao 89] for a good survey).
Our work is distinguished by the programming model
that YARTOS supports and by the aggressive use in
YARTOS of recent results in the theory of
deterministic processor and resource allocation. The
programming model supported by YARTOS is an
extension of Wirth’s discipline of real-time
programming [Wirth 77]. In essence it is a message
passing system with a semantics of inter-process
communication that specifies the real-time response
that an operating system must provide to a message

2

receiver. This allows a programmer to assert an upper
bound on the time to receipt and processing of each
message. The exact response time requirement is a
function of such factors as the rate with which a
process receives messages on a given input channel.
Ultimately, these rates are functions of the rates at
which data arrives from external sources. These
semantics provide a framework both for expressing
processor-time-dependent computations and for
reasoning about the real-time behavior of programs.
The programming model is described in greater detail
elsewhere [Jeffay 89a].

Programs that execute under YARTOS are compiled
into a set of sporadic tasks that share a set of serially
reusable, single-unit resources. A sporadic task is a
sequential program that is invoked in response to the
occurrence of an event. An event is a stimulus that
may be generated by processes external to the system
(e.g., an interrupt from a device) or by processes
internal to the system (e.g., the arrival of a message).
We assume events are generated repeatedly with a (non-
zero) lower bound on the duration between consecutive
occurrences of the same event. A resource in
YARTOS is a software object (e.g., an abstract data
type) that is shared (read/write) by multiple tasks. For
a given workload, the goal of YARTOS is to
guarantee that (1) all requests of all tasks will
complete execution before their deadlines and (2) no
shared resource is accessed simultaneously by more
than one task. We have developed an optimal
(preemptive) algorithm for sequencing such tasks on a
single processor [Jeffay 89b, 90]. The algorithm is
optimal in the sense that it can provide the two
guarantees whenever it is possible to do so.
Moreover, an efficient algorithm has been developed
for determining if a workload can be guaranteed a
correct execution [Jeffay 90]. Our development and
analysis of a formal scheduling model has resulted in a
surprisingly efficient implementation of YARTOS
tasking. Specifically, applications consisting of
multiple tasks can be executed on a single run-time
stack and no explicit locking mechanism is required for
accessing shared resources. This improves the
memory utilization of the system and yields efficient
context switches between tasks. This encourages
liberal use of tasks and data sharing in YARTOS
applications.

In this note we concentrate on the YARTOS’s
scheduling model and its implementation. The
following section describes the scheduling model and
the algorithms used for processor and resource
allocation. Section three briefly describes a prototype

implementation of the YARTOS kernel. We conclude
with some brief comments on our experiences with
YARTOS.

Scheduling Model

The YARTOS scheduling model is composed of two
basic abstractions: tasks and resources. A task is an
independent thread of control (a sequential program)
that is invoked at sporadic intervals. Each invocation
of a task must complete execution before a well-
defined deadline. The invocation interval and deadline
of a task is derived from constructs in the higher-level
programming model. During the course of execution,
a task may require access to some number of resources.
A resource is a software object (an abstract data type)
that encapsulates shared data and exports a set of
procedures for accessing and manipulating the data.
Like a monitor, objects require mutually exclusive
access to the data they encapsulate.

Formally, a YARTOS workload consists of a set of n
sporadic tasks {T1, T2, ..., Tn} and a set of m serially
reusable, single unit resources {M1, M2, ..., Mm}. A
task is described by a pair T = (C, R) where C is the
computational cost: the maximum amount of
processor time required to execute the program of task
T to completion on a dedicated uniprocessor, and R is
the response time requirement of task T: the maximum
time allowed between an invocation of task T and the
completion of the execution of T’s sequential program.
Presently response time parameters are derived from
the rate at which tasks are invoked where the rate is
measured in terms of minimum inter-invocation time.
For a task T we assume that the response time
requirement is equal to the minimum time interval
between successive invocations of T . This
characterization of real-time task behavior is motivated
by the class of real-time applications wherein timing
constraints arise from the need to ensure that input data
is acquired and processed in real-time.

