The UNIVERSITY of NORTH CAROLINA
\ q\ at CHAPEL HILL

Rate-Based Resource Allocation
Models for Multimedia Computing
and Embedded Systems

Kevin Jeffay Steve Goddard

Department of Computer Science ~ Computer Science & Engineering
University of North Carolina University of Nebraska — Lincoln
at Chapel Hill

April 2004

http://www.cs.unc.edu/Research/dirt

f Rate-Based Resource Allocation

NN The case against static priority scheduling

e Static priority scheduling in general, and Rate Monotonic
scheduling in particular, dominates in the real-time
systems literature

— VxWorks, VRTX, QNX, pSOSystems, LynxOS all support
static priority scheduling

* Does one size fit all?
— “When you have a hammer, everything looks like a nail”

* Problems with static priority scheduling

— Feasibility is dependent on a predictable environment and well-
behaved tasks.

f Rate-Based Resource Allocation

I .
{ Q\/ Overview

e The problem:

— How to allocate resources in an environment wherein...
» Work arrives at well-defined but highly variable rates
» Tasks may exceed their execution time estimates

— ... and still guarantee adherence to deadlines

* The thesis:
— Static priority scheduling is the wrong tool for the job
(existing task models are too simplistic)
— Rate-based scheduling abstractions can simplify the design
and implementation of many real-time systems and
improve performance and resource utilization

fThe Case Against Priority Scheduling

T\'/ Example: Display-side multimedia processing

SO

Display Initiation Time (in frame tlmes

Acquire

Display

* The problem: Receive frames from the network and
deliver to a display application so as to ensure...

— Continuous playout
— Minimal playout latency

e The theory: Multimedia is easy — it’s periodic!
— Apply existing theory of periodic or sporadic tasks

) Display-side Media Processing
(\ The practice

Acquire

N SN N

Display Initiation Time (in frame tlmes

Display

* Nothing is periodic in a distributed system!

* The effects of distributed systems pathology:
— Variable message transmission times
— Out-of-order message arrivals
— Lost & duplicate messages

) Display-side Media Processing
(\ Managing the Network Interface

NS N

Dlsplay In|t|at|on Tlme (in frame tlmes
\\\\

* Packets fragmented in the network must be
reassembled
— Messages have deadlines, packets do not
— Applications know about messages, operating systems do not

Acquire \

Display

) The Case Against Priority Scheduling
T\ Example: Signal processing data flow graphs

Node U has theshold =17,
a period of 3 U consume =5
produce =3

w ——
Node V has ‘ theshold = 4
a period of 5 U

consume = 4

v

v

}
Lo { L S

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

v

Time

» Rate-Based Computing
Ny, Approaches
* Extend the Liu and Layland model of real-time tasks to
allow the expression of real-time rates
— Hierarchical “server-based” scheduling — Create a “server”

process that is scheduled as a periodic task and internally
schedules the processing of aperiodic events

— Event-based scheduling — Process aperiodic events as if they
were generated by a virtual “well behaved” periodic process

* Adapt “fluid-flow” models of resource allocation
developed in the networking community for bandwidth
allocation to CPU scheduling

— Provide a “virtual processor” abstraction wherein each task
logically executes on a dedicated processor with 1/f(n) the
capacity of the physical processor

D An Event-Based Rate Model
("g'; The Rate-Based Execution (RBE) model

s

» Tasks make progress at the rate of processing x events
every y time units and each event is processed within d
time units (in the best case)

* For task i with rate specification (x;, y;, d,), the j event

for task i, arriving at time 7, ;, will be processed by time

t;+d; ifl<j=<x;
DG, j) =

MAX(z;; +d;, D(, j=x)+y;) if j>x,

— D(i,j) gives the earliest possible deadline for the j instance
of task i (= ;; + d))

) The RBE Task Model

-Q&;f Example: Periodic arrivals, periodic service

 Task with rate specification (x=1,y=2,d =2)
N ti,j+di ifl<j=<ux
DG,)) =
MAX(tiJ-+ d;, DQ,j—x)+y;) 1if j>x;

— Deadlines separated by at least y = d = 2 time units
— Deadlines occur at least 2 time units after a job is released

S

| J1,1| Jl,2|"1,3 |Jl,4 |J1,5 |‘Il,6 |J1,7 |‘I1,8 |J1,9 |‘]1,10|JI,11|J1,12|

—
—

0 2 4 6 8 10 12 14 16 18 20 22 24 26

) The RBE Task Model

X, Example: Periodic arrivals, deadline = period

« Task with rate specification (x=1,y=2,d = 6)

o i+ d; ifl<j=<ux
DG, j) =
MAX(;; +d;, DG, j—=x)+y;) if j>x

1

— Deadlines separated by at least y = 2 time units and occur
at least d = 6 time units after a job is released

