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) Motivation
WY, Experimental Networking Research

 Evaluating network technologies requires realistic
experiments in a controlled laboratory environment

* A key component of these experiments is the traffic
workload

— Traffic is created by distributed applications running at the
end hosts

* A natural approach for traffic generation is to
simulate these applications using models of their
behavior

— This is known as source-level modeling




d Internet Traffic Mixes
WY, Internet2 Applications (Nov 4 2002)

= Newsgroups
Packets = Web }Indiv.iduz.ju
Applications
= File Transfer
= File Sharing\
= Audio/Video
= Misc Groups of
= Encryption >App|ications
= Games
= Unidentified J

* Dozens of different applications are commonly used

* There is a large percentage of unidentified traffic

Difficulties in Source-Level Modeling

’
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* Real Internet traffic is the result of aggregating many
individual applications into a traffic mix

* Requires protocol specifications
— Closed applications have to be reverse engineered

* Applications change quickly

* Privacy considerations complicate data acquisition

» It is simply infeasible to develop models for each
application and maintain them up to date

Goals

@ Modeling of Internet Traffic Mixes
al)

* Develop source-level models of traffic mixes
— Easy to populate and update
— Derived from very large data sets

»Model communication patterns in an abstract manner
— Application-independent source-level modeling

* Construct flexible traffic generators
— Reproduce a wide range of traffic mixes

»Find the fundamental patterns of communication
— Cluster-based traffic generation

) Our Approach
Yy, Finding Patterns in TCP Connections

* Modeling of data exchange patterns in TCP
connections

— Application-independent, network-independent

* Statistical clustering of TCP connection patterns
— Find the fundamental subpopulations
— Construct empirical or parametric models of subpopulations

* Development of new, flexible traffic generators
— Cluster-based synthetic traffic

 Validation
— Compare synthetic traffic with some gold standard




Modeling of Data Exchange Patterns
N,;ADU Inference from TCP Packet Headers
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Modeling of Data Exchange Patterns
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Modeling of Data Exchange Patterns
Yy,ADU Inference from TCP Packet Headers
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)Modeling of Data Exchange Patterns
{3y, HTTP Connection (Web Traffic)

e Communication pattern was (a,, b,)
— E.g., (305 bytes, 2,876 bytes)

HTTP

Request
305 bytes

Web Client [}

Web Server

I TIVE

HTTP

Response
2,876 bytes




@ Abstract Communication Model
l.

,L The a-b-t connection vector model

e General model (a-b-t vector):
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where e is the number of epochs
Epoch 1

Epoch 2 Epoch 3
A A AL
I'e V Y~ N\
a, a, a;
es .
caier gil§ : A”: silis
Callee A = A
b, bytes | i ib, i b,
i 4 tes bytes

t, seconds t, seconds

13

@ a-b-t Connection Vectors
1.

,‘)L Typical Communication Patterns

e SMTP (send email)

si NNl [ I
* Telnet (remote terminal)
DIsIm oI I8 IR0B I BIRIIIINY

NE IR JRRY UNIBEEEERR INIINE
* FTP-DATA (file download)
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@ a-b-t Connection Vectors
!

w Clustering communication patterns
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* Find statistically homogeneous communication patterns
— Study this mixture of populations

* Address scalability using statistical clustering
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) Clustering Communication Patterns
N,,)Clustering 101

* Procedure that divides a given set of feature vectors
into disjoint groups, or clusters, C,, C,,...,C,,

* The goals of clustering schemes:

— Clusters are small and mutually far apart
— Clustering is done automatically

» Clustering is a form of unsupervised learning

* Statistical clustering is a well founded technique

— Successfully applied to Gene Micro-array classification,
Data Mining,...
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Example

8%y, Clusters in a 2D Data Set
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) Example
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W, Divisive Hierarchical Clustering
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Divisive Hierarchical Clustering
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Statistical Features of
a-b-t Connection Vectors

UNIVARIATE MULTIVARIATE

a, | b, | t, | Totalbytesitime [ cor.a.b | cor.a.t | cor.b.t
Aax bmax Lax Max bytes/time Correlations

Apin | Bin | Lonin Min bytes/time cor.a.b.x| cor.a.t.x | cor.b.t.x
Arrean bmean tean | Mean bytes/time Lagged Correlations

a, | b, | t, | 1"237Quartiles | crc.a.b | cre.a.t | cre.b.t
Agriev bstdev t 40y | Standard Deviation Cross-correlations

@prv | Ooorx | toorx | Autocorrelations | dirl.a.b | dir2.a.b |

a,,. | by | t, Homogeneity Directionality

a, bvs L, Total Variation UNIVARIATE

a,, | by | tom Max First Diff. e | No. of Epochs
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d Clustering Connections
\T\',/ Statistical structure in data exchanges

UNCO01 Sunday 8 AM Trace X

d Clustering Connections
\T\’,/ Example of two clusters

_ ey UNCO01 Sunday 8 AM Trace
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Clustering Communication Patterns Example 1

Data Set

* Each feature is approximately normalized to [0,1]
— Many features have heavy-tailed distributions

Features
= e a.max a.min dir2.a.b
Observations
Connection 1 0.66 0.23 0.12 0.61
Connection 2 0.24 1.03 0.45 0.23
Connection m 0.11 0 0 . 1
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Ay, Divisive Hierarchical Clustering

Packet header trace 26 Features

collected from UNC main e No. of Epochs
i a otal bytes/time
Internet access link ot | Diot Total bytes/
— April 2002 e | Do | tae | Max bytes/time
« Random sample of 5,000 | %nin | Pmin Min bytes/time
connections Ao | byo 132 Moments
—e=2 a., | by, 15t 2nd 31 Quartiles
. . a b Total Variation
* Analysis performed using [—"—+—= —
> . a, | b, Max/Min Ratio
R’s implementation
r r, Lag-1 Autocorr.

— Using the diana algorithm —*

Spearman’s Correl.

Euclidean distance

Lag-1 Cross Corr.
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Example 1
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Example 2

15%

Agglomerative Hierarchical Clustering

e Packet header trace
collected from an Internet2
backbone link (Abilene-I
data set)

— August 2002

e Sample of 717 connections
—e= 2

* Analysis performed using
Eisen’s software

— Developed for microarrays

e Pearson’s correlation as
distance metric

14 Features
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Hierarchical Clustering
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Summary and Current Work

* Developed an application-independent model of TCP
communication patterns: the a-b-t connection vector model
— Suitable for large scale data acquisition

» Applied statistical clustering to uncover fundamental
subpopulations
— Working on a systematic approach for feature selection and
cluster identification (i.e. dendrogram pruning)

— O(n?) is too slow, so we are also looking into data mining
algorithms for clustering

* A synthetic traffic generator (“tmix”) for reproducing
TCP application workloads

— Network specific workloads easily modeled given a packet
header trace
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