The computational cost of a task is expressed as the
sum of the costs of executing code to perform
operations on shared resource and private task code.
Let ni be the number of operations on shared resources
performed by an invocation of task Ti, and let ci1, ci2,
..., cini

 be the maximum execution time required for

each operation. Let ci0 be the maximum execution
time required to execute the remaining code (sequential
code in task Ti that does not require access to a shared
resource). Hence Ci = ci0 + ci1 + ci2 + ... + cini

.

3

...

Time
0 1 2 4 6 8 10 123 5 7 9 11

T3

T2

T1

Figure 1

...

Time
0 1 2 4 6 8 10 123 5 7 9 11

T3

T2

T1

Figure 2

Scheduling Tasks

Given a set of tasks and a set of resources, the
YARTOS kernel must sequence the execution of task
invocations on a uniprocessor such that in all cases ––
and in particular in the worst case –– it is guaranteed
that:

• each invocation of each task completes execution at
or before its deadline, and

• a resource is never accessed by more than one task
simultaneously.

A set of tasks is said to be feasible if it is possible to
achieve these two criteria. We have developed a
scheduling algorithm that will schedule any feasible
task set [Jeffay 89b, 90]. The algorithm results from
the integration of a synchronization scheme for access
to shared resources with the earliest deadline first
(EDF) processor scheduling algorithm of Liu and
Layland; a preemptive, priority-driven scheduling
algorithm with dynamic priority assignment [Liu &
Layland 73].

Under the YARTOS scheduling discipline, a task has
two notions of a deadline: one for the initial
acquisition of the processor, and one for execution of
operations on resources. Tasks have separate deadlines
for performing operations on shared resources to avoid
a variant of the priority inversion problem [Sha et al.
90]. This problem can occurs when tasks with large
response time requirements (“low priority”) perform
operations on resources that are shared with tasks with
small response time requirements (“high priority”).

For example, consider the set of three tasks T1 = (1, 4)
(i.e., task T1 has a computational cost of 1 time unit
and a response time requirement of 4 time units), T2 =
(2, 10), T3 = (3, 20). Assume that tasks T1 and T3
consist of a single operation on a shared resource and
that task T2 does not use this resource. If an EDF
scheduling policy is used and the tasks are invoked as
shown in Figure 1 then task T1 misses a deadline at
time 5. (Striped rectangles in Figure 1 denote
execution with a shared resource.) Initially task T3
will be scheduled at time 0. At time 1 task T1 is
invoked and has the nearest deadline (at time 5).
However, since T1 requires the resource that is in use
by task T3, task T1 is blocked by task T3 and task T3
continues execution. At time 2, task T2 has a nearer
deadline than the executing task T3 (time 12 versus
time 20). Since task T2 has the nearer deadline, one
might be tempted to allow task T2 to preempt task
T3 . However, as illustrated in Figure 1, such a
decision will cause task T1 to fail at time 5.

The problem is that at time 1, it is no longer
sufficient for the invocation of task T3 occurring at
time 0 to be completed by its nominal deadline at time
20. Since tasks T1 and T3 share a resource, when task
T1 is invoked at time 1, the invocation of task T3
occurring at time 0 must now be completed no later
than time 5: the initial deadline of task T1.

Under the scheduling discipline we have developed,
when a task is invoked at time t, the invocation will
have an initial deadline at time t + R as in traditional
EDF scheduling. This deadline is a deadline for the
task to complete execution. Once a task has been

4

scheduled and is executing, it may perform an
operation on a shared resource. If a task commences
an operation on a resource at time t′ then at time t′ the
task will have a deadline equal to time MIN(t + R, t′ +
1 + Rmin) where Rmin is the smallest response time
requirement of all the tasks that can access the
resource. This manipulation of deadlines ensures that
there will exist no contention for shared resources and
hence ensures mutual exclusion on resource
operations. If at or after time t′, another task is
invoked that wishes to perform an operation on this
same resource, then that task will initially have a
deadline that is necessarily greater than t′ + Rmin.
Since we use deadline scheduling this task will
therefore not preempt the task currently using the
shared resource. For example, applying the YARTOS
scheduling discipline to the three tasks from the
previous example yields the execution shown in
Figure 2. This time task T3 initially commences
execution with a deadline at time 5 (i.e., MIN(0 + 20,
0 + 1 + Rmin) = 5). Now, at times 1 and 2 task T3
has the nearest deadline and will not be preempted by
either task T1 (ensuring mutual exclusion on the
resource task T3 shares with task T1) or task T2
(ensuring task T3 will complete execution in time for
task T1 to make its deadline).

