Issues in Multimedia Delivery
Over Today’s Internet

Kevin Jeffay
Department of Computer Science
University of North Carolina at Chapel Hill
jeffay@cs.unc.edu
June 28, 1998

http://www.cs.unc.edu/~jeffay

Outline

- Domain of discourse
 » Definitions, concepts, and objectives
- Performance of “naive” applications today
 » What’s “broken”?
- Media adaptations for best-effort multimedia delivery
 » Can we fix “it”?
- Performance of best-effort applications today
 » Fundamental challenges for tomorrow’s Internet

Multimedia Delivery on Today’s Internet

Domain of discourse

- A prototypical videoconferencing system
 » Architecture
 » Quality-of-service requirements
- Performance metrics
 » End-to-end latency
 » Packet loss
- Some typical experimental results

Interactive Multimedia Applications

Performance requirements

- Latency — the duration between acquisition of a signal
 and its display

- Videoconferencing latency requirements
 » telephony literature — 100 ms roundtrip
 » multimedia networking literature — 250 ms one-way
 » CSCW literature — tolerance of latency as high as 400 ms
In general, acquisition and playout clocks are not synchronized.

Therefore a buffer must be present at the receiver to adjust for phase-shift in sender’s & receiver’s media clocks.
Latency in Computer-Based Audio Systems

How bad can audio latency be?

- Just as bad as video if lip-synchronization is required
- Otherwise, it depends on how one manages the network interface
 - Video frames are typically too large to fit into a single network packet
 - Multiple audio samples can be transmitted together
- Example: An audio codec generating 1 byte of data every 125 μs
 - Building 500 byte packets requires 62.5 ms/packet
 - Building 1,500 byte packets requires 187.5 ms/packet

Performance Requirements

Delay-jitter

- Latency
 - 250 ms one-way
- Delay-jitter — Variation in end-to-end latency

Performance requirements

The impact of delay-jitter

- Delay-jitter leads to “gaps” in the playout of media and increases playout latency
Performance Requirements

- Latency
 » 250 ms one-way
- Delay-jitter

- Throughput — the effective delivered frame or sample rate
 » For video the issue is motion perception
 » For audio the issue is comprehension
- Loss — the complement of throughput

Performance requirements

Loss

- Loss has the same effect as delay-jitter: gaps
 » With a potentially beneficial effect of potentially lower latency

Sender

Receiver

Delay-jitter induced playout gaps
Loss induced playout gap

latency = \(p \)
latency = \(3p \)
latency = \(2p \)
Avoiding Loss in the End System
Real-time management of a processing pipeline

Performance Requirements

- **Latency**
 » 250 ms one-way
- **Delay-jitter**
- **Throughput** — the effective delivered frame or sample rate
 » For video the issue is *motion perception*
 » For audio the issue is comprehension
- **Loss**

- **Lip synchronization**
 » The temporal relationship between an audio and video stream representing a human speaking

Performance requirements

Loss requirements

- **Audio** — 1-2% sample loss
 » Individual sample losses (depending on sample size) are noticeable
 » 5-10 lost samples per minute are tolerable
 (the distribution of loss is critical)

- **Video** — 10-15 frames/s required for minimal motion perception
 » Highly application dependent
 » Video loss raise issues of “network citizenship”

Perfect lip synchronization requires audio playout at time ____
Varying lip sync can be an effective technique in mitigating high video latency.

But... this is fundamentally unnatural!

No more than 250 ms end-to-end, one-way latency
Continuous audio
Minimum of 10 frames per second video throughput
“Loosely synchronized” playout — ± 80 ms skew

Issues in Multimedia Delivery on Today’s Internet

Outline
Domain of discourse
Definitions, concepts, and objectives
Performance of “naive” applications today
What’s “broken”? Media adaptations for best-effort multimedia delivery
Can we fix “it”?
Performance of best-effort applications today
Fundamental challenges for tomorrow’s Internet
Videoconferencing on the Internet Today

ProShare™ performance on the Internet

Throughput (frames/sec)

- Video: [Graph]
- Audio: [Graph]

Packet Loss

- [Graph]

Audio Latency (ms)

- [Graph]

Video Latency (ms)

- [Graph]

What’s the problem?