L T T T e

Jial | Jisl | Jiol |
Jia| | Ji6l [110 |
Ji5] | Jigl [Sl |
Ji4l | Jisl RUREY |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

The RBE Task Model

N\, Bursty arrivals

. Task with rate specification (x=1,y=2,d =6)

— Deadlines separated by at least y = 2 time units and occur
at least d = 6 time units after a job is released

howod oo

‘]1,1 | JI,S |
Jial I Jiol I
J1,3| |
J1,4| |
J1,5| |
Jl,6| |

v

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

The RBE Task Model

Bursty arrivals

©

* Task with rate specification (x=3,y=6,d =6)

— Deadlines separated by at least y = 6 time units and occur
at least d = 6 time units after a job is released

o b

il] T
Jol | Jiol I
Jal]
4l I
4] I
el |

The RBE Task Model

XY, Comparison of rate specifications

W ' W

Jygg—

N
Rate 7| .
specification 51,4: .
1
_ _ - ’ J
(x=1, y=2, d=6) 16! Tis e
J,sl—l
oL
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Jig—
Rate JI§I :
specification 514' |
I
(x=3, y=6, d=6) Iy, — |
|
Y Jlsl—l
J19'—|

0O 2 4 6 8 10 12 14 16 18 20 22 24 26

» The RBE Task Model
XN, RBE features/properties

u@ |

* Provides better response
time for non-real-time

) The RBE Task Model
W\ RBE features/properties

Acquire

v

¢ Provides a more natural

activities by

) : - - N
integrating Receiver’s
_ . Proc_essmg Network . —»
application-level Pipeline Reception Display
buffering with the
system run queue
[—
Rate specification
L |
(x=1,y=2,d=6)

...............

way of modeling
inbound packet
processing of fragmented
messages

Rate specification
(x=3,y=6,d=06)

N

Display r
Display Initiation Time

oo

I
I

...............

) The RBE Task Model
(\ RBE features/properties

. . . A 0 N
* Provides isolation from cquire >
arrival rates that exceed
the rate specification Display r \m‘ —
— (But does not provide Display Initiation Time
isolation from tasks
exceeding their stated
execution time) ul u l
|
I |
|

Rate specification

(x=3,y=6,d=06) l |

...............

) Fluid Flow Resource Allocation
W\ Proportional share resource allocation

» Tasks are allocated a share of the processor’s capacity
— Task i is assigned a weight w,
— Task i’s share of the CPU at time 7 is
w
(1) = L

jam " j

 If tasks” weights remain constant in [#,, ,] then task i
receives

t, wW.
Sy = [0d = 5 -1

i

units of execution time in [#,, 1,]

) Proportional Share Resource Allocation
T\ Fluid scheduling example

. Welghted round robin scheduling with an infinitesimally
small quantum

 In [z, t,] (if total weight doesn’t change) T, receives
St) = f f(@0)dr = ZL (-1,

e VY j

Weight Share

T: 4 05
T, 1 0.125
T, 1 0.125
T, 1 0.125
Ty 1 0.125

Time 0 1 2 3 4 5 6 7 8 9

» Proportional Share Resource Allocation
T\ Quantum scheduling example

e Weighted round robin scheduling with integer quanta

* The quantum system doesn’t proportionally allocate
the resource over all time intervals

Weight Share

T. 4 05
T, 1 0.125
T, 1 0.125
T, 1 0.125
T, 1 0.125

Time 0 1 2 3 4 5 6 7 8§ 9

20

) Proportional Share Resource Allocation
T\ Task scheduling metrics & goals

S(t1:t5)
Si(t1.1,) P
Fluid 0 Quantum
o Allocation
Allocation n

v
v

* Schedule tasks so that their performance is as close as
possible to that in the fluid system

e Why is fluid allocation important?
— What about real-time allocation?!

21

. Apprommatmg Fluid Allocation
T\ Why is this so important?

