A Better-Than-Best-Effort Service For Responsive UDP Flows

Kevin Jeffay F. Donelson Smith

> Mark Parris Jan Borgersen

Department of Computer Science University of North Carolina at Chapel Hill

http://www.cs.unc.edu/Research/dirt

Kevin Jeffay

A Better-Than-Best-Effort Service For Responsive UDP Flows

Outline

- The case for "better-than-best-effort" services
- The INTSERV & DIFFSERV models
- Principles of active queue management
- Extensions to RED for a better-than-besteffort UDP service

Kevin Jeffay

A Better-Than-Best-Effort Service For Responsive UDP Flows

Outline

• The case for "better-than-best-effort" services

- » Application domain(s) of interest
- » The performance of interactive applications on the Internet today

The University of North Carolina at Chapel Hill

UNC Multimedia Networking Research

System support for low latency, continuous media transmission

• Focus on real-time media transmission

- » Periodic media generation (30 Hz or better)
- » 250 ms (or better) one-way end-to-end latency
- » Variable levels of loss tolerance
- Applications
 - » Interactive entertainment
 - » Distributed virtual environments
 - » Collaboration support

The University of North Carolina at Chapel Hill

UNC Multimedia Networking Research Driving problem

• The nanoManipulator system

- » A virtual environment interface to a scanningprobe microscope
- » Provides telepresence on sample surfaces scaled 1,000,000:1

The University of North Carolina at Chapel Hill

Kevin Jeffay

UNC Multimedia Networking Research

nanoManipulator

UNC Multimedia Networking Research

nanoManipulator

UNC Multimedia Networking Research

OS & network support for the "last mile problem"

• Operating principle:

» Network elements that cannot reserve, or support real-time allocation of resources, will persist for the foreseeable future.

- Focus on adaptive, best-effort transmission...
 - » Treat the network as a black box Assume only that sufficient bandwidth exists for some useful execution of the system
- ... with real-time media control at the endpoints

The University of North Carolina at Chapel Hill

Two Types of Congestion Constraints Two dimensions of adaptation

• Reduce the packet-rate to adapt to an access constraint

- » Change the packaging or send fewer video frames
- » Primary Trade-off: higher latency (potentially)
- Reduce the bit-rate to adapt to a capacity constraint
 - » Send fewer video frames or fewer bits per video frame
 » Primary Trade-off: lower fidelity

The University of North Carolina at Chapel Hill

Kevin Jeffay 11

Adaptive, 2-Dimensional Media Scaling Does it work?

Media Scaling Evaluation on the UNC Campus Performance with video scaling only

Media Scaling Evaluation on the UNC Campus Performance with 2-dimensional scaling

Media Scaling Evaluation on the Internet ProShare with no media scaling

600

A Better-Than-Best-Effort Service For Responsive UDP Flows

Outline

- The case for "better-than-best-effort" services
- The INTSERV & DIFFSERV models
- Principles of active queue management
- Extensions to RED for a better-than-besteffort UDP service

Kevin Jeffay

The Integrated Services Architecture for the Internet Reference implementation components

Differentiated Services

Clark et al.'s "expected capacity" service

- ISPs allocate and sell capacity for an "assured" service
- Senders/border routers mark packets according to "service profiles"

Clark *et al.*'s "Expected Capacity" Service Realizing differentiated service

- Routers maintain counts of IN and OUT packet populations
 - » OUT packets probablistically dropped when queue population exceeds min threshold
 - » IN packets probablistically dropped when IN packet queue population exceeds (separate) min IN threshold

Differentiated Services

Jacobson et al.'s 2-bit differentiated service

• Routers maintain a separate queue for a low-delay, low-jitter "premium" service

Jacobson *et al*. 2-bit differentiated service Queue management

- Capacity explicitly allocated for Premium traffic
 - » Premium flows shaped to eliminate bursts
- Assured and best-effort traffic share a queue
 - » Unmarked packets randomly discarded when queue exceeds a threshold
 - » Assured packets randomly discarded when assured population exceeds a threshold

The University of North Carolina at Chapel Hill

Kevin Jeffay

Active Queue Management Active Queue Management Impact of RED on multimedia flows Random Early Detection (RED) 1.0 Discard Prob. minth max. min_{th} max_{th} FIFO FIFO Scheduler Scheduler dro Queue Length max_{th} minth • Many RED variants... Basic mechanism for realizing differentiated services » Clark et al.'s RED-IN-OUT (RIO) is a RED (random early discard) congestion avoidance » Floyd & Fall's "RED with Penalty Box" mechanism » Lin & Morris "Flow RED" (FRED) • Powers that be advocate that RED be deployed today • ... most view UDP as "evil" » Protects the network from congestive collapse » "non-responsive" and/or "non-conformant" flows penalized » Increase effective network utilization » Decrease end-to-end latency The University of North Carolina The University of North Carolina Kevin Jeffav Kevin Jeffav at Chanel Hill at Chapel Hill

Active Queue Management A "better than best-effort" service for UDP

• What can be done to improve responsive UDP flow performance with-out sacrificing TCP performance?

- » Per flow "threaded queues" with "drop head" discard semantics
- » CBQ emulation for UDP flows with bounded queues

A better-than-best-effort service for UDP Status

- Implementation exists in a FreeBSD router
 » Using Alt-Q RED implementation
- Traffic generation engines developed
- Early Experimental results promising

Summary

- Proposals for QoS within the Internet are coming
- In the meantime UDP flows are prime targets for network-based congestion avoidance
 - » This will remain true when INTSERV/DIFFSERV deployed
- We are working to define a simple packet forwarding behavior that will result in a better-than-best effort service for responsive UDP flows

Kevin Jeffay 29