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* Background: Router-based congestion control
— Active Queue Management (AQM)
— Explicit Congestion Notification (ECN)

* Do AQM schemes work?
* The case for differential congestion notification (DCN)

* A DCN prototype and its empirical evaluation

®» Active Queue Management
\ } The RED Algorithm [Floyd & Jacobson 93]
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* RED computes a weighted moving average of queue
length to accommodate bursty arrivals

* Drop probability is a function of the current average
queue length

— The larger the queue, the higher the drop probability

The Proportional Integral (Pl)
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* PI attempts to maintain an explicit target queue length

* PI samples instantaneous queue length at fixed intervals
and computes a mark/drop probability at & sample:
= pkT) = a x (q(kT) - q,,) — b x (q((k-DT) - q,,) + p((k-1)T)
—a, b, and T depend on link capacity, maximum RTT and the
number of flows at a router




Explicit Congestion Notification

_\; Overview
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* Set a bit in a packet’s header and forward towards
the ultimate destination

* A receiver recognizes the marked packet and sets
a corresponding bit in the next outgoing ACK

* When a sender receives an ACK with ECN it
invokes a response similar to that for packet loss.

» Do AQM Schemes Work?
W,\‘_';/ Evaluation of ARED, PIl, and REM

* “The Effects of Active Queue Management on Web
Performance” [SIGCOMM 2003]. When user response
times are important performance metrics:

— Without ECN, PI results in a modest performance
improvement over drop-tail and other AQM schemes

— With ECN, both PI and REM provide significant performance
improvement over drop-tail

Evaluation of ARED, PIl, and REM
! !J\ Experimental Results — 98% Load

Cumulative Probability (%)

100 p—
~ P—
50% of —
responses. .. %
‘ - 5 /' Performance
60 Vg gain with ECN

Performance gain of

40 - PI over drop-tail

| lncongested network
. complete in drop-tail - qlen=240

20 {125 ms or less PUECN - 3?2?53 —_—
/ REM - qref=24 =——
. REM/ECN qref=24 ——

0 500 1000 1500 2000
Response Time (ms)

" Outline

Analysis of AQM performance
— The case for differential congestion notification (DCN)

A DCN prototype and its empirical evaluation




) The Structure of Web Traffic
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)»The Structure of Web Traffic
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» Realizing Differential Notification
T.“;, Issues and approach

* How to identify packets belonging to long-lived, high
bandwidth flows with minimal state?

— Adopt the Estan & Varghese flow filtering scheme
developed for traffic accounting [SIGCOMM 2002]

* How to determine when to signal congestion (by
dropping packets)?

— Use a PI-like scheme [Infocom 2001]

¢ Differential treatment of flows an old idea:
—FRED — CHOKe — AFD — RIO-PS
— SRED — SFB — RED-PD - ...

®» Classifying Flows
T.“;, A score-boarding approach
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* Use two hash tables (hash keys are tormed by 1P addressing 4-tuple
plus protocol number):
— A “suspect” flow table HB (“high-bandwidth™) and
— A per-flow packet count table SB (“scoreboard”)

* Arriving packets from flows in HB are subject to dropping

* Arriving packets from other flows are inserted into SB and tested to
determine if the flow should be considered high-bandwidth

— Use a simple packet count threshold for this determination




® An Alternate Approach
Xy, AFD [Pan et al. 2003]
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“Approximate Fairness through Differential Dropping”

Shadow Flow
Buffer X ™ Table

A

e Sample 1 out of every s packets and store in a shadow
buffer of size b
# matches

* Estimate flow’s rate as r,, =R )

fatr

 Drop packet with probability p =1-

est

® Another Alternate Approach
Xy, RIO-PS [Guo and Matta 2001]

@ @ Edge Routers
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* Edge routers: maintain per-flow counters and classify flows
into two classes: “Short” or “Long”
* Core routers:
— use different RED engines for short and long flows

— use different RED parameter settings to give preferential treatment to
short flows

® Another Alternate Approach
¥, RIO-PS [Guo and Matta 2001]
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Core router’s architecture

* Edge routers: maintain per-flow counters and classify flows
into two classes: “Short” or “Long”

e Core routers:

— use different RED engines for short and long flows

— use different RED parameter settings to give preferential treatment to
short flows
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A DCN prototype and its empirical evaluation




Evaluation Methodology

* Evaluate AQM schemes through “live simulation”

* Emulate the browsing behavior of a large population of users
surfing the web in a laboratory testbed

— Construct a physical network emulating a congested peering link between
two ISPs

— Generate synthetic HTTP requests and responses but transmit over real
TCP/IP stacks, network links, and switches

— Also perform experiments with mix of TCP applications

Experimental Methodology
HTTP traffic generation

Response Time

* Synthetic web traffic generated using the UNC HTTP
model [SIGMETRICS 2001, MASCOTS 2003]

* Primary random variables:
— Request sizes/Reply sizes ~ — Number of embedded images/page
— User think time — Number of parallel connections
— Persistent connection usage — Consecutive documents per server

— Nbr of objects per persistent — Number of servers per page
connection 18

® Experimental Methodology
o)) Testbed emulating an ISP peering link
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* AQM schemes implemented in FreeBSD routers using
ALTQ kernel extensions

* End-systems either a traffic generation client or server
— Use dummynet to provide per-flow propagation delays

— Two-way traffic generated, equal load generated in each
direction

®» Experimental Methodology
, 1 Gbps network calibration experiments
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* Experiments run on a congested 100 Mbps link

* Primary simulation parameter: Number of simulated
browsing users

* Run calibration experiments on an uncongested 1 Gbps
link to relate simulated user populations to average link
utilization

— (And to ensure offered load is linear in the number of
simulated users — i.e., that end-systems are not a bottleneck)

20




ﬁ Experimental Methodology
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ﬁ DCN Evaluation
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* Run experiments with DCN, AFD, RIO-PS, and PI at
different offered loads

— PI always uses ECN, test AFD and RIO-PS with and without
ECN

— DCN always signals congestion via drops

e Compare DCN results against...
— The better of PI, AFD, and RIO-PS (the performance to beat)
— The uncongested network (the performance to approximate)
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DCN performance

@ Experimental Results — 90% Load
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f Experimental Results — 90% Load

I .
W&y, Comparison of all schemes
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> Experimental Results — 98% Load
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» DCN Evaluation

Sl
“,, Summary
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* DCN uses a simple, tunable two-tiered classification
scheme with:
— Tunable storage overhead
— O(1) complexity with high probability

* DCN, without ECN, meets or exceeds the performance
of the best performing AQM designs with ECN

— The performance of 99+% of flows is improved
— More small and “medium” flows complete per unit time

* On heavily congested networks, DCN closely approx-
imates the performance achieved on an uncongested
network

).
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' Summary and Conclusions

2

* For offered loads of 90% or greater there is benefit to
control theoretic AQM but only when used with ECN

* Heuristically signaling only long-lived, high-bandwidth
flows improves the performance of most flows and
eliminates the requirement for ECN

— One can operate links carrying HTTP traffic at near saturation
levels with performance approaching that achieved on an
uncongested network

* Identification of high-bandwidth flows can be
effectively performed with tunable overhead and
complexity
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CCDF (%)

Experimental Results — 90% Load
Comparison of all schemes (CCDF)
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Experimental Results — 98% Load
Comparison of all schemes (CCDF)
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Experimental Results with General TCP
Traffic
Comparison of all schemes
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