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Issues in Multimedia Delivery on
Today’s Internet

u Domain of discourse
» Definitions, concepts, and objectives

u Performance of “naive” applications today
» What’s “broken”?

u Media adaptations for best-effort multimedia delivery
» Can we fix “it”?

u Performance of best-effort applications today
» Fundamental challenges for tomorrow’s Internet

Outline
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Multimedia Delivery on Today’s Internet
Domain of discourse

u A prototypical videoconferencing system
» Architecture

» Quality-of-service requirements

u Performance metrics
» End-to-end latency

» Packet loss

u Some typical experimental results
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Interactive Multimedia Applications
Performance requirements

u Latency — the duration between acquisition of a signal
and its display

u Videoconferencing latency requirements
» telephony literature — 100 ms roundtrip
» multimedia networking literature — 250 ms one-way
» CSCW literature — tolerance of latency as high as 400 ms
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Latency in Computer-Based Video Systems
Canonical application structures
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Latency in Computer-Based Video Systems
Canonical application structures
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Latency in Computer-Based Video Systems
Recevier synchronization

u In general, acquisition and playout clocks are not
synchronized

u Therefore a buffer must be present at the receiver to adjust
for phase-shift in sender’s & receiver’s media clocks

Sender

Receiver

Display initiation points
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Latency in Computer-Based Video Systems
Best case end-to-end latency
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Latency in Computer-Based Audio Systems
How bad can audio latency be?

u Just as bad as video if lip-synchronization is required

u Otherwise, it depends on how one manages the
network interface
» Video frames are typically too large to fit into a single

network packet
» Multiple audio samples can be transmitted together

u Example: An audio codec generating 1 byte of data
every 125 µs
» Building 500 byte packets requires 62.5 ms/packet
» Building 1,500 byte packets requires 187.5 ms/packet
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Performance Requirements
Delay-jitter

u Latency
» 250 ms one-way

u Delay-jitter — Variation in end-to-end latency

Sender
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Delay-jitter

Perfect
Delivery

p

p
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Performance requirements
The impact of delay-jitter

u Delay-jitter leads to “gaps” in the playout of
media and increases playout latency

Sender

Receiver

Playout gapsDisplay initiation points
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Performance requirements
The impact of delay-jitter

u Delay-jitter increases playout latency

Sender

Receiver

latency = p latency = 3p

Playout gapsDisplay initiation points
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Performance Requirements

u Latency
» 250 ms one-way

u Delay-jitter

u Throughput —the effective delivered frame or
sample rate
» For video the issue is motion perception

» For audio the issue is comprehension

u Loss — the complement of throughput
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Performance requirements
Loss

u Loss has the same effect as delay-jitter:  gaps
» With a potentially beneficial effect of potentially lower latency

Sender

Receiver

Delay-jitter induced
playout gaps

X

Loss induced
playout gap

latency = p latency = 3p latency = 2p
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Performance requirements
Loss

u Loss has the same effect as delay-jitter:  gaps
» With a potentially beneficial effect of potentially lower latency

Sender

Receiver

Delay-jitter induced
playout gaps

X

Loss induced
playout gap
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latency = p latency = 3p latency = 2p
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Receiver’s
Pipeline

Avoiding Loss in the End System
Real-time management of a processing pipeline
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Performance requirements
Loss requirements

u Audio — 1-2% sample loss
» individual sample losses (depending on sample size) are

noticeable

» 5-10 lost samples per minute are tolerable

(the distribution of loss is critical)

u Video — 10-15 frames/s required for minimal
motion perception
» highly application dependent

» video loss raise issues of “network citizenship”
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Performance Requirements

u Latency
» 250 ms one-way

u Delay-jitter
u Throughput —the effective delivered frame or

sample rate
» For video the issue is motion perception
» For audio the issue is comprehension

u Loss

u Lip synchronization
» The temporal relationship between an audio and video

stream representing a human speaking
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u Perfect lip synchronization requires audio playout
at time _____

Performance Requirements
Lip synchronization
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u Varying lip sync can be an effective technique in
mitigating high video latency

u But...  this is fundamentally unnatural!

