The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Variability in TCP Round-trip Times

Jay Aikat Jasleen Kaur Don Smith Kevin Jeffay

Department of Computer Science
University of North Carolina at Chapel Hill

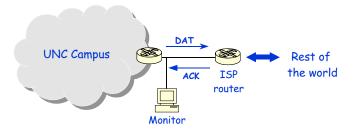
http://www.cs.unc.edu/~jasleen/research/RTT

TCP Round-trip Times (RTTs)

Popular belief:

RTTs do not vary significantly within TCP connections

- Mean RTT can be used to approximate per-segment RTTs
 - TCP throughput models
 [Altman00, Kumar98, Lakshman97, Mathis97, Padhye98, ...]
 - Analysis based on TCP behavior [Zhang02]


- RTT of initial segments is "typical" for a TCP connection

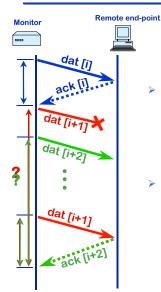
Do per-segment RTTs vary significantly within a TCP connection?

2

Data Source

Rich data source!

3

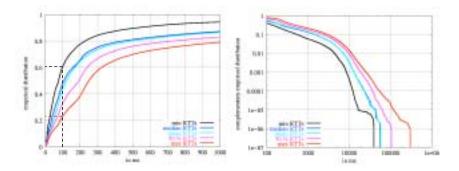


Data Source

Extracting Valid RTT Samples

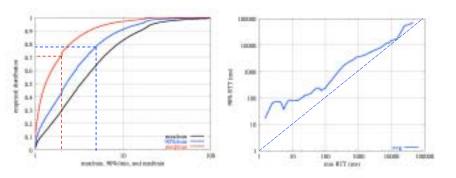
- > Guiding principle:
 - Consider only those RTTs where there is unambiguous correspondence between an ACK and the DAT that triggered it.
- > Caveat: delayed ACKs
 - Could add 200 500 ms to RTT estimates

Trace Statistics

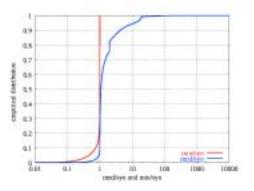

	Connections	Remote hosts	RTT samples	Bytes	Packets
All connections	22.7 million	962 K	252 million	628 <i>G</i> B	511 M
Connections with at least 10 samples	1.1 million	258 K	236 million	581 <i>G</i> B	464 M

Large data set!

6

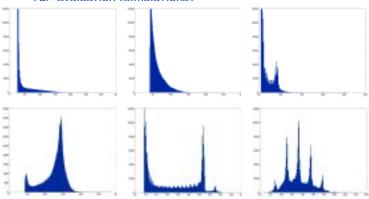

Variability Across Connections

- $\,>\,$ 60% connections see min RTT less than 100 ms
 - Only 23% see max RTT less than 100 ms
- > ACKs can arrive more than 25 s after DAT transmission!
- > Mean and median RTTs are comparable measures


Variability Within Connections

- > Median RTT:
 - 30% of connections see a median RTT more than twice the min RTT
- > 90% RTT:
 - 22% of connections see a 90% RTT more than 5 times the min RTT
 - 90% RTT increases with min RTT

The SYN/(SYN+ACK) RTT


- > RTT yielded by the SYN and SYN+ACK pair
 - Differs by more than 10% from min RTT for 14% of connections
 - Differs by more than 10% from median RTT for 50% of connections

9

Per-Segment RTTs: Mean or Distributions?

- > Is mean RTT a good approximation for per-segment RTTs?
 - TCP analytical models
 - TCP evaluation (simulations)

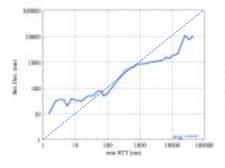
10

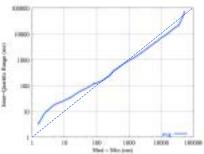
Ongoing Work

> Impact of RTT variability on past work

- TCP analytical models
- Delay-based congestion control
- TCP evaluation (simulations)
- TCP-based analysis

> Causes of variability


- Congestion?
- End-hosts?

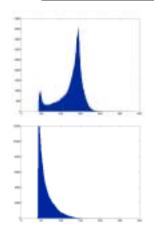

> Models for per-connection RTTs

- Accurate simulation environments

Variability within connections

Standard deviation in per-connection RTTs

- Increases rapidly in the range:
 min RTT = 100 ms 1 s
- Increases less rapidly in other regions


Inter-quartile range

 Increases consistently with (med-min) RTT

11

Per-Segment RTTs: Mean or Distributions?

- - > Is mean RTT a good approximation for per-segment RTT?
 - TCP analytical models
 - TCP evaluation (simulations)