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Rate-Based Resource Allocation
Overview

+ The problem:

» How to allocate resources in an environment wherein...
< Work arrives at well-defined but highly variable rates
< Tasks may exceed their execution time estimates

» ... and still guarantee adherence to deadlines

¢ The thesis:

» Static priority scheduling is the wrong tool for the job
(existing task models are too simplistic)
» Rate-based scheduling abstractions can simplify the

design and implementation of many real-time systems and
iImprove performance and resource utilization

Rate-Based Resource Allocation
The case against static priority scheduling

+ Static priority scheduling in general, and Rate Monotor
scheduling in particular, dominates in the real-time
systems literature

» VxWorks, VRTX, QNX, pSOSystems, LynxOS all support
static priority scheduling

+ Does one size fit all?
» “When you have a hammer, everything looks like a nail”

+ Problems with static priority scheduling

» Feasibility is dependent on a predictable environment and we
behaved tasks.

The Case Against Priority Scheduling
Example: Display-side multimedia processing
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+ The problem: Receive frames from the network and
deliver to a display application so as to ensure...
» Continuous playout
» Minimal playout latency

¢ The theory: Multimedia is easy — it's periodic!
» Apply existing theory of periodic or sporadic tasks



Display-side Media Processing

The practice
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+ Nothing is periodic in a distributed system!

+ The effects of distributed systems pathology:
» Variable message transmission times
» Out-of-order message arrivals
» Lost & duplicate messages

The Case Against Priority Scheduling

Example: Signal processing data flow graphs
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Display-side Media Processing
Managing the Network Interface
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+ Packets fragmented in the network must be

reassembled
» Messagedave deadlineqacketsdo not
» Applications know about messages, operating systems d

not

Rate-Based Computing
Approaches

+ Extend the Liu and Layland model of real-time tasks tc
allow the expression of real-time rates
» Hierarchical “server-based” scheduling — Create a “server”
process that is scheduled as a periodic task and internally
schedules the processing of aperiodic events
» Event-based scheduling — Process aperiodic events as if th
were generated by a virtual “well behaved” periodic process

+ Adapt “fluid-flow” models of resource allocation
developed in the networking community for bandwidth
allocation to CPU scheduling

» Provide a “virtual processor” abstraction wherein each task
logically executes on a dedicated processor witmlthe

capacity of the physical processor




An Event-Based Rate Model
The Rate-Based ExecutionRBE) model

¢ Tasks make progress at the rate of processavgnts
everyy time units and each event is processed within
time units (in the best case)

+ For taski with rate specificatiornx(, y, d), thejth event
for taski, arriving at timet; ., will be processed by time

D(i, ) = {

» D(i,j) gives the earliest possible deadline forjthimstance
of taski (= t;; +d))

i,j?
t,; +d, if 1<) <x

MAX(t; +d;, D(,]=x)+y;) if j>X%

The RBE Task Model

Example: Periodic arrivals, deadline# period

+ Task with rate specificatioxE 1,y=2,d = 6)
t,; +d, if<j<x

D(, j) = {
MAX(t;+d, D(, j=4)*y; )

» Deadlines separated by at lepst 2 time units and occur
at leastd = 6 time units after a job is released
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The RBE Task Model

Example: Periodic arrivals, periodic service

+ Task with rate specificatioxE 1,y=2,d = 2)

D(i,}) = { N
D(i, j=x)+Y; )

» Deadlines separated by at leastd = 2 time units
» Deadlines occur at least 2 time units after a job is released
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The RBE Task Model

Bursty arrivals

+ Task with rate specificatiox & 1,y = 2,d = 6)

» Deadlines separated by at legst 2 time units and occur
at leasd = 6 time units after a job is released
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The RBE Task Model The RBE Task Model

Bursty arrivals Comparison of rate specifications
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The RBE Task Model The RBE Task Model
RBE features/properties RBE features/properties
+ Provides better response Acquire ' —
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The RBE Task Model

RBE features/properties
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¢ Provides isolation from
arrival rates that exceed
the rate specification

» (But does not provide
isolation from tasks
exceeding their stated W

execution time)
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Proportional Share Resource Allocation
Fluid scheduling example

+ Weighted round robin scheduling with an infinitesimally

small quantum
¢ In [t;, t;] (if total weight doesn’t changé) receives

St = o dt = o )
1 oA Y

Weight Share
T: 4 0.5
T, 1 0.125
L N
1o | )0 )10
T, 1 0.125

Time 0 1 2 3 4 5 6 7 8 9
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Fluid Flow Resource Allocation
Proportional share resource allocation

+ Tasks are allocatedshareof the processor’s capacity
» Taski is assigned aeight vy
» Taski’s shareof the CPU at timeis
Wi

W0 = 2 oW,

J

+ If tasks’ weights remain constant i, ] then task
receives

st = Lo = -

(!

(t;—1)

units of execution time irty, t,]
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Proportional Share Resource Allocation
Quantum scheduling example

+ Weighted round robin scheduling with integer quanta
» (= 1

¢ The quantum system doesn’t proportionally allocate
the resourcever all time intervals

Weight Share

T; 4 0.5
T, 1 0125
T 1 0125
T, 1 0.125
T, 1 0.125

Time 0 1 2 3 4 5 6 7 8 9
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Proportional Share Resource Allocation
Task scheduling metrics & goals
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¢ Schedule tasks so that their performance is as close as
possible to that in thiduid system

¢ Why is fluid allocation important?
» What about real-time allocation?!
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Proportional Share Resource Allocation
Real-time scheduling example

+ Periodic tasks allocated a share equal to their processor
utilization

» Round-robin scheduling with infinitesimally small quantum
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Approximating Fluid Allocation
Why is this so important?

+ Fluid allocation implies real-time progress
+ Weights are used to allocateedativefraction of the
CPU’s capacity to a task

_ W
0= T

+ Real-time progress requiregsanstantraction of the
CPU’s capacity

Ut, fi(t) = execution costx execution frequengy

» If a task must execute for Tesevery 33msthen allocating
f = 0.5 ensures real-time execution

¢ Thus real-time performance can be achieved by adjus
weights dynamically so that the share remains constar

22

Proportional Share Resource Allocation
Task scheduling metrics & goals
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¢ Goal: Schedule tasks so that their performance is as
close as possible to that in th&d system

¢ Define the allocation error for taslat timet as

lag(t) = allocation the task would have(allocation the task has received
| received in the fluid syste in the quantum system

= 3(t,0) —s(t.)

¢ Schedule tasks so that the lag is bounded for all tasks

over all time intervals
» What is the least upper bound on lag?
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Proportional Share Resource Allocation Rate-Based Resource Allocation

Timing analysis Summary
q + There’s life beyond rate monotonic scheduling
’ ‘ + Rate-based resource allocation simplifies systems
A S— ! wherein
l S— | » Work is generated at non-periodic but structured rates

» Tasks may “misbehave”

+ Liu and Layland extensions

+ Is a task guaranteed to complete before its deadline? » Rate models demonstrate a fundamental distinction
» How late can a task be? between static priority and deadline scheduling methods

# Fluid flow models
¢ TheoremLlet c be the size of the current request of task » Real-time fuantum
T. Task T’s lag is bounded by » No fundamental distinction between real-time and non-

g < la (t) < real-time tasks
g Or g » Provide strict isolation between tasks
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