Performance Requirements
Lip synchronization
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Processing Transmit
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compression
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Interactive Multimedia Applications
Performance requirements

u No more than 250 ms end-to-end, one-way latency

u Continuous audio

u Minimum of 10 frames per second video throughput

u “Loosely synchronized” playout — ± 80 ms skew

Internet
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Issues in Multimedia Delivery on
Today’s Internet

u Domain of discourse
» Definitions, concepts, and objectives

u Performance of “naive” applications today
» What’s “broken”?

u Media adaptations for best-effort multimedia delivery
» Can we fix “it”?

u Performance of best-effort applications today
» Fundamental challenges for tomorrow’s Internet

Outline
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Videoconferencing on the Internet Today
ProShareTM performance on the Internet
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Videoconferencing on the Internet Today
What’s the problem?

u Where is data being delayed and lost?

InternetInternet
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Videoconferencing on the Internet Today
What’s the problem?

u Do we need more bandwidth or just better management
of the existing bandwidth?
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sufficient
but scarce
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Where do we go from here?
Two fundamental approaches

u Provide true quality-of-service through reservation of
resources in the network
» Requires coordination amongst all parties

v admission control
v policing
v ...

u Provide “best-effort” service by adapting media streams
» Monitor & provide feedback on performance
» Bias transmission and processing of media to ameliorate the

effects of congestion
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Issues in Multimedia Delivery on
Today’s Internet

u Domain of discourse
» Definitions, concepts, and objectives

u Performance of “naive” applications today
» What’s “broken”?

u Media adaptations for best-effort multimedia delivery
» Can we fix “it”?

u Performance of best-effort applications today
» Fundamental challenges for tomorrow’s Internet

Outline
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Best-Effort Multimedia Networking
Outline

u IP message delivery semantics
» The four common Internet pathologies

u Ameliorating the effects of delay-jitter
» “60 ways to queue & play your media samples”

u Ameliorating the effects of packet loss
» Recovery of lost samples through retransmission
» Recovery of lost samples through the addition of redundant

information

u Congestion control
» Adaptive media scaling and packaging
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Best-Effort Multimedia Networking
The four Internet pathologies

u Delay-jitter
» Managing a trade-off

between end-to-end latency
and continuous playout

u Loss
» Proactively control through

forward error correction

» Reactively control through
retransmission

Sender

Receiver

Delay-Jitter Out-of-order
ArrivalsLoss Duplicate

Arrivals
Perfect

Delivery

X

u Out-of-order arrivals
» Assume out-of-order

sample is lost
» Assume sample is late

u Duplicate arrivals
» Do we care?
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Ameliorating the Effects of Delay-Jitter
Trading-off end-to-end latency for continuous playout

u When the first media sample arrives, should it be played or
enqueued?

Receiver’s processing pipeline

Display
Decomp-
ression

Network
Transport

Display QueueDisplay
Synchronization
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u When the first media sample arrives, should it be played or
enqueued?
» playing the sample ensures minimal end-to-end latency...

Ameliorating the Effects of Delay-Jitter
Trading-off end-to-end latency for continuous playout
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Display
Queue

a b c d e f g h

a b d e f g h

u Samples that arrive “too late” may be discarded

Ameliorating the Effects of Delay-Jitter
Trading-off end-to-end latency for continuous playout
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u Enqueueing the sample ensures continuous playout...

Ameliorating the Effects of Delay-Jitter
Trading-off end-to-end latency for continuous playout
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u Purposefully throwing away samples reduces latency

Principles of Delay-Jitter Buffering
Sample discarding
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u Let naturally occurring network delays determine playout
latency

u Avoid initial sequence of playout gaps by estimating
network delay and setting playout delay accordingly

Principles of Delay-Jitter Buffering
Two fundamental initial playout strategies

Send

Receive

Playout

Send

Receive

Playout
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u Play media samples as they arrive
» Latency increases as delay-jitter increases

u Discard “late” samples
» Playout media with constant latency

Principles of Delay-Jitter Buffering
Two fundamental late arrival strategies
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Send
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Playout
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Principles of Delay-Jitter Buffering
Estimating network delay

u If network delay is bounded by a constant d:
» timestamp each packet at sender
» when a packet arrives arrives, enqueue the packet and dequeue

at time:
sender’s_transmission_time + d

Send

Receive

Playout

playout latency = 3p

a b c d e f g h

worst case network delay = d
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Principles of Delay-Jitter Buffering
Estimating network delay

u Basic algorithm:   playout latency = d + (k x v)
where
» d is the average estimated network delay

» v is the estimated variation deviation

» k is a “congestion estimator”

