

Example Operating Point Set Requires Large MTU

- Change video quality to scale bit-rate
- Change video frame rate to scale both packet-rate and bit-rate
- These two adaptations allow coverage of the entire operating point set
- This is a rich operating point set covering a large area in the bit-rate/packet-rate plane

Adaptation Based on Receiver Feedback Recent Success Heuristic

• End-to-end method

- » Receiver reports average latency and loss
- » Sender can detect congestion from the feedback
- » Sender cannot determine the type of constraint causing congestion
- » Sender uses a heuristic to find the correct adaptation

• When sender detects congestion

- » Adapt in the dimension that successfully relieved the last congestion episode
- » If that fails, try the other dimension

• When sender detects absence of congestion

- » Wait for a few seconds
- » Probe in the dimension orthogonal to the last constraint
- » Back off if probe causes congestion

The University of North Carolina at Chapel Hill

Peter Nee

Example: Recent Success

- Initial operating point (high quality, 12 fps)
- First adaptation: (high quality, 10 fps) congestion persists
- Second adaptation: (medium quality, 10 fps) congestion relieved
- First probe: (medium quality, 12 fps)
- Second probe: (medium quality, 14 fps)

The University of North Carolina at Chapel Hill

Sustainability Results

Adaptive methods - Internet traffic

• Used real Internet traffic

- » Repeated trials from 10 am to 7 PM weekdays
- » Trials separated by at least two hours
- » Scattered over three months

Time Slot	Sustainable	Not Sustainable	% Sustainable
10:00-12:00	6	3	67%
12:00-14:00	4	4	50%
14:00-16:00	1	11	8%
16:00-18:00	3	9	25%
18:00-20:00	4	5	44%
Percentage	36%	64%	

Summary and Conclusions

Conference quality

- » Two-dimensional scaling delivers more video throughput
- » Most noticeable in the ten to twenty frame range
- » In this range, the operating point set is richest
- » No significant difference in loss or latency between the two methods

Sustainability results

- » No significant difference between the two methods
- » We do not have a rich set of low-end operating points
- » Sustainability depends primarily on successful audio same for both systems

• Two-dimensional scaling: better conferences

» The richer the operating point set, the greater the win

Future Work

- Improve the audio component
 - » Change the audio codec to allow scaling and aggregation of audio
 - » Experiment with distinct audio and video feedback and adaptation
 - » Provide better audio when network resources are available
 - » Provide same or better sustainability

• Understand the interaction with TCP

- » Controlled experiments with a population of TCP applications and adaptive videoconferences
- » Does two-dimensional scaling do enough to avoid congestion collapse?
- » Is two-dimensional scaling unfair to TCP?

Peter Nee 13

Peter Nee

15

Building an Adaptive ProShare

Original system

- » Bi-directional LAN videoconferencing (Ethernet MTU)
- » Fixed low bit rate audio operating point
- » Choose one of three fixed video operating points at start

Experimental system

- » Add measurement and feedback
- » Adapt video with internal interface
- » One-dimensional change frame rate
- » Two-dimensional
 - Change frame rate
 - Change bytes per frame
 - Aggregate audio with video tails when possible

Adaptive Videoconferencing **Network Citizenship**

- Adaptive scaling methods do perform congestion control
 - » Avoid packet loss i.e. wasted resources
 - » Minimize successfully transmitted but useless packets
- Two-dimensional scaling does not behave exactly like TCP
 - » Takes advantage of richer feedback
 - » Has additional application specific concerns
 - » Potentially unfair to TCP users

Is this sufficient for good citizenship?

- » Congestion control is an end system issue
- » Fairness is best addressed in the network

The University of North Carolina at Chapel Hill

Peter Nee 14