
1

Rate-Based Resource Allocation
Models for Real-Time Computing

http://www.cs.unc.edu/Research/dirt

Kevin Jeffay
Department of Computer ScienceDepartment of Computer Science
University of North CarolinaUniversity of North Carolina

at Chapel Hillat Chapel Hill
jeffayjeffay@@cscs..uncunc..eduedu

Steve Goddard
Computer Science & EngineeringComputer Science & Engineering
University of Nebraska – LincolnUniversity of Nebraska – Lincoln

goddardgoddard@@csecse..unlunl..eduedu

EMSOFT 2001

2

Rate-Based Resource Allocation
The case against static priority scheduling

u Static priority scheduling in general, and Rate Monotonic
scheduling in particular, dominates in the real-time
systems literature
» VxWorks, VRTX, QNX, pSOSystems, LynxOS all support

static priority scheduling

u Does one size fit all?
» “When you have a hammer, everything looks like a nail”

u Problems with static priority scheduling
» Feasibility is dependent on a predictable environment and well-

behaved tasks.

3

Rate-Based Resource Allocation
Overview

u The problem:
» How to allocate resources in an environment wherein…

v Work arrives at well-defined but highly variable rates

v Tasks may exceed their execution time estimates

» … and still guarantee adherence to deadlines

u The thesis:
» Static priority scheduling is the wrong tool for the job

(existing task models are too simplistic)

» Rate-based scheduling abstractions can simplify the
design and implementation of many real-time systems and
improve performance and resource utilization

4

The Case Against Priority Scheduling
Example: Display-side multimedia processing

u The problem: Receive frames from the network and
deliver to a display application so as to ensure...
» Continuous playout

» Minimal playout latency

u The theory: Multimedia is easy — it’s periodic!
» Apply existing theory of periodic or sporadic tasks

Acquire

Display
Display Initiation Time (in frame times)

5

Display-side Media Processing
The practice

u Nothing is periodic in a distributed system!

u The effects of distributed systems pathology:
» Variable message transmission times
» Out-of-order message arrivals
» Lost & duplicate messages

Acquire

Display
Display Initiation Time (in frame times)

X

6

Acquire

Display
Display Initiation Time (in frame times)

X

Display-side Media Processing
Managing the Network Interface

u Packets fragmented in the network must be
reassembled
» Messages have deadlines, packets do not

» Applications know about messages, operating systems do
not

7

The Case Against Priority Scheduling
Example: Signal processing data flow graphs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time

w

u

Node u has a period of 3
Node v has a period of 5

v

W

U
produce = 3

t hes hol d = 7,
consume = 5

V

produce = 4
t hes hol d = 4
consume = 4

8

Rate-Based Computing
Approaches

u Extend the Liu and Layland model of real-time tasks to
allow the expression of real-time rates
» Hierarchical “server-based” scheduling — Create a “server”

process that is scheduled as a periodic task and internally
schedules the processing of aperiodic events

» Event-based scheduling — Process aperiodic events as if they
were generated by a virtual “well behaved” periodic process

u Adapt “fluid-flow” models of resource allocation
developed in the networking community for bandwidth
allocation to CPU scheduling
» Provide a “virtual processor” abstraction wherein each task

logically executes on a dedicated processor with 1/ƒ(n) the
capacity of the physical processor

9

An Event-Based Rate Model
The Rate-Based Execution (RBE) model

u Tasks make progress at the rate of processing x events
every y time units and each event is processed within d
time units (in the best case)

u For task i with rate specification (xi, yi, di), the jth event
for task i, arriving at time ti,j, will be processed by time

» D(i,j) gives the earliest possible deadline for the jth instance
of task i (≥ ti,j + di)

ti,j + di if 1 ≤ j ≤ xi

MAX(ti,j + di , D(i, j–xi)+yi) if j > xi

D(i, j) =

10

The RBE Task Model
Example: Periodic arrivals, periodic service

u Task with rate specification (x = 1, y = 2, d = 2)

J1,1 J1,2 J1,4 J1,5 J1,6 J1,7 J1,8 J1,9 J1,10 J1,11 J1,12

0 2 4 6 8 10 12 14 16 18 20 22 24 26

J1,3

ti,j + di if 1 ≤ j ≤ xi

MAX(ti,j + di , D(i, j–xi)+yi) if j > xi

D(i, j) =

» Deadlines separated by at least y = d = 2 time units
» Deadlines occur at least 2 time units after a job is released

11

ti,j + di if 1 ≤ j ≤ xi

MAX(ti,j + di , D(i, j–xi)+yi) if j > xi

D(i, j) =

The RBE Task Model
Example: Periodic arrivals, deadline ≠ period

u Task with rate specification (x = 1, y = 2, d = 6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

J1,10

J1,11

J1,12

» Deadlines separated by at least y = 2 time units and occur
at least d = 6 time units after a job is released

12

The RBE Task Model
Bursty arrivals

u Task with rate specification (x = 1, y = 2, d = 6)
» Deadlines separated by at least y = 2 time units and occur

at least d = 6 time units after a job is released

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

13

The RBE Task Model
Bursty arrivals

u Task with rate specification (x = 3, y = 6, d = 6)
» Deadlines separated by at least y = 6 time units and occur

at least d = 6 time units after a job is released

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

14

The RBE Task Model
Comparison of rate specifications

Rate specification

(x = 1, y = 2, d = 6)