- Where is data being delayed and lost?

Where do we go from here?

Two fundamental approaches

- Provide true quality-of-service through reservation of resources in the network
 - Requires coordination amongst all parties
 - admission control
 - policing
 - ...

- Provide “best-effort” service by adapting media streams
 - Monitor & provide feedback on performance
 - Bias transmission and processing of media to ameliorate the effects of congestion

Videoconferencing on the Internet Today

What’s the problem?

- Do we need more bandwidth or just better management of the existing bandwidth?

Hardware resources in year X

- insufficient resources
- sufficient but scarce resources
- abundant resources

- 1980
- 1990
- 2000
Issues in Multimedia Delivery on Today’s Internet

Outline

- Domain of discourse
 - Definitions, concepts, and objectives
- Performance of “naive” applications today
 - What’s “broken”?
- Media adaptations for best-effort multimedia delivery
 - Can we fix “it”?
- Performance of best-effort applications today
 - Fundamental challenges for tomorrow’s Internet

Best-Effort Multimedia Networking

Outline

- IP message delivery semantics
 - The four common Internet pathologies
- Ameliorating the effects of delay-jitter
 - “60 ways to queue & play your media samples”
- Ameliorating the effects of packet loss
 - Recovery of lost samples through retransmission
 - Recovery of lost samples through the addition of redundant information
- Congestion control
 - Adaptive media scaling and packaging

Ameliorating the Effects of Delay-Jitter
Trading-off end-to-end latency for continuous playout

- When the first media sample arrives, should it be played or enqueued?

Best-Effort Multimedia Networking

The four Internet pathologies

- Delay-jitter
 - Managing a trade-off between end-to-end latency and continuous playout
- Loss
 - Proactively control through forward error correction
 - Reactively control through retransmission
- Out-of-order arrivals
 - Assume out-of-order sample is lost
 - Assume sample is late
- Duplicate arrivals
 - Do we care?

Receiver’s processing pipeline
When the first media sample arrives, should it be played or enqueued?

- playing the sample ensures minimal end-to-end latency...

Samples that arrive “too late” may be discarded

Enqueueing the sample ensures continuous playout...

Purposefully throwing away samples reduces latency
Principles of Delay-Jitter Buffering

Two fundamental initial playout strategies

- Let naturally occurring network delays determine playout latency

- Avoid initial sequence of playout gaps by estimating network delay and setting playout delay accordingly

Two fundamental late arrival strategies

- Play media samples as they arrive
 - Latency increases as delay-jitter increases

- Discard “late” samples
 - Playout media with constant latency

Principles of Delay-Jitter Buffering

Estimating network delay

- If network delay is bounded by a constant d:
 - timestamp each packet at sender
 - when a packet arrives, enqueue the packet and dequeue at time: $sender’s_{transmission_time} + d$

 \[
 \text{playout latency} = 3p \\
 \text{worst case network delay} = d
 \]
Principles of Delay-Jitter Buffering

Estimating network delay

playout latency = d + (k x v)

- The average network delay and variation can be estimated by:

\[
\begin{align*}
\text{d}_{\text{new estimate}} &= \text{d}_{\text{old estimate}} + \alpha \times (\text{d}_{\text{observed}} - \text{d}_{\text{old estimate}}) \\
\text{v}_{\text{new estimate}} &= \text{v}_{\text{old estimate}} + \beta \times (|\text{d}_{\text{observed}} - \text{d}_{\text{old estimate}}| - \text{v}_{\text{old estimate}})
\end{align*}
\]

or

\[
\begin{align*}
\text{d}_{\text{new estimate}} &= \alpha \text{d}_{\text{old estimate}} + (1 - \alpha) \text{d}_{\text{observed}} \\
\text{v}_{\text{new estimate}} &= \beta \text{v}_{\text{old estimate}} + (1 - \beta) \times (|\text{d}_{\text{observed}} - \text{d}_{\text{old estimate}}|)
\end{align*}
\]

or

\[
\text{d}_{\text{new estimate}} = \text{MIN}(\text{d}_{\text{observed}} \text{ in the recent past})
\]