Send

Receive

Playout

playout latency

a b c d e f g h
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Principles of Delay-Jitter Buffering
Estimating network delay

u The average network delay and variation can be estimated
by:

dnew estimate = dold estimate + α x (dobserved – dold estimate)

vnew estimate = vold estimate + β x (|dobserved – dold estimate| – vold estimate)
or

dnew estimate = α dold estimate + (1 – α) dobserved

vnew estimate = β vold estimate + (1 – β) x (|dobserved – dold estimate|)
or

dnew estimate = MIN(dobserved in the recent past)

playout latency = d + (k x v)playout latency = d + (k x v)
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Principles of Delay-Jitter Buffering
Estimating network delay

u All samples are scheduled for playout at time
 playout latency = d + (k x v)

u But when should playout latency be changed?

a b c d e f g h
Send

Receive

Playout

d + kv dnew > dold + kvold
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Talkspurt i Talkspurt i+1

Principles of Delay-Jitter Buffering
Voice transmission

u For voice transmission we can dynamically adapt playout
times of audio samples using silent periods to “resync”
the stream

a b c d e f g h
Send

Receive

Playout

d + kv dnew + kvnew
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Principles of Delay-Jitter Buffering
Continuous audio transmission

u Many forms of audio (and other media) must be
transmitted continuously
» Music

» “Noisy” voice

» Mixed audio streams

» Video?

u Scheduling individual samples for playout based
on estimates of network delay gives poor results
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u Let naturally occurring network delays determine
playout latency

Principles of Delay-Jitter Buffering
Continuous audio transmission
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u How do we determine if our delay-jitter buffer is too
large?

Principles of Delay-Jitter Buffering
Continuous audio transmission
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u Simulating packet loss by discarding samples at the
receiver will reduce playout latency

Principles of Delay-Jitter Buffering
Continuous audio transmission
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u Rather than compute network delay, infer it from the
length of the display queue
» If queue length grows, network delay is decreasing
» If queue length shrinks, network delay is increasing
» If queue length remains constant, network delay is stable

Continuous Audio Transmission
Queue monitoring
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Send
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r
s

u Keep count of the number of consecutive display
initiation times at which the display queue contained n
items

u When the count exceeds a threshold, the oldest sample in
the queue is discarded
» queue locations near the head of the queue have large thresholds
» queue locations near the tail of the queue have small thresholds

Continuous Audio Transmission
Queue monitoring
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u Example: Queue monitoring with thresholds = 3, 10
» sample g discarded at playout time 10

Continuous Audio Transmission
Queue monitoring
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Queue Monitoring
Performance on a campus-area network

u How much delay-jitter can be accommodated in practice?
» What ranges of delay-jitter are observed?

» How well do these buffing schemes work in practice?

u Stone’s delay-jitter study in the UNC CS department:
» A comparison of the effectiveness of three delay-jittter

management policies:
I-Policy — playout media with fixed latency

E-Policy— playout media samples as they arrive

Queue Monitoring — adaptively set the playout delay

on the playout of audio/video in a videoconferencing system
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End-To-End Delays (ms.)
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Queue Monitoring
Performance on a campus-area network

u What ranges of delay-jitter are observed?
» Stone measured the performance of 28, 5 minute conferences

during the course of a “typical” day

Audio end-to-end delay distribution (in ms)
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Queue Monitoring
Performance on a campus-area network

Network delay

Average gap rate
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Queue Monitoring

45 1513111222 12192523 12 15 15

54

Queue Monitoring
Performance on a campus-area network
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Principles of Delay-Jitter Buffering
Non-real-time media transmission

u If the communication is non-real-time, doesn’t
simple static buffering solve the problem?
» Yes, but...
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Adaptive, best-effort, multimedia networking
Outline

u IP message delivery semantics
» The four common Internet pathologies

u Ameliorating the effects of delay-jitter
» “60 ways to queue & play your media samples”

u Ameliorating the effects of packet loss
» Recovery of lost samples through retransmission
» Recovery of lost samples through the addition of redundant

information

u Congestion control
» Adaptive media scaling and packaging
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Dealing With Packet Loss
Application requirements

u Audio — 1-2% sample loss
» individual sample losses are noticeable (depending on

the sample size)

» 5-10 lost samples per minute are tolerable

(the distribution of loss is critical)

u Video — 10-15 frames/s required for minimal
motion perception
» highly application dependent

» video loss raise issues of “network citizenship”
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Dealing With Packet Loss
Two basic approaches

u Traditional “reactive” approach
» Acknowledge transmissions and resend lost packets

v “Automatic Repeat Request” (ARQ)

u Two proactive approaches
» Introduce redundancy into streams to enable reconstruction of

lost media samples
v “Forward error correction” (FEC)