For the problem of scheduling a set of sporadic tasks
that share a set of single unit serially reusable
resources, the YARTOS scheduling algorithm is
optimal with respect to the class of scheduling policies
that do not use inserted idle time.1 The algorithm is
optimal in the sense that it can schedule a set of tasks,
without inserted idle time, whenever it will be
possible to do so. This dynamic manipulation of a
task’s deadline is similar to the concept of a priority
ceiling in priority inheritance protocols [Sha et al. 90].

Deciding Feasibility

To ensure deadlines are not missed at run-time, it is
necessary to have a test, or decision procedure, that can
be applied to a set of tasks and will determine whether
of not the tasks are feasible. We have developed an
efficient decision procedure for deciding if a set of tasks
is feasible. This allows us to determine a priori
whether or not a set of tasks can be executed in real-

1 If tasks are scheduled by a discipline that allows itself to
idle the processor when there exists a task with an
outstanding request for execution, then that discipline is
said to use inserted idle time.

time. In practice, this test is performed before
applications are executed under YARTOS.

A set of tasks will be feasible on a single processor
if:2

1) ∑
i=1

n

�
Ci
Ri

 ≤ 1,

2) ∀i, 1 ≤ i ≤ n; ∀k, 1 ≤ k ≤ ni; ∀L, Rmin,k < L < Ri :

L ≥ cik – 1 + ∑
j=1

i – 1

�
L
RjCj ,

where

• n is the number of tasks in the system,

• ni is the number of operations on shared resources
performed by an invocation of task Ti, and

• Rmin,k is the smallest response time requirement
of the tasks that access resource Mk.

The term Ci/Ri is the fraction of the processor that
must be allocated to processing invocations of task i.
The first condition stipulates that the processor not be
overloaded. Condition (2) applies only to tasks that
require access to resources (tasks for which ni > 0). It
quantifies the processor demand that occurs when tasks
simultaneously access a shared resource. The right
hand side of the inequality in condition (2) is a least
upper bound on the processor demand that can be
realized in an interval of length L starting at the time
an invocation of a resource requesting task i is
scheduled, and ending sometime before the deadline for
completion of the invocation. Under all circumstances
this bound must be less than or equal to the minimum
inter-invocation time (or a fraction thereof) of task i.
A set of tasks can be tested against these conditions in
time O(m Rmax) where m is the number of resources
in the system and Rmax is the largest response time
requirement.

Implementation

YARTOS is currently implemented on IBM PS/2
computers (Intel 80386 processor). When the machine
is booted it initially executes the DOS operating
system. When YARTOS applications are executed,

2Necessary and sufficient conditions for feasibility are
presented in [Jeffay 90]. For brevity, we present a
simpler (sufficient) formulation of these conditions.

5

YARTOS replaces the interrupt vectors to point to an
entry in the kernel and inserts code to handle all
software interrupts (i.e., TRAPS). At this point
YARTOS is in control of the machine. YARTOS
creates user tasks and resources and then waits for an
interrupt to commence execution of the application
program. When the application terminates YARTOS
restores the original DOS environment and returns
control to the DOS command interpreter.

YARTOS is a “micro-kernel” that supports three basic
abstractions: tasks, resources, and messages. Tasks
and resources were introduced in the previous section.
Messages are typed collections of data. More generic
operating system facilities such as a file system can be
implemented on top of YARTOS by users. For
example, as described shortly, the DOS file system can
be easily made available to YARTOS applications by
encapsulating DOS functions as resource operations.