Principles of Delay-Jitter Buffering

Voice transmission

- For voice transmission we can dynamically adapt playout times of audio samples using *silent periods* to “resync” the stream

\[
\begin{align*}
\text{d}_{\text{new estimate}} &= \text{d}_{\text{old estimate}} + \alpha \times (\text{d}_{\text{observed}} - \text{d}_{\text{old estimate}}) \\
\text{v}_{\text{new estimate}} &= \text{v}_{\text{old estimate}} + \beta \times (|\text{d}_{\text{observed}} - \text{d}_{\text{old estimate}}| - \text{v}_{\text{old estimate}})
\end{align*}
\]

Principles of Delay-Jitter Buffering

Continuous audio transmission

- Many forms of audio (and other media) must be transmitted continuously
 - Music
 - “Noisy” voice
 - Mixed audio streams
 - Video?

- Scheduling individual samples for playout based on estimates of network delay gives poor results
Let naturally occurring network delays determine playout latency

Simulating packet loss by discarding samples at the receiver will reduce playout latency

Rather than compute network delay, infer it from the length of the display queue
 » If queue length grows, network delay is decreasing
 » If queue length shrinks, network delay is increasing
 » If queue length remains constant, network delay is stable
Keep count of the number of consecutive display initiation times at which the display queue contained \(n \) items.

When the count exceeds a threshold, the oldest sample in the queue is discarded:

- Queue locations near the head of the queue have large thresholds.
- Queue locations near the tail of the queue have small thresholds.

Queue Monitoring

Performance on a campus-area network

- How much delay-jitter can be accommodated in practice?
 - What ranges of delay-jitter are observed?
 - How well do these buffing schemes work in practice?

- Stone’s delay-jitter study in the UNC CS department:
 - A comparison of the effectiveness of three delay-jitter management policies:
 - I-Policy — playout media with fixed latency
 - E-Policy — playout media samples as they arrive
 - Queue Monitoring — adaptively set the playout delay on the playout of audio/video in a videoconferencing system
Queue Monitoring
Performance on a campus-area network

- Network delay
- Average gap rate

Principles of Delay-Jitter Buffering
Non-real-time media transmission

- If the communication is non-real-time, doesn’t simple static buffering solve the problem?
 » Yes, but...

Adaptive, best-effort, multimedia networking
Outline

- IP message delivery semantics
 » The four common Internet pathologies
- Ameliorating the effects of delay-jitter
 » “60 ways to queue & play your media samples”
- Ameliorating the effects of packet loss
 » Recovery of lost samples through retransmission
 » Recovery of lost samples through the addition of redundant information
- Congestion control
 » Adaptive media scaling and packaging
Dealing With Packet Loss

Application requirements

- **Audio** — 1-2% sample loss
 - individual sample losses are noticeable (depending on the sample size)
 - 5-10 lost samples per minute are tolerable (the distribution of loss is critical)

- **Video** — 10-15 frames/s required for minimal motion perception
 - highly application dependent
 - video loss raise issues of “network citizenship”

Dealing With Packet Loss

Two basic approaches

- **Traditional “reactive” approach**
 - Acknowledge transmissions and resend lost packets
 - “Automatic Repeat Request” (ARQ)

- **Two proactive approaches**
 - Introduce redundancy into streams to enable reconstruction of lost media samples
 - “Forward error correction” (FEC)
 - Dynamically adapt streams to the bandwidth perceived to be available at the current time
 - Media scaling & packaging

Retransmission-Based Error Correction

Conventional wisdom

- Retransmission is silly...
 - By the time you realize something is lost, it’s too late to resend it
 - Traditional sender-oriented retransmission techniques do not scale to multicast environments

Retransmission-Based Error Correction

The reality

- Retransmission is potentially beneficial...
 - Since data is buffered at the receiver to ameliorate the effects of jitter, provide intermedia synchronization, etc., retransmission may work!
Retransmission-Based Error Correction

The retransmission process

1. Loss is detected
2. A retransmission request is issued
3. The requested packet is retransmitted

Retransmission-Based Error Correction

The retransmission “budget”

- If:
 \[\text{gap length} + \left(3 \times \frac{\text{transmission time}}{\text{one-way transmission time}} \right) < \text{playout latency} \]

 then retransmission is a possibility

Is there likely to be enough time to retransmit?

