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* Background: Router-based congestion control
— Active Queue Management
— Explicit Congestion Notification

* State of the art in active queue management (AQM)
— Control theoretic v. traditional randomized dropping AQM

* Do AQM schemes work?
— An empirical study of the effect of AQM on web performance

* Analysis of AQM performance
— The case for differential congestion notification (DCN)

* A DCN prototype and its empirical evaluation

Router-Based Congestion Control
WLy, Status quo
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* On the Internet today, packet loss is —

the end-system’s only indication of congestion

* As switch’s queues overflow, arriving packets are dropped
— “Drop-tail” FIFO queuing is the default

* TCP end-systems detect loss and respond by reducing
their transmission rate

ﬁ Router-Based Congestion Control

, The case against drop-tail queuing

FCES /
‘—SC@P1P2P3P4P5P6 =

™

e Large (full) queues in routers are a bad thing

— End-to-end latency is dominated by the length of queues
at switches in the network

* Allowing queues to overflow is a bad thing

— Connections that transmit at high rates can starve
connections that transmit at low rates

— Causes connections to synchronize their response to
congestion and become unnecessarily bursty




@ Router-Based Congestion Control

v Active queue management (AQM)
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* Key concept: Drop packets before a queue overflows to
signal incipient congestion to end-systems

* Basic mechanism: When the queue length exceeds a
threshold, packets are probabilistically dropped

* Random Early Detection (RED) AQM:
— Always enqueue if queue length less than a low-water mark
— Always drop if queue length is greater than a high-water mark

— Probalistically drop/enqueue if queue length is in between

Active Queue Management
Y The RED Algorithm [Floyd & Jacobson 93]
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* RED computes a weighted moving average of queue
length to accommodate bursty arrivals

* Drop probability is a function of the current average
queue length

— The larger the queue, the higher the drop probability

Active Queue Management
4%, The RED Algorithm [Floyd & Jacobson 93]
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v Explicit Congestion Notification (ECN)

@ Active Queue Management
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* Dropping packets is a simple means of signaling
congestion but it’s less than ideal

— It may take a long time for a sender to detect and react to
congestion signaled by packet drops

— There are subtle fairness issues in the way flows are treated

* ECN: Instead of dropping packets, send an explicit
signal back to the sender to indicate congestion
— (An old concept: ICMP Source Quench, DECbit, ATM, ...)




f Explicit Congestion Notification

%% Overview
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e Modify a RED router to “mark”™ packets rather
than dropping them

 Set a bit in a packet’s header and forward towards
the ultimate destination

* A receiver recognizes the marked packet and sets a
corresponding bit in the next outgoing ACK

f Explicit Congestion Notification

%% Overview

4—33@|P1\P2 'p,|P,|P| P[P, [P ]P]e—

B4 [ ‘E
2 —g
E_ Router _Q

* When a sender receives an ACK with ECN it
invokes a response similar to that for packet loss:

— Halve the congestion window cwnd and halve the slow-
start threshold ssthresh

— Continue to use ACK-clocking to pace transmission of
data packets

f Explicit Congestion Notification

%% Overview
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* When a sender receives an ACK with ECN it
invokes a response similar to that for packet loss

* In any given RTT, a sender should react to either
ECN or packet loss but not both!

— Once a response has begun, wait until all outstanding
data has been ACKed before beginning a new response

Explicit Congestion Notification
: !E} Putting the pieces together: AQM + ECN

Router queue length Mark/Drop
Max probability
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threshold ||/

Time
* If a RED router detects congestion it will mark arriving
packets

* The router will then forward marked packets from
ECN-capable senders...

e ...and drop marked packets from all other senders
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The State of the ART in AQM
Adaptive/Gentle RED (ARED)
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The State of the ART in AQM

The Proportional Integral (PI) controller

Router queue length

* PI attempts to maintain an explicit target queue length

* PI samples instantaneous queue length at fixed intervals
and computes a mark/drop probability at & sample:
—p(kT) = a x (q(kT) — q,,) — b x (q((k-1)T) — q,.,) + p((k-1)T)
—a, b, and T depend on link capacity, maximum RTT and the
number of flows at a router

20




The State of the ART in AQM
Random Exponential Marking (REM)

i

e REM is similar to PI (though differs in details)
e REM mark/drop probability depends on:
— Difference between input and output rate
— Difference between instantaneous queue length and target
—p(t) = p(t=1) + y [ (1) — gu) + x(1) — ]
—prob(t) = 1 —¢P9, ¢> 1 aconstant
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Do AQM Schemes Work?
Evaluation methodology

* Evaluate AQM schemes through “live simulation”

* Emulate the browsing behavior of a large population of
users surfing the web in a laboratory testbed
— Construct a physical network emulating a congested peering
link between two ISPs