» Dynamically adapt streams to the bandwidth perceived to be
available at the current time
v Media scaling & packaging
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Retransmission-Based Error Correction
Conventional wisdom

u Retransmission is silly...
» By the time you realize something is lost, it’s too late

to resend it
» Traditional sender-oriented retransmission techniques

do not scale to multicast environments
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Retransmission-Based Error Correction
The reality

u Retransmission is potentially beneficial...
» Since data is buffered at the receiver to ameliorate the

effects of jitter, provide intermedia synchronization, etc.,
retransmission may work!
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1.Loss is detected

2.A retransmission request is issued

3.The requested packet is retransmitted

Retransmission-Based Error Correction
The retransmission process
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u If:

then retransmission is a possibility

Retransmission-Based Error Correction
The retransmission “budget”
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Retransmission-Based Error Correction
How can retransmission work in a multicast environment?

u Issues of scale
» Avoiding ACK/NACK implosions
» State requirements

Sender
InternetInternet
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Scalable Reliable Multicast
Principles of operation

u Receivers are responsible for ensuring they receive
the data they care about
» Repair requests are multicast to the group

u Any receiver is capable of acting as a sender and
sending a repair response

InternetInternetSender
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Scalable Reliable Multicast
Avoiding repair and repair response implosions

u Hosts continually measure the distance to each other
» Hosts periodically emit control messages as in RTCP

u When a receiver detects a loss, it sets a timer for emitting its
repair request based on its estimate distance to the sender
» Send repair requests quickly to nearby senders

Sender

9,8,7,6

98,6,

9,8, 7, 6

“NACK 7”

InternetInternet
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Scalable Reliable Multicast
Avoiding repair and repair response implosions

u If a host receives a repair request and it has the request
packet, it similarly sets a timer for emitting its
response based on its estimated distance to the receiver

Sender

Requester

“NACK 7”

InternetInternet

“NACK 7”

“7”
Responder

“7”
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Scalable Reliable Multicast
Avoiding repair and repair response implosions

u Ideally a lost packet triggers only 1 repair request from a
host just downstream from the point of failure & a single
repair response from a host just upstream of the failure
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Requester

“NACK 7”

InternetInternet

“NACK 7”

“7”
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Scalable Reliable Multicast
Performance issues

u If losses are infrequent and correlated, then few
repair/response messages are sent
» But every host will receive each message

u Otherwise, in the worst case the data traffic can double
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Scalable Reliable Multicast
Performance issues

u What is the impact of having both the repair requester
& responder delay before issuing their message?
» What is the likelihood that the resulting retransmission will

be on time?
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Scalable Reliable Multicast
Open issues

u How to limit the scope of repair/repair response messages?
u Managing the trade-off between keeping silent to avoid

implosions and sending quickly to maximize (individual)
performance

Sender

Requester

“NACK 7”

InternetInternet

“NACK 7”

“7”
Responder

“7”
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Scalable Reliable Multicast
Using TTL to limit the scope of repair/response messages

u TTL is not a good
measure of locality
» Number of hosts

reachable is not
linear in TTL

u TTLs between two
hosts are not
symmetric

number of hosts
reachable by a given TTL v          TTL
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Scalable Reliable Multicast
Using TTL to limit the scope of repair/response messages

u How can a repair responder ensure its reply reaches:
» the original requestor
» all would-be requestors who suppressed their repair request

Requester

NACK

Responder

NACK

X
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Retransmission-Based Error Correction
Summary

u Retransmission will be effective means of dealing with
packet loss if...
» we can detect losses quickly

» average receiver buffering delay ≥ (1.5 x RTT) + gap length

u Retransmission can be made to scale if...
» we can avoid repair request and response implosions

» repairs can be performed locally
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Dealing With Packet Loss
Two basic approaches

u Traditional “reactive” approach
» Acknowledge transmissions and resend lost packets

v “Automatic Repeat Request” (ARQ)

u Two proactive approaches
» Introduce redundancy into streams to enable reconstruction of

lost media samples
v “Forward error correction” (FEC)

» Dynamically adapt streams to the bandwidth perceived to be
available at the current time
v Media scaling & packaging
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FEC payload