The Dempsey *et al.* study

Retransmission effectiveness for different average network delays

Retransmission effectiveness for different loss patterns

- Probability of continuous playout v. receiver buffering delay (in ms)

Retransmission-Based Error Correction

How can retransmission work in a multicast environment?

- **Issues of scale**
 - Avoiding ACK/NACK implosions
 - State requirements

Internet

Sender

- Receiver

- Internet

- Network Nodes

- Clients (Desktops, Laptops, Mobile Devices)
Scalable Reliable Multicast

Principles of operation

- Receivers are responsible for ensuring they receive the data they care about
 - Repair requests are multicast to the group
- Any receiver is capable of acting as a sender and sending a repair response

Scalable Reliable Multicast

Avoiding repair and repair response implosions

- Hosts continually measure the distance to each other
 - Hosts periodically emit control messages as in RTCP
- When a receiver detects a loss, it sets a timer for emitting its repair request based on its estimate distance to the sender
 - Send repair requests quickly to nearby senders

If a host receives a repair request and it has the request packet, it similarly sets a timer for emitting its response based on its estimated distance to the receiver

Ideally a lost packet triggers only 1 repair request from a host just downstream from the point of failure & a single repair response from a host just upstream of the failure
Scalable Reliable Multicast

Performance issues

- If losses are infrequent and correlated, then few repair/response messages are sent
 - But every host will receive each message
- Otherwise, in the worst case the data traffic can double

What is the impact of having both the repair requester & responder delay before issuing their message?
 - What is the likelihood that the resulting retransmission will be on time?

Scalable Reliable Multicast

Open issues

- How to limit the scope of repair/repair response messages?
- Managing the trade-off between keeping silent to avoid implosions and sending quickly to maximize (individual) performance

TTL is not a good measure of locality
 - Number of hosts reachable is not linear in TTL

TTLs between two hosts are not symmetric
Scalable Reliable Multicast
Using TTL to limit the scope of repair/response messages

- How can a repair responder ensure its reply reaches:
 - the original requestor
 - all would-be requestors who suppressed their repair request

Dealing With Packet Loss
Two basic approaches

- Traditional “reactive” approach
 - Acknowledge transmissions and resend lost packets
 - “Automatic Repeat Request” (ARQ)

- Two proactive approaches
 - Introduce redundancy into streams to enable reconstruction of lost media samples
 - “Forward error correction” (FEC)
 - Dynamically adapt streams to the bandwidth perceived to be available at the current time
 - Media scaling & packaging

Retransmission-Based Error Correction
Summary

- Retransmission will be effective means of dealing with packet loss if...
 - we can detect losses quickly
 - average receiver buffering delay $\geq (1.5 \times RTT) + \text{gap length}$

- Retransmission can be made to scale if...
 - we can avoid repair request and response implosions
 - repairs can be performed locally

Forward Error Correction
Basic concepts

- We introduce redundancy into the stream to enable the receiver to recover from errors due to loss

- Forms of redundancy
 - Simple replication and re-transmission of original data
 - k-way XOR
 - Replication, recoding, and re-transmission of original data

FEC payload

RTP Packet

RTP Header

header extension

RTP payload

FEC payload
Forward Error Correction
Simple replication and retransmission example

Key issue: If a sample is lost, how do we ensure that the redundant information necessary for the repair arrives?

- How much bandwidth should we dedicate to FEC?
- Where should we place the redundant information in the stream?

Staggering original & redundant samples by two samples

As before, the length of receiver’s buffering delay is a critical performance parameter

Forward Error Correction
k-way XOR

- Assume consecutive packet losses are rare and transmit the word-by-word XOR of groups of k samples

- Example: 3-way XOR

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Repair Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010001101010000</td>
<td>1010001010010000</td>
<td>0000001111111111</td>
<td>0000001111111000</td>
</tr>
<tr>
<td>1010001101000000</td>
<td>1010001100001000</td>
<td>0000001111111000</td>
<td>0001111110001000</td>
</tr>
<tr>
<td>1010111000101010</td>
<td>1010111000000000</td>
<td>0000001000000000</td>
<td>0001110000100000</td>
</tr>
</tbody>
</table>

