Adaptive, Best-Effort Congestion Control Mechanisms for Real-Time Communications on the Internet

Kevin Jeffay
F. Donelson Smith
Mark Parris
Gunner Danneels (Intel)
Michele Clark
Peter Nee
http://www.cs.unc.edu/Research/dirt

What are we doing?
- Trying to understand how “broken” the Internet is today
- Trying to understand how to design real-time multimedia applications for the Internet

Why are we doing this?
- We want to understand if we should spend our efforts building a better Internet, making “smarter” applications, or both

How are we doing this?
- Developing real-time communications and computation middle-ware
- Building real-time applications with experimental communications software
- Evaluating their performance on controlled and production networks
- Running long-term performance studies on the Internet
- Evaluating their performance on controlled and production networks
- Running long-term performance studies on the Internet

Outline
- Our driving problem — realizing distributed, immersive, virtual laboratories
 - The UNC nanoManipulator system
- The continuous media congestion control problem
- 2-Dimensional media scaling techniques
- Experimental results for Internet videoconferencing
Advanced scientific instruments have computer-based or computer-enhanced interfaces.

Treating these systems as distributed systems enables...

- Better user interfaces
- Remote operation of instruments
- Multi-user and collaborative operation
- Sharing of instruments and specialized computing equipment

Example — Atomic Force Microscopes

The UNC nanoManipulator system

- A virtual environment interface to a scanning-probe microscope
- Provides telepresence on sample surfaces scaled 1,000,000:1
Distributed Virtual Laboratories
Networking challenges

Graphics Engine & Host Processor
Internetwork
Visual Feedback
Intel-based Microscope Controller
Intel-based PHANToM Controller
Force Feedback

AFM Control Processing
Internetwork
80 Kbps ("touch mode")
816 Kbps ("scan mode")
48 Kbps ("touch mode")
250 Mbps (max)

User Interface & Application Processing
96 Kbps
Hand Tracking & Feedback Control
1.05 Gbps (max)

3D Graphics Processing

Distributed Virtual Laboratories
nM distribution scenarios

➤ Scientific collaboration over Integrated Services networks
➤ Equal distribution of graphics, tracking, and microscope hardware

Duke OC-48 Sonet Node
MCNC OC-48 Sonet Node
NCSU OC-48 Sonet Node
The North Carolina GigaPOP

➤ Scientific collaboration over high-speed, best effort internetworks
➤ Co-located graphics & microscope hardware, remote tracking & user interface
➤ Co-located microscope hardware, tracking & user interface, remote graphics engine
Distributed Virtual Laboratories

nM distribution scenarios

➤ Scientific collaboration over Integrated Services networks
➤ Scientific collaboration over high-speed, best effort internetworks
➤ Educational outreach over the Internet
 ➤ Co-located graphics & microscope hardware, remote tracking & user interface

Adaptive, best-effort congestion control for real-time communications

Outline

➤ Our driving problem — realizing distributed, immersive, virtual laboratories
 ➤ The UNC \textit{nanoManipulator} system
➤ The continuous media congestion control problem
➤ 2-Dimensional media scaling techniques
➤ Experimental results for Internet videoconferencing

Cont. Media Congestion Control

Effect of packet loss on UNC campus

Cont. Media Congestion Control

Effect of packet loss across 16 hops
Cont. Media Congestion Control
The UNC approach

➤ Operating principle:
Network elements that cannot reserve, or support real-time allocation of resources, will persist for the foreseeable future.

➤ Focus on adaptive, best-effort transmission...
Treat the network as a black box – Assume only that sufficient bandwidth exists for some useful execution of the system

➤ ... with real-time media control at the endpoints

Adaptive, best-effort congestion control for real-time communications

Outline
➤ Our driving problem — realizing distributed, immersive, virtual laboratories
 ➤ The UNC nanoManipulator system

➤ The continuous media congestion control problem

➤ 2-Dimensional media scaling techniques

➤ Experimental results for Internet videoconferencing

Cont. Media Congestion Control
The UNC approach

➤ Congestion in the small: delay-jitter

Elastic queueing to manage the trade-off between low latency playout and gap-rate

➤ Congestion in the large: packet loss

Adaptive media scaling and packaging to decrease network queueing (latency) and minimize packet loss

Congestion Control
The nature of congestion

➤ What causes congestion?
 ➤ Did our multimedia stream(s) cause the network to be congested?
 ➤ Are there simply too many connections competing for too little bandwidth?
Congestion Control

The nature of congestion

➤ How can we make the best use of the (time varying) bandwidth that is available to our streams?
 ➤ How can we determine what this bandwidth is?
 ➤ How can we track how it changes over time?
 ➤ How can we match our application’s output to the available bandwidth?

