

University of North Carolina at Chapel Hill

Adaptive, Best-Effort Congestion Control Mechanisms for Real-Time Communications on the Internet

Kevin Jeffay

F. Donelson Smith Gunner Danneels (Intel) Mark Parris Michele Clark Peter Nee

http://www.cs.unc.edu/Research/dirt

Multimedia Networking Research at UNC

- > What are we doing?
 - Trying to understand how "broken" the Internet is today
 - Trying to understand how to design real-time multimedia applications for the Internet

> Why are we doing this?

We want to understand if we should spend our efforts building a better Internet, making "smarter" applications, or both

Multimedia Networking Research at UNC

► How are we doing this?

- Developing real-time communications and computation middle-ware
- Building real-time applications with experimental communications software
- Evaluating their performance on controlled and production networks
- Running long-term performance studies on the Internet

Adaptive, best-effort congestion control for real-time communications

Outline

- Our driving problem realizing distributed, immersive, virtual laboratories
 - ► The UNC *nanoManipulator* system
- ► The continuous media congestion control problem
- >2-Dimensional media scaling techniques
- Experimental results for Internet videoconferencing

Distributed, Immersive, Virtual Laboratories

- Advanced scientific instruments have computerbased or computer-enhanced interfaces
- Treating these systems as distributed systems enables...
 - ► Better user interfaces
 - Remote operation of instruments
 - Multi-user and collaborative operation
 - Sharing of instruments and specialized computing equipment

 Example — Atomic Force Microscopes

Distributed, Immersive, Virtual Laboratories

CCD Image

Computer Enhanced Image

Distributed, Immersive, Virtual Laboratories

The UNC nanoManipulator system

- A virtual environment interface to a scanningprobe microscope
- Provides telepresence on sample surfaces scaled 1,000,000:1

Distributed Virtual Laboratories nM distribution scenarios

- Scientific collaboration over Integrated Services networks
- Scientific collaboration over high-speed, best effort internetworks
- Educational outreach over the Internet
 - Co-located graphics & microscope hardware, remote tracking & user interface

Outline

- Our driving problem realizing distributed, immersive, virtual laboratories
 - > The UNC *nanoManipulator* system
- ► The continuous media congestion control problem
- ► 2-Dimensional media scaling techniques
- Experimental results for Internet videoconferencing

Cont. Media Congestion Control Effect of packet loss on UNC campus

Cont. Media Congestion Control Effect of packet loss across 16 hops

Congestion Control The nature of congestion

- How can we make the best use of the (time varying) bandwidth that is available to our streams?
 - ► How can we determine what this bandwidth is?
 - ► How can we track how it changes over time?
 - How can we match our application's output to the available bandwidth?

Temporal scaling

- Reduce the resolution of the stream by reducing the frame rate
- Spatial scaling
 - Reduce number of pixels in an image
- Frequency scaling
 - Reduce the number of DCT coefficients used in compression
- Amplitude scaling
 - Reduce the color depth of each pixel in the image
- Color space scaling
 - Reduce the number of colors available for displaying the image

	-10			-1+	
21					
					2

UNC Adaptive Congestion Control 2-Dimensional media scaling

- Canonical approach to congestion
 - ► Reduce (video) bit-rate
- ► Alternate approach
 - View congestion control as a search of a 2-dimensional bit-rate x packet-rate space
 - Scale bit- and packet-rates simultaneously to find a sustainable operating point

Bit- and Packet-Rate Scaling An analytic model of media scaling

- the network is incapable of supporting the desired bit rate in any form
- Access constraints
 - the network can not support the desired bit rate with the current packaging scheme

2-Dimensional Media Scaling Dealing with effects of fragmentation

► The problem

- A sender can only (directly) effect the *message rate*, not the *packet rate*
- Does fragmentation render message-rate scaling obsolete?

2-Dimensional Media Scaling Does it work?

• Campus-sized internets?
• The Internet?

2-Dimensional Media Scaling Does it work?

► Experiments

- Baseline UDP transmission, no adaptations
- 1-Dimensional media scaling (video bit-rate scaling)
- Audio and video media scaling & packaging

- ► Metrics
 - Delivered media frame rate
 - (throughput)
 - Packet loss
 - Media stream latency
 - Adaptations performed over time

2-D Scaling on the UNC Campus Performance with no media scaling

Video Latency (ms)

Sustainability Results Adaptive methods on the Internet

- Results of an Internet performance study from UNC to UVa
 - ► Repeated trials from 10 am to 7 PM weekdays
 - > Trials separated by at least two hours
 - > Scattered over three months

Time Slot	Sustainable	Not Sustainable
10:00-12:00	67%	33%
12:00-14:00	50%	50%
14:00-16:00	8%	92%
16:00-18:00	25%	75%
16:00-18:00	25%	75%
18:00-20:00	44%	<u>56%</u>
Percentage	39%	61%

Adaptive, best-effort congestion control for real-time communications

Outline

- ► Our driving problem realizing distributed, immersive, virtual laboratories
 - ► The UNC *nanoManipulator* system
- ► The continuous media congestion control problem
- > 2-Dimensional media scaling techniques
- > Experimental results for Internet videoconferencing

Adaptive, best-effort congestion control for real-time communications

- > Real-time applications must be adaptive to be effective on the Internet
- > Simple middleware adaptations are sufficient for accommodating most Internet pathologies within "the intranet"
 - ► Biasing how a bit-stream is partitioned into packets is more effective than reducing the bit-stream

Will best-effort techniques scale? Router-based congestion control

- > Recursively apply endpoint media adaptations in the network
 - ► Delay-jitter management adaptations
 - ► Congestion/flow control adaptations
- ► Compare performance against CBQ gateways
 - ► RED packet discard for TCP
 - > "Delete Oldest & Advance" discard for multimedia