* Fluid allocation implies real-time progress

* Weights are used to allocate a relative fraction of the
CPU’s capacity to a task ,,

0 = S,

* Real-time progress requires a constant fraction of the
CPU’s capacity

Vi, f(1) = execution cost;, X execution frequency,

— If a task must execute for 16 ms every 33 ms then allocating
f=0.5 ensures real-time execution

* Thus real-time performance can be achieved by adjusting
weights dynamically so that the share remains constant

22

) Proportional Share Resource Allocation
W\ Real-time scheduling example

e Periodic tasks allocated a share equal to their processor
utilization

— Round-robin scheduling with infinitesimally small quantum

—28 L7 1,
T2=(3,6)f'5. mm Tl o Ti

o 1 2 3 4 5 6 7 8 9 10 11 12 13

v

— With unit-sized quantum

T,=@2.8) 10 f
T,=(3,6) 410 ! i

0 1 2 3 4 5 6 7 8 9 10 11 12 13

v

23

) Proportional Share Resource Allocation
T\ Task scheduling metrics & goals

S[(t 7t)
S(t,.t,) b2

Fluid Quantpm
Allocation Allocation .

v

»
L

e Goal: Schedule tasks so that their performance is as
close as possible to that in the fluid system

e Define the allocation error for task i at time ¢ as

lag(f) = allocation the task would have| _ |allocation the task has received
8D = | received in the Sfluid system in the quantum system

= S(t,1) — s{t;,1)
 Schedule tasks so that the lag is bounded for all tasks

over all time intervals
— What is the least upper bound on lag?

24

Proportional Share Resource Allocation
, Ji/ Timing analysis

q
K_H
— t
¢4T¢
|

* Is a task guaranteed to complete before its deadline?

— How late can a task be?

* Theorem: Let c be the size of the current request of task
T. Task T’s lag is bounded by

-q < lag,(1) < ¢q

25

@ Rate-Based Resource Allocation

A 4’» FreeBSD implementation

* We’ve implemented
RBE and proportional
share scheduling in
FreeBSD

* Goal: Provide integrated
real-time computation
and communication
services in a time-shared
operating system

* Technical challenge:
Scheduling OS services

26

@ Rate-Based Resource Allocation

| ’/1,1 Integrated real-time resource allocation example

 Data arrives for a video ! X Server E;gze
conference over the ('\/‘
network Socket Layer

* It is processed by the
operating system and
delivered to the
application

Socket
E E receive
queues
Protocol Layer
* The application further i= Protocol input
1

processes and sends to -
the window system

Device Driver Layer

* The window system

paints the screen | Network
interface card

27

@ Rate-Based Resource Allocation
|

Integrated real-time resource allocation example

MPEG X Server o

* Technical challenges: Play Space

— Device scheduling and
protocol processing

— Application and system

Socket Layer

call scheduling E E E e
 Candidate technologies ST =
— Proportional share . Oti)P) o
scheduling (EEVDF) o
— Constant Bandwidth E qﬁ(éfloeco input
Servers (CBS)
— Rate-Based extensions to Device Driver Layer
Liu and Layland (RBE)

Network
interface card

28

Rate-Based Resource Allocation
Integrated real-time resource allocation example

* Our study: MPEG

Play

— Compare the performance of :
applications of rate-based
scheduling technology at

various levels in the kernel

— For various characterizations
of real-time processing work-

X Server

Socket Layer

Socket
receive
queues

Protocol Layer

loads (IP)
» Well-behaved periodic job/task
arrivals E Protocol input
» Bursty job/task arrivals queue

» “Misbehaved” job/task arrivals

Device Driver Layer

Network

il o
interface card

29

Empirical Comparisons
Experimental setup

* Modify FreeBSD UNIX to MPEG User
support rate-based scheduling
in the “top” and “bottom”

halves of the kernel

X Server

Play Space

Socket Layer

Socket
receive
queues

Protocol Layer
(IP)

Protocol input
queue

Device Driver Layer

* Consider the performance of
each rate-based scheme in
1solation and in combinations

— Consider the performance

across a variety of multimedia
workloads

Network

1111 [
interface card

30

Experimental Setup
Workload generation

e Audio receiver (5% CPU utilization)
* M-JPEG receiver (45% CPU utilization)
* fftp receiver (20% CPU utilization)

P Dhrystone (100 - x% utilization)
Etherot I 32 Kbps I 1.06 Mbps (normal)
or
11.76 Mbps
(misbehaved)
Audio Sender M-JPEG Sender tftp Sender
50 packets/sec 90 packets/sec Normal: 200 packets/s

Misbehaved: 1000 packets/s

31

Empirical Comparisons
Performance metrics setup

MPEG - QUSEE
 Packets dropped at the IP layer Play RO Space

» Packets dropped at the socket
layer

e Packets delivered to the
application

Socket Layer

Socket
receive
queues

Protocol Layer
(IP)