Tasks

A YARTOS application is a C program that is linked
with a YARTOS specific library.3 This library
provides the YARTOS system call interface. There are
two classes of systems calls: start-up, to initialize the
kernel and application(s), and run-time, for task
synchronization and communication. Start-up system
calls include entries to create tasks and resources.
Run-time calls include entries to send messages or
perform an operation on a resource. For example, a
task is created by the system call:

port = create_task(task_descriptor);

The task descriptor is a template that the programmer
instantiates and then customizes. Template entries
include: a name (a character string), the task body (a
pointer to a C function), a list of resources used by the
task, and the required response time or deadline (the
maximum allowed time between task invocation and
completion). Optional parameters include routines to
be called on each context switch involving this task to
save and restore task specific state information (e.g.,
device registers). (These last parameters are in keeping
with the micro-kernel philosophy. YARTOS
maintains a minimal machine state for preempted
tasks: the program counter and general purpose
registers. User tasks may extend the machine state

3 For concreteness we refer to the C programming
language as the application implementation language.
YARTOS makes no assumptions about the imple-
mentation language of tasks and resources.

when, for example, performing low-level device
control. In such cases users are responsible for writing
their own functions for saving and restoring their
extended state.)

Inter-task communication in YARTOS is via message
passing. Messages are sent to ports. There is a one-
to-one correspondence between ports and tasks. The
level of indirection provided by ports allow tasks to be
separately compiled and linked. After a task is created,
it will commence execution when it receives a
message. A task is a sequential program (e.g., a C
function). Upon receipt of a message a task will
execute to completion (possibly being preempted by
other tasks and later resumed). If the tasks currently in
the system are feasible then there will be at most one
instance of each task either ready for execution or
executing at any time.

Resources

A resource is a C program with persistent data.
Resources are created with a system call. The call
registers a set of functions for operating on a resource.
These functions are then accessed indirectly through
the kernel by tasks. When a task attempts to perform
an operation on a resource the scheduler is invoked and
the current deadline of the requesting task is possibly
advanced to an earlier point in time as described in the
previous section.

The concept of a resource is useful for incorporating
utilities written for other operating systems into the
YARTOS environment. For example, DOS is treated
as a single large resource. DOS calls (TRAPS) are
intercepted by YARTOS and mapped into resource
calls. This ensures that at most one YARTOS task is
executing inside DOS at a time. This works
particularly well with DOS since it is (roughly
speaking) a sequential program and does not directly
support concurrent threads of control.

By treating DOS as a resource YARTOS programmers
have access to an expanded list of operating system
services.

Device Management

To ensure a faithful implementation of the scheduling
model, YARTOS must ensure that all computational
activities are dispatched by the scheduler. This means
that traditional non-dispatched activities, such as all
interrupt handlers, are implemented as tasks and are
scheduled in the same manner as user tasks. Interrupt
handlers must be scheduled to ensure that tasks with

6

near deadlines do not fail. In YARTOS, traditional
interrupt handlers are tasks that are created by the user
and invoked by a hardware signal rather than by a
message arrival. The deadlines of these tasks are
assigned based the expected inter-arrival time of the
interrupt. In general this information may not be
known or reliable, however, this has not been a
problem for the real-time applications we have
constructed using YARTOS. (These applications are
briefly described in the following section.)

Scheduling-Based Optimizations

A final note on the YARTOS implementation
concerns the low-level implementation of tasks.
Although the YARTOS programming model is one of
communicating sequential processes, a collection of
tasks is implemented more like a single sequential
program than a set of independent threads of control.
Specifically, all YARTOS tasks execute on a single
run-time stack. Such an implementation is made
possible by the scheduling policy we have developed.
If a task T is preempted, it is the case that any task
that executes while T is preempted, is guaranteed to
complete execution and terminate before T is resumed.
Since tasks execute to completion, we may execute all
tasks on a single run-time stack. This greatly
improves memory utilization and reduces context
switching overhead by reducing the machine state.
(This optimization is an implementation of a simple
form of Baker’s stack allocation policy [Baker 90].)

A second optimization concerns mutual exclusion for
shared resources. Since the YARTOS scheduling
policy eliminates contention for resources at run-time
by manipulating the deadline of a task that is operating
on a resource, YARTOS need not provide any special
locking facilities for accessing shared resources.