— Generate synthetic HTTP requests and responses but transmit
over real TCP/IP stacks, network links, and switches
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Experimental Methodology
HTTP traffic generation

Response Time

* Synthetic web traffic generated using the UNC HTTP
model [SIGMETRICS 2001, MASCOTS 2003]

* Primary random variables:
— Request sizes/Reply sizes ~ — Number of embedded images/page
— User think time — Number of parallel connections
— Persistent connection usage — Consecutive documents per server
— Nbr of objects per persistent — Number of servers per page
connection
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X, Testbed emulating an ISP peering link

@ Experimental Methodology
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* AQM schemes implemented in FreeBSD routers using
ALTQ kernel extensions

* End-systems either a traffic generation client or server
— Use dummynet to provide per-flow propagation delays

— Two-way traffic generated, equal load generated in each
direction
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ﬁ Experimental Methodology

1 Gbps network calibration experiments
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* Experiments run on a congested 100 Mbps link

e Primary simulation parameter: Number of simulated
browsing users

* Run calibration experiments on an uncongested 1 Gbps
link to relate simulated user populations to average link
utilization

— (And to ensure offered load is linear in the number of
simulated users — i.e., that end-systems are not a bottleneck)
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Experimental Methodology

‘:ﬂ 1 Gbps network calibration experiments
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» Experimental Methodology
¥+, Experimental plan

80% 90%. 98% 105%
unconge_sted loss rate
d;(g)étgll utilization
= response times |
REM completed requests

e Run experiments with ARED, PI, and REM using their
recommended parameter settlngs at different offered loads

. 1Coglpaure results with drop-tail FIFO at the same offered
oads

— (the “negative” baselines — the performance to beat)

..and compare with performance on the 1 Gbps network
— (the “positive” baseline — the performance to achieve)
* Redo the experiments with ECN
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Experimental Results — 80% Load
¥+, Performance with packet drops
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Cumulative Probabslity (%)

Experimental Results — 80% Load
Performance with packet drops
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Experimental Results — 90% Load
Performance with packet drops
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ECN Results — 90% Load

Comparison of all schemes

~ PI&REM outperform drop-tail
and approximate performance on
the uncongested network
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Impact of ECN on REM
Performance with/without ECN at 90% load
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@ Impact of ECN on REM

Performance with/without ECN at 90% load

Impact of ECN on ARED
i, Performance with/without ECN at 90% load
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@ Do AQM Schemes Work?

i, Summary

* For offered loads up to 80% of link capacity, no AQM
scheme gives better performance than drop-tail FIFO

— All give comparable response time performance, loss
and link utilization
* For offered loads of 90% or greater...

— Without ECN, PI results in a modest performance
improvement over drop-tail and other AQM schemes

rates,

— With ECN, both PI and REM provide significant performance

improvement over drop-tail

* ARED consistently results in the poorest performance

— Often worse than drop-tail FIFO
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) Why does ARED perform so poorly?

Router Router

Instantaneous Queue Length
(PVREM)

Welghted(QuSt)Je Length

* ARED bases mark/drop probability on the (weighted)
average queue length

* PI, REM use instantaneous measures of queue length

* ARED’s reliance on the average queue length limits its
ability to react effectively in the face of bursty traffic
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Discussion
%%, Why does ECN improve REM more than PI?

e Without ECN, REM drops el

more packets than PI 2 - ——

1 i .-'f- REM Performance w/, w/o.

* REM causes more flows to  |; I/ ECN at 90% Load

experience multiple losses 1§ * e —

within a congestion window |= =| e

— Loss recovered through Ll — - - -
timeout rather than fast S Tirs e

recovery

* In general ECN allows more flows to avoid timeouts
— Thus ECN is ameliorating a design flaw in REM

Discussion
%%, Why does ARED not benefit from ECN?

* ARED drops marked packets when average queue size is
above max,,

* This is done to deal with potentially non-responsive flows
* We believe this policy is a premature optimization
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Discussion
) Why does ARED perform so poorly?

e Pl and REM measure |- ° /”__/_E
queve length n bytes E = AREI5 Performance w/,l
* By default RED b g -
measures in packets Ea ARED,. fymmeZ e e g
— But ARED does have 2 8 - — L 2
a “byte mode” - -

* Drop/Mark probability in PI/REM biased by packet size
— SYNs and pure ACKSs have a lower drop probability in PI/REM

* Differentiating at the packet level is critical
—Is it enough?
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Discussion
%%, Do AQM designs inherently require ECN?