Protocol input
queue

* Dhrystone performance

* NIC to application response
time

Device Driver Layer

* Deadline miss percentage
Network

i A
interface card

32

Experimental plan

@ Empirical Comparisons

N

e First consider using only MPEG S gﬁiﬁe
— Proportional share, -
— CBS, and Socket Layer
—RBE

Socket
receive
queues

scheduling for all resource
allocation problems

Protocol Layer

(IP)

Protocol input
queue

Device Driver Layer

* Then attempt to match
algorithms to the specific
allocation problems where
they are best suited

Network

il interface card

33

Experimental Results Summary

Y Well-behaved, periodic packet arrivals

CBS RBE

00 29770 0 3,000
2 0 119140 0 11,944
0 0 5383/0 0 5443

\— Packets Delivered

Prop Share

Phone 0 0 2,993
ftp 0 0 11,961
M-JPEG|0 0 5,346

IP Drops J/

\— Socket Drops

* In isolation, all rate-based schemes give “perfect” (or very

good) performance
— No packets are dropped

* Liu & Layland rate-based scheduling (RBE) provides the
best response times
— (Not surprising)

34

® Experimental Results Summary
%%, Bursty (pareto) packet arrivals

L_.laj
Prop Share CBS RBE
Phone [1,585 0 1,312 | 0 0 2,938 |0 0 3,027
ftp 5,315 0 5408 | 5 0 10,760 | 0 O 10,778
M-JPEG 2,705 0 2,498 | 0 0 3,192 0 0 5,287

IP Drops J/ \— Socket Drops . Packets Delivered

* Proportional share scheduling degrades the
performance of all applications uniformly
— A (bad) artifact of quantum-based allocation

* CBS and RBE smooth the arrival process
— Event driven scheduling works well here

— Pure event-driven scheduling (RBE) gives lowest response
times

35

Experimental Results Summary

.;__; ¥, “Misbehaved” ftp packet arrivals

Prop Share CBS RBE

Phone 5 0 2997 0 0 2978/ 0 0 2998

ftp| 17,999 0 11,902 17,880 0 12,120 | 0 9,052 20,794

M-JPEG| 56 0 5,390 0 0 53910 0 5444

IP Drops J/ \— Socket Drops \ Packets Delivered

* Proportional share and CBS provide excellent
protection/isolation for well-behaved tasks

— ftp packets dropped at the IP layer
* RBE scheduling drops ftp packets at the socket layer

— Pure event-driven scheduling provides no isolation
— Dhrystone performance suffers drastically

36

ﬁ Initial Experiments Summary
)

So what?

e When workload is well-behaved all schemes perform
well

* Pure-event driven scheduling and quantum allocation
don’t work well for “bottom-half” kernel processing

e Server-based allocation doesn’t work well for
application-level processing

Combine the scheduling schemes to
better match the processing
requirements at each level in the system

37

» Combining Allocation Policies
WY, Getting the best of all worlds

e CBS+Proportional Share scheduling

Constant Rate|, Bursty Misbehaved
Phone| 0 0 2,869 |0 0 2,998 0 0 2,797
ftp/ 0 0 11,722 |0 0 10,340 17,898 0 11,545
M-JPEG| 0 0 5343 |0 0 4951 O O 5,398
* RBE+Proportional Share scheduling
Constant Rate|, Bursty Misbehaved
Phone| 0 0 2,873 |0 0 2,954 0 0 2,789
ftp/ 0 O 11,802 |0 O 10,437 /17,872 0 11,647
M-JPEG| 0 0 5324 |0 O 4,9\56 0 0 5,393

IP Drops J/ \— Socket Drops _ Packets Delivered

38

Conclusions

ﬁ Rate-Based Resource Allocation
{ N

* “One size does not fit all”’ (unless the external
environment is (perfectly) well-behaved)

— Quantum allocation within the kernel leads to coarse-
grained control

— Server-based allocation impractical for applications
— Pure event scheduling doesn’t provide isolation

* Different scheduling algorithms work best at different
levels of the kernel
— Event scheduling best at the device layer

— Server/quantum scheduling best at the application/ system
call layer

39

f Rate-Based Resource Allocation

WYy, Summary

e There’s life beyond rate monotonic scheduling

» Rate-based resource allocation simplifies systems
wherein
— Work is generated at non-periodic but structured rates
— Tasks may “misbehave”

* Liu and Layland extensions

— Rate models demonstrate a fundamental distinction
between static priority and deadline scheduling methods

e Fluid flow models
— Real-time +quantum

— No fundamental distinction between real-time and non-
real-time tasks

— Provide strict isolation between tasks

40

