

University of North Carolina at Chapel Hill

The Evolution of Quality-of-Service on the Internet

Kevin Jeffay Department of Computer Science

February 2001

Research Context Network support for immersive DVEs

- The Office of the Future
- Salient problem characteristics:
 - Continuous media transmission
 - Low latency required for human-to-human communication, and the illusion of immersion

© 1997 UNC-CH

system

• The nanoManipulator

Performance of MM transmission Performance of "raw" transmission

Throughput (frames/sec)

- "Out-of-the-box" ProShare performance
 - Frozen, motionless video
 - Clipped, broken audio

The Evolution of Quality-of-Service on the Internet

Summary,

- The Internet is (slowly!) evolving to support quality-of-service
- The current mechanisms for realizing QoS are more about router queue management than virtual circuits
- Virtual circuits were investigated but have been largely abandoned
 - -(Did we really need them in the first place?)
- The future Internet will provide router "forwarding behaviors" rather than end-to-end "services"
 - -A simple per-hop priority forwarding service suffices

The Evolution of Quality-of-Service on the Internet

Outline

- The promise of the Internet for real-time communications
- The Integrated Service Architecture for the Internet -Reservations, admission control, and scheduling
- The non-deployment of INTSERV – What "service" do applications really need?
- The Differentiated Services Architecture for the Internet
 - Active Queue Management for congestion control and quality-of-service

Integrated Services Architecture Services

An Integrated Services Internet is one that supports: • "Flows"

- *-real-time communication* service guarantees
- -best-effort communication today's service model
- Traffic management
 - -*controlled link sharing* enabling a service provider to allocate link's capacity to "classes" of traffic

Integrated Services Architecture Axioms

Resource reservation is required

 Network elements must maintain per-flow state information and use this information to ensure application performance contracts are met

• Admission control is required

 To ensure performance contracts are met, network elements must ensure they do not over commit their resources

• Applications must be policed

 To ensure performance contracts are met, network elements must ensure applications do not claim more resources than they contracted for

Integrated Services Architecture Service models for flows

- Integrated services introduces the concept of a *service model*
 - A contract between a sender and the network for a particular quality of service
- Proposed service models
 - -*Guaranteed delay* An application receives a guarantee that all packets will be delivered within a fixed delay bound
 - -*Controlled load* Performance equivalent to that on an "unloaded network"
 - -Best-effort Today's service model

Integrated Services Service Models

• To receive a service contract an application must specify the service it requires and the traffic it will generate

-Canonical flow specification - the token bucket

Towards QoS Networking The Integrated Services Architecture

Realizing Integrated Services Reference implementation components

- Classifier Maps all packets into one or more classes that receive the same service
- Packet Scheduler Schedules packets for transmission so that performance contracts are enforced

- Reservation setup protocol
 - Mechanism by which flow-specific state is created and maintained
- Admission control procedure
 - The decision procedure that is used to determine if a new flow can be accepted or not

Realizing Integrated Services Reference implementation components

- End systems must support the same logical components
 - A real-time chain is only as strong as its weakest link

Architectural components

- Flow specifications
- Routing

- Resource reservation
- Admission control
- Packet scheduling

Issues in Resource Reservation Point-to-point communications

- <u>Goal</u>: Establish a virtual circuit from H1 to H2 –Reserve "resources" in routers R1, R2, and R3
- Resources are...
 - -Link capacity on transmission links
 - -Buffer capacity in routers to hold packets in transit
 - -CPU capacity at all routers to forward packets from H1 in real-time

Resource Reservation Example ST-II Two pass reservation protocol

- H1 sends a *connect* message containing a *flowspec* towards H2
 - -The connect message is modified as needed by R1-R3
- Upon receipt of the connect, H2 sends an *accept* message back to H1
- Reservations are made when routers receive the accept message

Issues in Resource Reservation The complexity of supporting multicast

- How do we add/delete new users?
- How do we handle differing link/router capacities?
- How can we avoid over-reserving resources?
- What if the route from H1 to a receiver changes?

RSVP A receiver initiated reservation protocol

• Receivers initiate reservations

- -Receivers know what bandwidth they want or can handle
- -Places burden of joining/leaving on the involved receiver
- Admits the possibility of optimizing reservations in routers & switches through aggregation

RSVP Protocol Design

- RSVP is a control protocol
 - -RSVP is above IP (like IGMP)
- Reservation is separate from routing

 Assume only that RSVP and application datagrams are subject to the same routing algorithms
- Reservation and admission control are orthogonal processes
- Reservation state in routers is "soft" and must be periodically refreshed
 - -Ensures fault tolerance and allows reservations to be automatically reestablished after route changes

RSVP **Operation Overview**

- Senders and receivers join a multicast group -(Joining/leaving is performed outside of RSVP)
- Senders advertise their existence
 - -Sender to network messages
 - » Path request make presence of a sender known to network elements
 - » Path teardown delete path state from routers
- Receivers subscribe to sender data streams
 - -Receiver to network messages
 - » Reservation request reserve resources from sender(s) to receiver
 - » Reservation teardown delete reservations

RSVP Operation

- 5 hosts, 3 routers/switches
- One multicast group containing all hosts -Each host will send and receive media