Forward Error Correction
Recoding/transcoding of original sample

- If losses are infrequent, perhaps we can get by with lower quality repairs

- Example: UCL’s Robust Audio Tool (RAT) recodes the stream using an LPC codec for error recovery
 - Normal samples are generated by an ADPCM codec
 - LPC codec generates a 4.8 kbps stream (12 bytes/20 ms sample)
 - Redundant samples separated from originals by 1 sample
RAT LPC Redundancy Experiments
Intelligibility v. percentage of packet loss

- Conclusion: LPC redundancy is likely not warranted with small packets; it is worthwhile for large packets
 » (This is due in large part to quality of LPC coded speech)

Foward Error Correction
Summary
- FEC will be effective means of dealing with packet loss if...
 » we can tolerate the overhead
 » consecutive packet losses are rare or we can tolerate higher playout delays

The Incidence of Consecutive Packet Loss
The INRIA unicast IVS experiments
- Packet loss from INRIA to UCL

The Incidence of Consecutive Packet Loss
The INRIA unicast IVS experiments
- Frequency distribution of consecutive packet losses from INRIA to UCL
The Incidence of Consecutive Packet Loss
The INRIA unicast IVS experiments

Packet loss from INRIA to Maryland at 3 pm (9 am EST)

The Incidence of Consecutive Packet Loss
The INRIA multicast IVS experiments

Packet loss from INRIA to UCL

The Incidence of Consecutive Packet Loss
The INRIA multicast IVS experiments

Packet Loss on the Internet Today
Audio packet loss for UNC-UW-UNC ProShare xmission

Percentage of audio packet loss during a 5 minute interval
 » Each line represents a 5 second average

Frequency distribution of consecutive packet losses from INRIA to UCL
Packet Loss on the Internet Today
Audio packet loss for UNC-UVa-UNC ProShare

Adaptive, best-effort, multimedia networking
Outline

- IP message delivery semantics
 » The four common Internet pathologies
- Ameliorating the effects of delay-jitter
 » “60 ways to queue & play your media samples”
- Ameliorating the effects of packet loss
 » Recovery of lost samples through retransmission
 » Recovery of lost samples through the addition of redundant information
- Congestion control
 » Adaptive media scaling and packaging

Best-Effort Multimedia Networking
Congestion control

- Delay-jitter buffering, retransmission, and forward error correction ameliorate the effects of variation in end-to-end delay and packet loss
 » They do not attempt to address the root cause
- Congestion control aims to eliminate or reduce these effects

Congestion Control
What is congestion?

Switch
Fabric
Input Links
Output Links
Congestion Control

The nature of congestion

◆ What causes congestion?
 » Did our multimedia stream(s) cause the network to be congested?
 » Are there simply too many connections competing for too little bandwidth?

Congestion Control

The adaptive, best-effort, congestion control problem

◆ How can we make the best use of the (time varying) bandwidth that is available to our streams?
 » How can we determine what this bandwidth is?
 » How can we track how it changes over time?
 » How can we match our codec(s)’s output the bandwidth “available” to our application?

Adaptive, Best-Effort Congestion Control

Principles of operation

◆ Receivers periodically report throughput & loss statistics
◆ Sender adapts to match the bandwidth available
 » Assume sufficient bandwidth exists for some useful execution of the system

Canonical Adaptive Congestion Control

Video bit-rate scaling

◆ Temporal scaling
 » Reduce the resolution of the stream by reducing the frame rate
◆ Spatial scaling
 » Reduce the number of pixels in an image
◆ Frequency scaling
 » Reduce the number of DCT coefficients used in compression
◆ Amplitude scaling
 » Reduce the color depth of each pixel in the image
◆ Color space scaling
 » Reduce the number of colors available for displaying the image
UNC Adaptive Congestion Control

