A Better-Than-Best-Effort Service for Continuous Media **UDP** Flows

Mark Parris Kevin Jeffay F. Donelson Smith Jan Borgersen

Department of Computer Science University of North Carolina at Chapel Hill

http://www.cs.unc.edu/Research/dirt

Active Queue Management

RED

Random Early Detection (RED) (Floyd, et al.)

drops proportional to bandwidth utilization

» Weighted average accommodates bursty nature of traffic

» Multiple modes based on threshold values

» Probabilistic and forced drops

- avoid consecutive drops

NOSSDAV '98

Queue Management and **Congestion** Avoidance

Braden, et al. recommend:

- » Implement some form of active queue management in routers.
 - Avoid full queues, reduce latency, reduce packet dropping. avoid lock-out phenomena
- » Continue research into mechanisms to deal with unresponsive or aggressive flows.
- Floyd & Fall:

The University of North Carolina

at Chapel Hill

at Chapel Hill

- » mechanisms to identify "misbehaving flows"
- To date, focus was on supporting TCP
- How can we do better than best-effort for multimedia in this framework?

Active Queue Management FRED

Flow-based RED (Lin & Morris)

- » Drops are proportional to bandwidth used
- » Logical queues for each flow
- » Unresponsive flows are identified and penalized
 - **Logical Queues** (Per Flow) A4 A3 A2 A Threshold (penalized) B3 B2 B1 C3 C2 C1
- » Each flow has access to an equal share of the queue
 - dynamically calculated based on current queue size & number of active flows

NOSSDAV '98

Active Queue Management Drop Preference Management (DPM)

Goals:

- » maintain most properties of RED
- » constrain non-responsive flows
- » given these constraints, improve multimedia performance
 - lower latency

• Design:

- » Multimedia flows are tracked in logical queues
- » Fixed portion of the gueue shared between these flows
- » Staleness test
- » Delete and advance drop policy
- » Continue to apply RED policies

	The University of North Carolina at Chapel Hill
--	---

NOSSDAV '98

DPM data flow

- DPM is an extension to RED for selected flows
- All packets remain in a single queue (order is maintained between flows)

The University of North Carolina at Chapel Hill

NOSSDAV '98

Delete and Advance

- » Tagged flows use delete and advance instead of standard drops.
- » First packet for the flow is discarded and subsequent packets for that flow are advanced.
- » Depth of packets from all other flows is maintained (or decreased).
- » Freshest packets arrive at receiver

Research Questions

• Does it work?

- » Performance of TCP
- » Performance of Multimedia
- » Effect of unresponsive traffic
- What's the overhead?
 - » CPU cycles
 - » State
- What settings offer optimal performance?
 - » Sensitivity of average calculation
 - » Threshold values
 - » Queue length
 - » Other drop policies?