Switch Fabric

 Canonical Adaptive Congestion Control

Video bit-rate scaling

➤ Temporal scaling
 ➤ Reduce the resolution of the stream by reducing the frame rate

➤ Spatial scaling
 ➤ Reduce number of pixels in an image

➤ Frequency scaling
 ➤ Reduce the number of DCT coefficients used in compression

➤ Amplitude scaling
 ➤ Reduce the color depth of each pixel in the image

➤ Color space scaling
 ➤ Reduce the number of colors available for displaying the image

Unc Adaptive Congestion Control

2-Dimensional media scaling

➤ Canonical approach to congestion
 ➤ Reduce (video) bit-rate

➤ Alternate approach
 ➤ View congestion control as a search of a 2-dimensional \(\text{bit-rate} \times \text{packet-rate} \) space

➤ Scale bit- and packet-rates simultaneously to find a sustainable operating point

Bit- and Packet-Rate Scaling

An analytic model of media scaling

Capacity constraints
 ➤ the network is incapable of supporting the desired bit rate in any form

Access constraints
 ➤ the network can not support the desired bit rate with the current packaging scheme
Bit- and Packet-Rate Scaling
An analytic model of media scaling

➤ Reduce the packet-rate to adapt to an access constraint
 ➤ Change the packaging or send fewer video frames
 ➤ Primary Trade-off: higher latency (potentially)

➤ Reduce the bit-rate to adapt to a capacity constraint
 ➤ Send fewer video frames or fewer bits per video frame
 ➤ Primary Trade-off: lower fidelity

2-Dimensional Media Scaling
Finding a sustainable operating point

➤ Initial operating point:
 (high quality, 12 fps)

➤ First adaptation:
 (high quality, 10 fps)
 ➤ congestion persists

➤ Second adaptation:
 (medium quality, 10 fps)
 ➤ congestion relieved

➤ First probe:
 (medium quality, 12 fps)

➤ Second probe:
 (medium quality, 14 fps)
2-Dimensional Media Scaling
Dealing with effects of fragmentation

➤ The problem
➤ A sender can only (directly) effect the message rate, not the packet rate

➤ Does fragmentation render message-rate scaling obsolete?

2-Dimensional Media Scaling
Does it work?

➤ Campus-sized internets?
➤ The Internet?

2-Dimensional Media Scaling
Does it work?

➤ Experiments
➤ Baseline – UDP transmission, no adaptations
➤ 1-Dimensional media scaling (video bit-rate scaling)
➤ Audio and video media scaling & packaging

➤ Metrics
➤ Delivered media frame rate (throughput)
➤ Packet loss
➤ Media stream latency
➤ Adaptations performed over time

2-D Scaling on the UNC Campus
Performance with no media scaling

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)
2-D Scaling on the UNC Campus
Performance with video scaling only

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)

2-D Scaling on the UNC Campus
Video scaling v. no adaptation

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)

2-D Scaling on the UNC Campus
Performance with 2-dimensional scaling

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)

2-Dimensional Media Scaling
Does it work?

➤ Campus-sized internets — yes!
➤ It “solves” the first-mile/last-mile problem
➤ The Internet? — well...
➤ Does our necessary condition for success hold?
➤ Does it hold often enough to be useful?
➤ How much “room” is there for 2-D scaling in most codecs?
Sustainability Results
Adaptive methods on the Internet

➤ Results of an Internet performance study from UNC to UVa
 ➤ Repeated trials from 10 am to 7 PM weekdays
 ➤ Trials separated by at least two hours
 ➤ Scattered over three months

<table>
<thead>
<tr>
<th>Time Slot</th>
<th>Sustainable</th>
<th>Not Sustainable</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-12:00</td>
<td>67%</td>
<td>33%</td>
</tr>
<tr>
<td>12:00-14:00</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>14:00-16:00</td>
<td>8%</td>
<td>92%</td>
</tr>
<tr>
<td>16:00-18:00</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>44%</td>
<td>56%</td>
</tr>
<tr>
<td>Percentage</td>
<td>39%</td>
<td>61%</td>
</tr>
</tbody>
</table>

Adaptive, best-effort congestion control for real-time communications

Outline
➤ Our driving problem — realizing distributed, immersive, virtual laboratories
 ➤ The UNC nanoManipulator system
➤ The continuous media congestion control problem
➤ 2-Dimensional media scaling techniques
➤ Experimental results for Internet videoconferencing

Adaptive, best-effort congestion control for real-time communications

Summary
➤ Real-time applications must be adaptive to be effective on the Internet
➤ Simple middleware adaptations are sufficient for accommodating most Internet pathologies within “the intranet”
 ➤ Biasing how a bit-stream is partitioned into packets is more effective than reducing the bit-stream

Will best-effort techniques scale?
Router-based congestion control

➤ Recursively apply endpoint media adaptations in the network
 ➤ Delay-jitter management adaptations
 ➤ Congestion/flow control adaptations
➤ Compare performance against CBQ gateways
 ➤ RED packet discard for TCP
 ➤ “Delete Oldest & Advance” discard for multimedia