2-Dimensional media scaling

- Canonical approach to congestion
 - Reduce (video) bit-rate

- Alternate approach
 - View congestion control as a search of a 2-dimensional bit-rate x packet-rate space
 - Scale bit- and packet-rates simultaneously to find a sustainable operating point

```
<table>
<thead>
<tr>
<th>Bit-Rate (in kbits/s)</th>
<th>Packet-Rate (in packets/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Quality Video (8,000 bytes/frame)</td>
<td>15-60</td>
</tr>
<tr>
<td>Medium-Quality Video (4,000 bytes/frame)</td>
<td>15-60</td>
</tr>
<tr>
<td>Low-Quality Video (2,000 bytes/frame)</td>
<td>15-60</td>
</tr>
<tr>
<td>Audio (256 bytes/sample)</td>
<td>15-60</td>
</tr>
</tbody>
</table>
```

Two Types of Congestion Constraints

Two dimensions of adaptation

- Reduce the packet-rate to adapt to an access constraint
 - Change the packaging or send fewer video frames
 - Primary Trade-off: higher latency (potentially)

- Reduce the bit-rate to adapt to a capacity constraint
 - Send fewer video frames or fewer bits per video frame
 - Primary Trade-off: lower fidelity

Bit- and Packet-Rate Scaling

An analytic model of media scaling

- Capacity constraints
 - The network is incapable of supporting the desired bit rate in any form

- Access constraints
 - The network can not support the desired bit rate with the current packaging scheme

2-Dimensional Scaling Example

The “Recent Success” heuristic

- Initial operating point:
 - (high quality, 12 fps)

- First adaptation:
 - (high quality, 10 fps)
 - Congestion persists

- Second adaptation:
 - (medium quality, 10 fps)
 - Congestion relieved

- First probe:
 - (medium quality, 12 fps)

- Second probe:
 - (medium quality, 14 fps)
2-Dimensional Media Scaling
Finding a sustainable operating point

- The search space can be pruned by eliminating
 - points that lead to inherently high latency
 - points that lead to high latency given the state of the network

2-Dimensional Media Scaling
Dealing with effects of fragmentation

- The problem
 - A sender can only (directly) effect the message rate, not the packet rate

- Does fragmentation render message-rate scaling obsolete?

Adaptive, 2-Dimensional Media Scaling
Does it work?

- Campus-sized internets — yes!
 - It “solves” the first-mile/last-mile problem

- The Internet? — well...
 - Does our necessary condition for success hold?
 - Does it hold often enough to be useful?
 - How much “room” is there for 2-D scaling in most codecs?

Media Scaling Evaluation on the UNC Campus
Performance with no media scaling

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)
Media Scaling Evaluation on the Internet
ProShare with no media scaling

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)

Media Scaling Evaluation on the Internet
ProShare with 2-dimensional media scaling

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)

Media Scaling Evaluation on the Internet
ProShare with video scaling only

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)

Media Scaling Evaluation on the Internet
ProShare with 2-dimensional media scaling

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)
Sustainability Results
Adaptive methods on the Internet

- Results of an Internet performance study from UNC to UVa
 - Repeated trials from 10 am to 7 PM weekdays
 - Trials separated by at least two hours
 - Scattered over three months

<table>
<thead>
<tr>
<th>Time Slot</th>
<th>Sustainable</th>
<th>Not Sustainable</th>
<th>% Sustainable</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-12:00</td>
<td>6</td>
<td>3</td>
<td>67%</td>
</tr>
<tr>
<td>12:00-14:00</td>
<td>4</td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>14:00-16:00</td>
<td>1</td>
<td>11</td>
<td>8%</td>
</tr>
<tr>
<td>16:00-18:00</td>
<td>3</td>
<td>9</td>
<td>25%</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>4</td>
<td>5</td>
<td>44%</td>
</tr>
<tr>
<td>Percentage</td>
<td>36%</td>
<td>64%</td>
<td></td>
</tr>
</tbody>
</table>

Real-time data delivery on the Internet Today
Where do we go from here?

- Provide “best-effort” service by adapting media streams
 - Monitor & provide feedback on performance
 - Bias transmission and processing of media to ameliorate the effects of congestion

- Provide true quality-of-service through reservation of resources in the network
 - Requires coordination amongst all parties
 - admission control
 - policing
 - ...

Real-time data delivery on the Internet Today
What’s the problem?

- Do we need more bandwidth or just better management of the existing bandwidth?