Rate specification

(x = 3, y = 6, d = 6)

J1,1
J1,2
J1,3

J1,4
J1,5

J1,6
J1,7

J1,8
J1,9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

J1,1
J1,2
J1,3

J1,4
J1,5

J1,6
J1,7

J1,8
J1,9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

15

The RBE Task Model
RBE features/properties

u Provides better response
time for non-real-time
activities by
integrating
application-level
buffering with the
system run queue

Receiver’s
Processing

Pipeline Display
Network

Reception

0 2 4 6 8 10 12

Rate specification
(x = 1, y = 2, d = 6)

16

The RBE Task Model
RBE features/properties

u Provides a more natural
way of modeling
inbound packet
processing of
fragmented messages

0 2 4 6 8 10 12

Rate specification
(x = 3, y = 6, d = 6)

Acquire

Display
Display Initiation Time

17

The RBE Task Model
RBE features/properties

u Provides isolation from
arrival rates that exceed
the rate specification
» (But does not provide

isolation from tasks
exceeding their stated
execution time)

0 2 4 6 8 10 12

Rate specification
(x = 3, y = 6, d = 6)

Acquire

Display
Display Initiation Time

18

Fluid Flow Resource Allocation
Proportional share resource allocation

u Tasks are allocated a share of the processor’s capacity
» Task i is assigned a weight wi

» Task i’s share of the CPU at time t is

 fi(t) =

u If tasks’ weights remain constant in [t1, t2] then task i
receives

units of execution time in [t1, t2]

wi

Σj A(t) wj∋

Si(t1,t2) = ∫ fi(t) dt = (t2 – t1)Σj wj

wi

t1

t2

19

u Weighted round robin scheduling with an infinitesimally
small quantum

u In [t1, t2] (if total weight doesn’t change) Ti receives

Proportional Share Resource Allocation
Fluid scheduling example

T3: 1 0.125

T2: 1 0.125

T1: 4 0.5

Time

T4: 1 0.125

T5: 1 0.125

0 1 2 3 4 5 6 7 8 9

Weight Share

Si(t1,t2) == ∫ fi(t) dt = (t2 – t1)Σj A(t) wj∋

wi

t1

t2

20

u Weighted round robin scheduling with integer quanta
» q = 1

u The quantum system doesn’t proportionally allocate
the resource over all time intervals

Proportional Share Resource Allocation
Quantum scheduling example

T3: 1 0.125

T2: 1 0.125

T1: 4 0.5

T4: 1 0.125

T5: 1 0.125

Weight Share

Time 0 1 2 3 4 5 6 7 8 9

21

u Schedule tasks so that their performance is as close as
possible to that in the fluid system

u Why is fluid allocation important?
» What about real-time allocation?!

Proportional Share Resource Allocation
Task scheduling metrics & goals

Quantum
AllocationFluid

Allocation

Si(t1,t2)
si(t1,t2)

22

Approximating Fluid Allocation
Why is this so important?

u Fluid allocation implies real-time progress

u Weights are used to allocate a relative fraction of the
CPU’s capacity to a task
 fi(t) =

u Real-time progress requires a constant fraction of the
CPU’s capacity
 ∀ t, fi(t) = execution costi X execution frequencyi

» If a task must execute for 16 ms every 33 ms then allocating
f = 0.5 ensures real-time execution

u Thus real-time performance can be achieved by adjusting
weights dynamically so that the share remains constant

Σj wj

wi

23

u Periodic tasks allocated a share equal to their processor
utilization
» Round-robin scheduling with infinitesimally small quantum

» With unit-sized quantum

Proportional Share Resource Allocation
Real-time scheduling example

1.0

0

T1 = (2, 8)

T2 = (3, 6)

1 2 3 4 5 6 7 8 9 10 11 12 13

1.0

0

T1 = (2, 8)

T2 = (3, 6)

1 2 3 4 5 6 7 8 9 10 11 12 13

0.5

0.25

24

u Goal: Schedule tasks so that their performance is as
close as possible to that in the fluid system

Proportional Share Resource Allocation
Task scheduling metrics & goals

Quantum
AllocationFluid

Allocation

Si(t1,t2)
si(t1,t2)

= Si(ti,t) – si(ti,t)

lagi(t) = – allocation the task would have
received in the fluid system

allocation the task has received
in the quantum system

u Define the allocation error for task i at time t as

u Schedule tasks so that the lag is bounded for all tasks
over all time intervals
» What is the least upper bound on lag?

25

Proportional Share Resource Allocation
Timing analysis

u Is a task guaranteed to complete before its deadline?
» How late can a task be?

q

u Theorem: Let c be the size of the current request of task
T. Task T’s lag is bounded by

-q < lagT(t) < q

26

Rate-Based Resource Allocation
Summary

u There’s life beyond rate monotonic scheduling
u Rate-based resource allocation simplifies systems

wherein
» Work is generated at non-periodic but structured rates
» Tasks may “misbehave”

u Liu and Layland extensions
» Rate models demonstrate a fundamental distinction

between static priority and deadline scheduling methods

u Fluid flow models
» Real-time ±quantum
» No fundamental distinction between real-time and non-

real-time tasks
» Provide strict isolation between tasks

