Experiments in Best-Effort Multimedia Networking for a Distributed Virtual Environment

Tom Hudson, Michele Clark Weigle, Kevin Jeffay, Russell M. Taylor II

University of North Carolina at Chapel Hill

The Atomic Force Microscope

What is the nanoManipulator?

AFM tip scanning buckytubes

Graphics

Haptics

PHANTOM force-feedback device
The nanoManipulator

A virtual environment interface to an Atomic Force Microscope

http://www.cs.unc.edu/Research/nano/

How do you transmit "feeling"?

Position-Force Control
- measure position, output force at 1000 Hz

What is the nanoManipulator?

Plane Approximation
- At the microscope, find an approximating plane
 - "Taylor Series" of a surface
 - Update at 20 Hz to feel smooth
- At the user interface, display with a local loop
 - Update at 1000 Hz to feel stiff

How do you transmit "feeling"?

Microscope tip
- PHANTOM stylus
- approximating plane
- Series of approximating planes
Classes of Service

- **Best-Effort**
 - Contend randomly with all other flows for resources
- **Quality of Service**
 - Guarantee performance

Internet Pathologies

Worries: loss and delay, jitter a distant third

Loss

Delay

- Audio: delay introduces heard gaps
- Haptics: delay introduces felt gaps and incorrect surface shape; jitter makes it worse
Delay
- Audio: delay introduces heard gaps
- Haptics: delay introduces felt gaps and incorrect surface shape; jitter makes it worse

Dealing with Loss

ARQ (Automatic Repeat Request): react to an error after it occurs
- TCP: retransmit when an error is detected
- Can’t detect error until one round-trip-time after segment was first sent

FEC (Forward Error Correction): anticipate an error before it occurs
- Transmit every piece of data multiple times
- Increases bandwidth requirements, but statistically reduces loss
- If zero loss is necessary, can combine with ARQ

FEC Example

- **Send:** d, e, f, g, h, i, j, k, l, m, n
- **Receive:** X, X, X
- **Display Queue:**
 - Display:
 - e, d, c
 - Queue:
 - e, f, g, h, i, j, k, l, m, n
Receiver Buffering

Gaps can be caused by loss or by jitter

Best-Effort Adaptations

Queue Monitoring (QM)

• Continuum between I-policy and E-policy
• As the queue gets longer, QM drops frames more aggressively
• Two parameters: threshold and decay

(Stone & Jeffay 1994)

Static Buffering

• I-policy
 • discard late frames
 • constant latency; allow gaps
• E-policy
 • keep late frames
 • increasing latency; no gaps

(Naylor & Kleinrock 1982)

Queue Monitoring Parameters

Threshold = number of playout periods queue can exceed a given length before a frame is dropped

Decay = ratio between successive thresholds
Distributed nM: What Changes?

- The nanoManipulator was designed for LAN:
 - requires very low network delay
 - occasionally consumes high bandwidth
- Collaboration requires deploying over WAN:
 - high network delay
 - frequent bandwidth bottlenecks

Experimental Setup

Using FEC in the nanoManipulator

- Surface data is sent to the client for two purposes:
 - Display — requires low latency
 - Logging — requires zero loss

(Christiansen, Jeffay, Ott, Smith 9?)
Using FEC in the nanoManipulator

- Logging at the server lets us tolerate loss
- TCP is only used because it guarantees 0 loss
- Use UDP instead
 - Cuts mean network delay, jitter
 - Add FEC when loss is high
 » Base bandwidth is low, so we can afford the bandwidth penalty

Forward Error Correction Results

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Bandwidth</th>
<th>Loss</th>
<th>Latency</th>
<th>Jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>23 kbps</td>
<td>0</td>
<td>145 ms</td>
<td>124 ms</td>
</tr>
<tr>
<td>UDP</td>
<td>20 kbps</td>
<td>1.8%</td>
<td>97 ms</td>
<td>33 ms</td>
</tr>
<tr>
<td>UDP x2</td>
<td>40 kbps</td>
<td>0.2%</td>
<td>94 ms</td>
<td>33 ms</td>
</tr>
<tr>
<td>UDP x4</td>
<td>72 kbps</td>
<td>0.02%</td>
<td>95 ms</td>
<td>33 ms</td>
</tr>
</tbody>
</table>

For the haptics data stream from the nanoManipulator, Forward Error Correction reduces network delay 50 ms, jitter 90 ms

Delay-Tolerant Haptics

- **Plane Approximation**
 - Highly sensitive to delay
 - Highly sensitive to delay jitter
- We can’t remove delay in the network

- **Warped Plane Approximation**
 - Very little sensitivity to delay
 - Highly sensitive to delay jitter
- We can do something about jitter
Using QM in the nanoManipulator

- To improve the quality of the warped plane approximation, reduce delay jitter
- How do we measure jitter?
 - Gap rate: standard metric from audio/video
 - Gaps can be caused by loss or by jitter

Queue Monitoring results

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Loss</th>
<th>Drop rate</th>
<th>Gap rate</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>10%</td>
<td>12%</td>
<td>22%</td>
<td>89 ms</td>
</tr>
<tr>
<td>QM (30, 2)</td>
<td>10%</td>
<td>1%</td>
<td>11%</td>
<td>94 ms</td>
</tr>
<tr>
<td>QM (150, 2)</td>
<td>10%</td>
<td>0.02%</td>
<td>10%</td>
<td>96 ms</td>
</tr>
<tr>
<td>QM (3600, 2)</td>
<td>10%</td>
<td>0.001%</td>
<td>10%</td>
<td>91 ms</td>
</tr>
</tbody>
</table>

For the haptics data stream from the nanoManipulator, high-threshold Queue Monitoring drove the gap rate to equal the loss rate.

Conclusions

- Audio and video adaptations can also be applied to haptics
- The teleoperation literature has regarded 100 ms as “impossible” latency, but we can function in that regime
- VR can operate over best-effort networks

Current Research Directions

- Combining FEC with QM: 0 gap rate
- Find quantitative metrics more appropriate to this class of applications
- Find other representations more amenable to wide-area distribution

New Work
Combining FEC and QM

- FEC drives the application-level loss rate to 0
- QM drives the gap rate to equal the loss rate

So, by combining the two we should be able to drive the gap rate to 0

Quantitative Measures

- Gap rate is a derived metric from standard multimedia; how do we measure performance of this application?
- Discrepancy between surface displayed to user and surface measured at the microscope
 - RMS error
 - peak error
 - histogram

Other Representations

- Change intermediate representation
 - The standard approach requires 16 kbps and 20 Hz; we can’t maintain this over a long-haul network.
 - We’re exploring alternate representations
 - 30 kbps base bandwidth
 - 5 Hz
 - much more latency-tolerant.