Forward Error Correction
Basic concepts

u We introduce redundancy into
the stream to enable the receiver
to recover from errors due to loss

u Forms of redundancy
» Simple replication and re-

transmission of original data

» k-way XOR

» Replication, recoding, and re-
transmission of original data

header extension

RTP payload

RTP Packet

RTP Header
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Forward Error Correction
Simple replication and retransmission example

u Key issue: If a sample is lost, how do we ensure that the
redundant information necessary for the repair arrives?
» How much bandwidth should we dedicate to FEC?
» Where should we place the redundant information in the stream?
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Forward Error Correction
Staggering original & redundant samples by two samples

u As before, the length of receiver’s buffering delay is a
critical performance parameter
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Forward Error Correction
k-way XOR

u Assume consecutive packet losses are rare and transmit
the word-by-word XOR of groups of k samples

u Example: 3-way XOR

1010001101011111

1010001101010011

1010001100001111

1010001000111010

...

1010001101010000

1010001101000000

1010111100000011

1010111000101010

...

0000001111111111

0000001111000001

0000001100001010

0000001000000000

...

0000001111110000

0000001111010010

0000111100000110

0000111000010000

...

Sample 1 Sample 2 Sample 3 Repair Sample=
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Forward Error Correction
Recoding/transcoding of original sample

u If losses are infrequent, perhaps we can get by with
lower quality repairs

u Example: UCL’s Robust Audio Tool (RAT) recodes the
stream using an LPC codec for error recovery
» Normal samples are generated by an ADPCM codec

» LPC codec generates a 4.8 kbps stream
(12 bytes/20 ms sample)

» Redundant samples separated from originals by 1 sample
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RAT LPC Redundancy Experiments
Intelligibility v. percentage of packet loss

u Conclusion: LPC redundancy is likely not warranted
with small packets; it is worthwile for large packets
» (This is due in large part to quality of LPC coded speech)

20/40 ms packets 80 ms packets

ADPCM
w/ no loss

Repetition

LPC repair

Silence

LPC w/
no loss

82

Foward Error Correction
Summary

u FEC will be effective means of dealing with packet
loss if...
» we can tolerate the overhead

» consecutive packet losses are rare or
we can tolerate higher playout delays
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The Incidence of Consecutive Packet Loss
The INRIA unicast IVS experiments

u Packet loss from INRIA to UCL

number of consecutive losses v. sequence number
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The INRIA unicast IVS experiments

u Frequency distribution of consecutive packet losses
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The Incidence of Consecutive Packet Loss
The INRIA unicast IVS experiments

u Packet loss from INRIA to Maryland at 3 pm
(9 am EST)

number of consecutive losses v.
sequence number

number of occurences of n
consecutively lost packet   v.  n
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The Incidence of Consecutive Packet Loss
The INRIA multicast IVS experiments

u Packet loss from INRIA to UCL

number of occurences of n consecutively lost packets  v.  n
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Adaptive, best-effort, multimedia networking
Outline

u IP message delivery semantics
» The four common Internet pathologies

u Ameliorating the effects of delay-jitter
» “60 ways to queue & play your media samples”

u Ameliorating the effects of packet loss
» Recovery of lost samples through retransmission
» Recovery of lost samples through the addition of redundant

information

u Congestion control
» Adaptive media scaling and packaging
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Best-Effort Multimedia Networking
Congestion control

u Delay-jitter buffering, retransmission, and forward
error correction ameliorate the effects of variation in
end-to-end delay and packet loss
» They do not attempt to address the root cause

u Congestion control aims to eliminate or reduce these
effects
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Congestion Control
What is congestion?

Switch
Fabric

Input
Links

Output
Links
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Congestion Control
The nature of congestion

u What causes congestion?
» Did our multimedia stream(s) cause the network to be

congested?
» Are there simply too many connections competing for too

little bandwidth?

Switch
Fabric

Switch
Fabric
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Congestion Control
The adaptive, best-effort, congestion control problem

u How can we make the best use of the (time varying)
bandwidth that is available to our streams?
» How can we determine what this bandwidth is?

» How can we track how it changes over time?
» How can we match our codec(s)’s output the bandwidth

“available” to our application?