* Claim: Differentiating between flows at the flow-level
is important

* ECN is required for good AQM performance because
it eliminates the need for short flows to retransmit (a
significant fraction of their) data

— With ECN, short flows (mostly) no longer retransmit data
— But their performance is still hurt by AQM

* Why signal short flows at all?
— They have no real transmission rate to adapt

— Hence signaling these flows provides no benefit to the
network and only hurts end-system performance
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ﬁ The Structure of Web Traffic

%%, Distribution of response sizes
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ﬁThe Structure of Web Traffic

‘L Percent of bytes transferred by response sizes
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» Making AQM Work

%%, Overview

Background: Router-based congestion control
— Active Queue Management
— Explicit Congestion Notification

State of the art in active queue management (AQM)

— Control theoretic v. traditional randomized dropping AQM
Do AQM schemes work?

— An empirical study of the effect of AQM on web performance
Analysis of AQM performance

— The case for differential congestion notification (DCN)

A DCN prototype and its empirical evaluation
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, Issues and approach

@ Realizing Differential Notification
A5

* How to identify packets belonging to long-lived, high
bandwidth flows with minimal state?

— Adopt the Estan, Varghese flow filtering scheme developed
for traffic accounting [SIGCOMM 2002]

* How to determine when to signal congestion (by
dropping packets)?

— Use a PI-like scheme

¢ Differential treatment of flows an old idea:
—FRED — CHOKe — AFD — RIO-PS
— SRED — SFB — RED-PD — .
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Classifying Flows
%% A score-boarding approach

* Use two hash tables:
— A “suspect” flow table HB (“high-bandwidth”) and
— A per-flow packet count table SB (“scoreboard”)
— Hash on IP addressing 4-tuple plus protocol number

* Arriving packets from flows in HB are subject to
dropping

* Arriving packets from other flows are inserted into SB

and tested to determine if the flow should be considered
high-bandwidth

— Use a simple packet count threshold for this determination
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Classifying Flows
%% A score-boarding approach

Enqueue if
not opped)
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An Alternate Approach
%, AFD [Pan et al. 2003]

Shadow Flow
Buffer JJ Table

“Approximate Fairness through Differential Dropping”

e Sample 1 out of every s packets and store in a shadow
buffer of size b

# matches

* Estimate flow’s rate as r,;, =R )

. _ air
Drop packet with probability p =1 - —

est
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DCN Evaluation
N Experimental plan

90% 98%

response times

* Run experiments with DCN, AFD, and PI at same offered
loads as before

— PI always uses ECN, test AFD with and without ECN
— DCN always signals congestion via drops
e Compare DCN results against...
— The better of PI or AFD (the performance to beat)
— The uncongested network (the performance to approximate)
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Experimental Results — 90% Load
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Experimental Results — 98% Load
DCN performance
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Experimental Results — 90% Load
Comparison of all schemes
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@ Experimental Results — 98% Load
)

, Comparison of all schemes
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Experimental Results — 98% Load
, Percentage of bytes transferred by response size
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f Experimental Results — 98% Load
'q.'

, Percentage of bytes transferred by response size
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®» DCN Evaluation

. (“ﬁ Summary

* DCN uses a simple, tunable two-tiered classification
scheme with:
— Tunable storage overhead
— O(1) complexity with high probability

* DCN, without ECN, meets or exceeds the performance
of the best performing AQM designs with ECN

— The performance of 99+% of flows is improved
— More small and “medium” flows complete per unit time

* On heavily congested networks, DCN closely approx-
imates the performance achieved on an uncongested
network
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» Making AQM Work
. (ﬂ Summary and Conclusions

* We emulated a peering point between two ISPs and
applied AQM in ISP border routers

* We emulated the browsing behaviors of tens of
thousands of users in a laboratory testbed

* No AQM scheme with or without ECN is better than
drop-tail FIFO for offered loads up to 80% of link
capacity

* For offered loads of 90% or greater there is benefit to
control theoretic AQM but only when used with ECN
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» Making AQM Work
. !‘1 Summary and Conclusions

* The reliance on ECN is required to “improve” (hurt
less) the performance of short flows

—90% of the flows in our HTTP model

* But in the absolute, ECN is not helping their
performance

* Heuristically signaling only long-lived, high-bandwidth
flows improves the performance of most flows and
eliminates the requirement for ECN

— One can operate links carrying HTTP traffic at near saturation

levels with performance approaching an achieved on an
uncongested network

e Identification of short flows can effectively be
performed with tunable state and complexity
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Making AQM Work

: (“1 Future work

e More of the same...
— Tuning, tuning, tuning...

— Re-evaluate DCN (and other AQM schemes) with more
diverse traffic models
(But where do we get these models?)

— Study the effect of non-responsive and malicious flows

* New and improved...

— Deconstruct AQM and study performance contribution of
constituent components

— Understand the interplay between ECN and AQM components
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