- Assume each router has previously received *path* messages from all sources
- No reservations have been made

• H1 wants to be able to receive from any sender but only wants 1 stream at a time

Simple Reservation Example Forwarding a reservation

- R1 reserves b units of bandwidth from R1 to H1
- R1 forwards r_1 over all links in its PATH database

- R2 reserves b units of bandwidth from R2 to R1
- R2 forwards r_1 over L5 & L7

Simple Reservation Example Forwarding a reservation

- R3 reserves b units of bandwidth from R3 to R2
- Finally, *b* units of bandwidth are reserved along the path from any host to H1

- Resources are not reserved until actually needed
- Reservations are aggregated on intermediate links
- Soft state ensures fault tolerance and provides implicit integration with routing protocols

Generalized Processor Scheduling Bit-by-bit allocation v. packet-by-packet

• In any interval, active connection P_i transmits w_i bits

Generalized Processor Scheduling Bit-by-bit allocation v. packet-by-packet

- But packet scheduling is inherently non-preemptive!
- Schedule packets by in order of their "finish number"
 - Under "Packet-by-packet GPS" the deviation from true GPS is bounded

The Evolution of Quality-of-Service on the Internet

Outline

- The promise of the Internet for real-time communications
- The Integrated Service Architecture for the Internet -Reservations, admission control, and scheduling
- The non-deployment of INTSERV – What "service" do applications really need?
- The Differentiated Services Architecture for the Internet
 - Active Queue Management for congestion control and quality-of-service

The Integrated Services Architecture Ahead of its time or fatally flawed?

The Integrated Services Architecture Ahead of its time or fatally flawed?

- Guarantees requires per-flow state in every router and switch
 - -And guarantees were only modulo route changes
- Algorithmic complexity of reservations and scheduling is non-trivial
- Why would service providers implement this when (arguably) better services can be provided below IP?

Performance of MM transmission Performance of "raw" transmission

- "Out-of-the-box" ProShare performance
 - Frozen, motionless video
 - Clipped, broken audio

Performance of MM transmission Performance of adaptive transmission

Throughput (frames/sec)

- End-system adaptation can ameliorate many of the effects of congestion
 - But can it do so reliably or predictably?
 - (And does it scale?)

Real-time Services on the Internet

• Do we need more bandwidth or just better management of the existing bandwidth?

The Evolution of Quality-of-Service on the Internet

Outline

- The promise of the Internet for real-time communications
- The Integrated Service Architecture for the Internet -Reservations, admission control, and scheduling
- The non-deployment of INTSERV –What "service" do applications really need?
- The Differentiated Services Architecture for the Internet
 - Active Queue Management for congestion control and quality-of-service

The Nature of Congestion Queueing delays in routers

Towards QoS Networking The differentiated services architecture

• ISPs allocate and sell capacity for a "premium" service

Towards QoS Networking The differentiated services architecture

- ISPs allocate and sell capacity for a "premium" service
- Packets are marked according to "service profiles"

Router

Realizing Differentiated Services Active queue management

This is significant utility in realizing differential services with a single router queue

- In this model, a key technology for realizing differential services is a packet dropping policy

Realizing Differentiated Services RED active queue management

• Basic mechanism for realizing differentiated services is the random early detection (RED) congestion avoidance mechanism

Realizing Differentiated Services RED active queue management

- Random drops avoid lock-out/synchronization effects - All flows see the same loss rate
- Early drops avoid full queues
 - Increases effective network utilization ("goodput")
 - Decreases end-to-end latency by decreasing queuing delay

Realizing Differentiated Services RED & diffserv

• Clark *et al.* RED with "In/Out" (RIO) scheme -Apply "harsh RED" to out-of-profile packets and "lenient RED" to in-profile packets

Realizing QoS Through AQM "Class-based thresholds"

- Designate a set of traffic classes and allocate a fraction of a router's buffer capacity to each class
- Once a class is occupying its (weighted average) limit of queue elements, discard *all* arriving packets
- Within a traffic class, further active queue management may be performed

The Evolution of Quality-of-Service

GPS	RIO	CBT	RED	FIFO
Guaranteed QoS	Better-Than-		Advanced	End-System
Perfect Congestion	Best-Effort		Congestion	Adaptation
Control	Forwarding		Control	to Congestion

- The Internet is evolving to support quality-ofservice
 - -Capacity allocation & inter-flow protection are required for QoS
- The current mechanisms for realizing QoS are more about router queue management than virtual circuits

The Evolution of Quality-of-Service on the Internet

GPS	RIO	CBT	RED	FIFO
Guaranteed QoS	Better-Than-		Advanced	End-System
Perfect Congestion	Best-Effort		Congestion	Adaptation
Control	Forwarding		Control	to Congestion

- Active Queue Management can provide performance comparable to packet scheduling...
 –Lower state requirements and algorithmic complexity
- The Internet of tomorrow will provide router "forwarding behaviors" rather than end-to-end "services"

University of North Carolina at Chapel Hill

> The Evolution of Quality-of-Service on the Internet

Kevin Jeffay Department of Computer Science

February 2001