These two properties of our scheduling algorithm
afford us an extremely efficient implementation of
tasks.

Status and Experiences

A YARTOS prototype has been constructed that
implements both the tasking model and scheduling
discipline described in the previous section. It is
implemented in C on an IBM PS/2 computer and
consists of approximately 2500 lines of code. Its
small size is due largely to the fact that we may
implement tasks and resources in a simple and
straightforward manner.

YARTOS has been used to support two real-time
applications: a 3-dimensional graphics display system
used for research in virtual realities [Chung et al. 89]
and a workstation-based conferencing system using
digital audio and video [Jeffay & Smith 91]. The
graphics system consists of a head-mounted display
system (a helmet with miniature television monitors
embedded in it), and tracking hardware for the helmet
and for a hand-held pointing device. A computer
generated image of a 3-dimensional “virtual world” is
displayed in the helmet. The goal of the system is to
track the user’s head and pointing device in real-time
and to update the image displayed in the helmet so as
to maintain the illusion that the user is immersed in
an artificial world.

There are two separate real-time concerns in this
application. First, the system must update the display
at a rate sufficient for ensuring that animate objects
displayed in the helmet move in a smooth and realistic
manner. Second, as the user moves her head or
pointing device, the displayed image must appear to
move with the user’s movements. Such constraints
were simple to model and realize with YARTOS. A
task graph for this application is shown in Figure 3.
Dark circles represent hardware devices, circles
represent tasks and double circles represent resources.

YARTOS and its programming system provide a
framework for both expressing processor-time-
dependent computations and for reasoning about the
real-time behavior of programs. For example, in the
head-mounted display application, we can demonstrate
that the maximum time between the arrival of a
complete head and hand position report and the display
of an image based on the new position information is
approximately 100ms. This determination is made
based on the response time guarantees provided by
YARTOS, the structure of the application, and the
semantics of the programming discipline. In
particular, this analysis is independent of other
applications that may be executing simultaneously.
By performing some simple restructuring of the
program, we were able to reduce this performance
guarantee to approximately 33ms (see [Jeffay 89a]).

Currently, YARTOS is being used to experiment with
digital audio and video on a local area network of
workstations [Jeffay & Smith 91]. The hardware
consists of a (small) number of workstations
interconnected with a 16Mbit token ring network.
Each workstation is connected to a video camera,
microphone, speaker, and video monitor, and contains
real-time video encoding/decoding hardware with

7

Tracker
Int.

Handler

Position
Processor

Timer
Int.

Handler
Transform
Coords.

Update
Display

List

Compute
Image

Display

Head
Position

Hand
Position

Timer

Tracking
HW

Display

Figure 3

compression capabilities (Intel’s ActionMedia Digital
Video Interactive product [Ripley 89]). The goal is to
use the workstation and network to emulate a cable
television network. This requires real-time data
acquisition, processing and transmission. The
motivation for this project is to support the remote,
real-time collaboration of scientific and technical
professionals [Smith et al. 90].

In addition to reasoning about timing properties of the
application, we are experimenting with kernel support
for reasoning about logical correctness issues. For
example, in the digital video system the tasks that
control the digitization, compression, and transmission
of video data on a workstation operate in a pipeline. A
video frame is first digitized, then compressed and then
packetized and sent over the network. These three
tasks share a buffer pool of video frames. When a task
acquires a buffer we would like to assert that a boolean
expression describing the state of the contents of the
buffer is true (e.g., that a buffer contains compressed
video data). Ideally, we would like to demonstrate that
the application can never enter a state in which the
assertion is false given the text of the program and the
scheduling guarantees provided by YARTOS.

Our approach is to use a simplified version of Jahanian
and Mok’s real-time logic RTL [Jahanian & Mok 86]
for reasoning about safety properties of a YARTOS
application [Jeffay & Stone 91]. Safety assertions are
formulated in terms of relations on observable and
measurable events such as the number of messages
sent to a task. We manually prove that the truth of
these assertions implies that the desired safety property
holds. During the execution of a YARTOS
application, the kernel maintains a count of all
messages sent to and received by a task. A user can
perform a system call to obtain the current value of an
event count and thereby dynamically verify the correct
operation of peer tasks.