Switch
Fabric

Switch
Fabric
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Adaptive, Best-Effort Congestion Control
Principles of operation

u Receivers periodically report throughput & loss
statistics

u Sender adapts to match the bandwidth available
» Assume sufficient bandwidth exists for some useful

execution of the system
96

Canonical Adaptive Congestion Control
Video bit-rate scaling

u Temporal scaling
» Reduce the resolution of the stream

by reducing the frame rate

u Spatial scaling
» Reduce the number of pixels in an

image

u Frequency scaling
» Reduce the number of DCT

coefficients used in compression

u Amplitude scaling
» Reduce the color depth of each

pixel in the image

u Color space scaling
» Reduce the number of colors

available for displaying the image
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UNC Adaptive Congestion Control
2-Dimensional media scaling

uCanonical approach
to congestion
»  Reduce (video) bit-rate

uAlternate approach
» View congestion control as

a search of a 2-dimensional
bit-rate x packet-rate space

» Scale bit- and packet-rates
simultaneously to find a
sustainable operating point

Packet-Rate (in packets/s)

Bit-Rate
(in kbits/s) High-Quality Video

(8,000 bytes/frame)

Medium-Quality Video
(4,000 bytes/frame)

Low-Quality Video
(2,000 bytes/frame)

Audio (256 bytes/sample)

500

1,000

1,500

2,000

15 30 45 60
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Bit- and Packet-Rate Scaling
An analytic model of media scaling

u Capacity constraints
» the network is incapable of supporting the desired bit rate

in any form

u Access constraints
» the network can not support the desired bit rate with the

current packaging scheme

Outbound
Processor

Real-Time
Traffic

Other Outbound LinksNon-Real-Time
Traffic

Service
Queuing

Data
Movement
 & Packet
Processing

Adaptor
Queuing

Media
Access &
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Time

Inbound
Processor
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Two Types of Congestion Constraints
Two dimensions of adaptation

u Reduce the packet-rate to adapt to an access constraint
» Change the packaging or send fewer video frames
» Primary Trade-off: higher latency (potentially)

u Reduce the bit-rate to adapt to a capacity constraint
» Send fewer video frames or fewer bits per video frame
» Primary Trade-off: lower fidelity
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Other Outbound LinksNon-Real-Time
Traffic
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2-Dimensional Scaling Example
The “Recent Success” heuristic

u Initial operating point:
(high quality, 12 fps)

u First adaptation:
(high quality, 10 fps)

» congestion persists

u Second adaptation:
(medium quality, 10 fps)

» congestion relieved

u First probe:
(medium quality, 12 fps)

u Second probe:
(medium quality, 14 fps)
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2-Dimensional Media Scaling
Finding a sustainable operating point

u The search space can be
pruned by eliminating
» points that lead to inherently

high latency

» points that lead to high
latency given the state of the
network

Packet-Rate (in packets/s)

Bit-Rate
(in kbits/s)

500

1,000

1,500

2,000

15 30 45 60
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2-Dimensional Media Scaling
Dealing with effects of fragmentation

u The problem
» A sender can only (directly)

effect the message rate, not
the packet rate

u Does fragmentation render
message-rate scaling
obsolete?

1664
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Adaptive, 2-Dimensional Media Scaling
Does it work?

u Campus-szed internets — yes!
» It “solves” the first-mile/last-mile problem

u The Internet? — well...
» Does our necessary condition for success hold?
» Does it hold often enough to be useful?
» How much “room” is there for 2-D scaling in most codecs?

InternetInternet
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Media Scaling Evaluation on the Internet
Media scaling in Intel’s ProShareTM  codec
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Media Scaling Evaluation on the Internet
ProShare with 2-dimensional media scaling
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Sustainability Results
Adaptive methods on the Internet

u Results of an Internet performance study from
UNC to UVa
» Repeated trials from 10 am to 7 PM weekdays

» Trials separated by at least two hours

» Scattered over three months

  Time Slot     Sustainable        Not Sustainable   % Sustainable
10:00-12:00    6        3     67%
12:00-14:00    4        4     50%
14:00-16:00    1      11       8%
16:00-18:00    3        9     25%
18:00-20:00    4        5     44%
 Percentage  36%      64%

114

Real-time data delivery on the Internet Today
What’s the problem?

u Do we need more bandwidth or just better management
of the existing bandwidth?

1980 

insufficient
resources

1990 2000

Hardware resources in year X 

Requirements
(performance,

scale)

abundant
resources

sufficient
but scarce
resources
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Real-time data delivery on the Internet Today
Where do we go from here?

u Provide “best-effort” service by adapting media streams
» Monitor & provide feedback on performance
» Bias transmission and processing of media to ameliorate the

effects of congestion

u Provide true quality-of-service through reservation of
resources in the network
» Requires coordination amongst all parties

v admission control
v policing
v ...


