Lightweight Active Router-Queue Management for Multimedia Networking

Mark Parris Kevin Jeffay F. Donelson Smith

Department of Computer Science University of North Carolina at Chapel Hill

http://www.cs.unc.edu/Research/dirt

MMCN'99

Outline

- Problem Supporting multimedia over the Internet
- Context Active Queue Management
 - » Drop-tail on Full (FIFO)
 - » Random Early Drop (RED)
 - » Flow Random Early Drop (FRED)
- Towards better support for multimedia flows
 - » Class Based Thresholds (CBT)
- Empirical evaluation

Mark Parris

Interactive Multimedia on the Internet

- Interactive multimedia over the Internet
 - » video teleconferencing, distributed VR
- Media requirements and characteristics
 - » low latency
 - » periodic transmission times
 - » tolerant of some loss
 - » elastic but lower bounded bandwidth requirement
- Application specific congestion management
 - » Ranges from none to responsive

Mark Parris

Congestion Avoidance

- Drops are the only widely used indicator of congestion
- Drops and retransmissions
 - » Congestion collapse
 - » TCP's congestion avoidance (Jacobson)

Traditional Queueing in the Router (FIFO)

Internet Router Network Interface

- Full queues
 - no room for bursts of packets
 - Synchronized back-off (TCP/IP)
- **High latency**

- Lock-out phenomena
- High drop-rate

FIFO and RED Vulnerable to **Misbehaving Flows**

Active Queue Management Random Early Detection (RED)

- Weighted average accommodates bursty traffic
- Multiple modes based on threshold values
- Probabilistic and forced drops
 - » avoid consecutive drops
 - » drops proportional to bandwidth utilization
 - (drop rate equal for all flows)

MMCN'99 January 1999 Mark Parris

Queue Management and **Congestion Avoidance**

• Braden, et al (1998) recommend:

- » Deploy Active Queue Management (e.g. RED)
 - Avoid full gueues, reduce latency, reduce packet dropping, avoid lock-out phenomena
- » Continue research into mechanisms to deal with unresponsive or aggressive flows. (Floyd & Fall)
 - Unresponsive traffic's impact on RED, FIFO
- Multimedia is "unresponsive" for a reason.
 - » can tolerate some loss
 - » price for unnecessary reliability is too-high

Flow Random Early Detect (FRED) Goals

Flow Random Early Detect (FRED)

Fairness

- » Protect all TCP flows from effects of aggressive flows
- » Protect fragile TCP flows
- » Establish drop rate proportional to load

Mark Parris

TCP Performance with FRED

» Drops are proportional to bandwidth used Unresponsive flows are identified and penalized »

MMCN'99 January 1999

Mark Parris

Class Based Thresholds (CBT) Goals

Isolation

- » Responsive from unresponsive
- » Unresponsive: Multimedia from aggressive
- Flexible Fairness
 - » Something more than equal shares
- Light weight
 - » minimal state
- Maintain benefits of RED for responsive traffic
 - » feedback
 - » distribution of drops

 \triangleleft

11

Class Based Thresholds (CBT) Design

Class Based Thresholds (CBT)

• Isolation:

- » Packets are classified into one of several classes
- » Separate statistics kept for each class
- » Marked (multimedia) and unmarked non-TCP traffic are monitored with aggregate statistics
- Flexible Fairness:
 - » Configurable thresholds determine ratios between classes during periods of congestion
- Light weight:
 - » State per class instead of per flow, one queue
- Maintain benefits of RED for responsive traffic:
 - » Continue to apply RED policies to TCP

Mark Parris 13

Specific drop policies for each class
» RED for TCP

Mark Parris 14

Class Based Thresholds (CBT)

• Tagged traffic is allocated a share of the queue using a threshold on average queue occupancy

• Other traffic is limited to a share of the queue using a (small) threshold on average queue occupancy

Class Based Thresholds (CBT)

- Maintain a single FIFO queue but track the average number of packets in the queue from each class
- Drop packets from a class based on policy for that class:
 - » During times of congestion, each class is limited to a fixed share of network bandwidth in proportion to the threshold.

MMCN'99 January 1999 Mark Parris 17

Experimental Results TCP Throughput

Empirical Evaluation Experimental Setup

• Senders transmit a mix of TCP, real-time, and non-real-time UDP traffic

Mark Parris 18

Experimental Results - TCP CBT vs. Packet Scheduling

Multimedia Latency

Results

Queue Management Scheme	Drop Rate for Continuous Media
FIFO	32.4%
RED	30.0%
FRED	35.7%
CBT	1.3%
Packet Scheduling	0.0%

• Proper resource allocation

• Only Packet Scheduling has a lower drop rate for continuous media

MMCN'99 January 1999

Mark Parris 22

Summary

• Active Queue Management comparison

- » Better TCP performance
- » Less state than FRED (no per flow state)
- » Lower latency to multimedia applications
- » Lower drop rate for multimedia

Packet scheduling comparison

» comparable performance

- Current queue management schemes are vulnerable to aggressive flows.
- Calls for mechanisms to identify and penalize unresponsive flows
- Class-Based Thresholds provides isolation for TCP and multimedia while providing a useful level of service for multimedia.
- Allocation of the buffer offers comparable performance and is simpler than packet scheduling.