Summary

YARTOS is an experimental system for research in
the design and implementation of real-time
applications. It is a micro-kernel with an underlying
formal model of sporadic tasks with response time
requirements and shared software resources. It is
distinguished by the programming model it supports
and by its use of a novel processor scheduling and
resource allocation policy.

YARTOS is not a panacea for real-time computing
problems. It is designed to support a particular
paradigm of timing constraints and resource usage. It
has, however, proved to be a useful vehicle for real-
time applications that are primarily concerned with
processing long-lived, uniform data streams (e.g., the
class of so-called continuous media applications). It
has allowed us to design, implement, and analyze the
performance of such real-time applications in a
convenient manner. As such it represents a useful step
towards the goal of supporting predictable real-time
computing.

References

Baker, T.P. (1990). A Stack-Based Resource
Allocation Policy for Real-Time Processes, Proc.
Eleventh IEEE Real-Time Systems Symp, Lake
Buena Vista, FL, December 1990, pp. 191-200.

Chung, J.C., Haris, M.R., Brooks, F.P., Fuchs, H.,
Kelley, M.T., Hughes, J., Ouh-young, M.,
Cheung, C., Holloway, R.L., Pique, M. (1989).
Exploring Virtual Worlds with Head-Mounted
Displays, Non-Holographic True 3-Dimensional
Display Technologies, SPIE Proceedings, Vol.
1083, Los Angeles, CA, January 1989.

8

Jahanian, F., Mok, A. K.L. (1986). Safety Analysis
of Timing Properties in Real-Time Systems,
IEEE Trans. on Soft. Eng., Vol SE-12, No.
9, pp. 890-904.

Jeffay, K. (1989). The Real-Time Producer/Consumer
Paradigm: Towards Verifiable Real-Time
Computat ions , Ph.D. Thesis, University of
Washington, Department of Computer Science,
Technical Report #89-09-15, September 1989.

Jeffay, K. (1989). Analysis of a Synchronization and
Scheduling Discipline for Real-Time Tasks with
Preemption Constraints, Proc. Tenth IEEE Real-
Time Systems Symp., Santa Monica, CA,
December 1989, pp. 295-305.

Jeffay, K. (1990). Scheduling Sporadic Tasks With
Shared Resources in Hard-Real-Time Systems,
University of North Carolina at Chapel Hill,
Department of Computer Science, Technical Report
TR90-038, August 1990. (Submitted for
publication.)

Jeffay, K., Smith, F.D. (1991). System Design for
Workstation-Based Conferencing With Digital
Audio and Video, Proc. IEEE Conference on
Communication Software: Communications for
Distributed Applications and Systems, Chapel Hill,
NC, April 1991, pp.169-180.

Jeffay, K., Stone D. (1991). Operating system and
programming language support for predictable real-
time computations. (In preparation.)

Liu, C.L., Layland, J.W. (1973). Schedul ing
Algorithms for Multiprogramming in a Hard-Real-
Time Environment, Journal of the ACM, Vol.
20, No. 1, pp. 46-61.

Ripley, G.D. (1989). DVI - A Digital Multimedia
Technology, CACM , Vol. 32, No. 7, pp. 811-
822.

Sha, L., Rajkumar, R., Lehoczky, J.P. (1990).
Priority Inheritance Protocols: An Approach to
Real-Time Synchronization, IEEE Trans. on
Computers, Vol. 39, No. 9, pp. 1175-1185.

Smith, J.B., Smith, F.D., Calingaert, P., Hayes,
J.R., Holland, D., Jeffay, K., Lansman, L. (1990).
UNC Collaboratory Project: Overview, University
of North Carolina at Chapel Hill, Department of
Computer Science, Technical Report TR90-042,
November 1990.

Wirth, N. (1977). Toward a discipline of real-time
programming, CACM, Vol. 20, No. 8, 577-583.

Zhao, W. (Ed.) (1989). Operating Systems
Review, Vol. 23, No. 3.

