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f Rate-Based Resource Allocation

NN The case against static priority scheduling

e Static priority scheduling in general, and Rate Monotonic
scheduling in particular, dominates in the real-time
systems literature

— VxWorks, VRTX, QNX, pSOSystems, LynxOS all support
static priority scheduling

* Does one size fit all?
— “When you have a hammer, everything looks like a nail”

* Problems with static priority scheduling

— Feasibility is dependent on a predictable environment and well-
behaved tasks.

f Rate-Based Resource Allocation

I .
{ Q\/ Overview

e The problem:

— How to allocate resources in an environment wherein...
» Work arrives at well-defined but highly variable rates
» Tasks may exceed their execution time estimates

— ... and still guarantee adherence to deadlines

* The thesis:
— Static priority scheduling is the wrong tool for the job
(existing task models are too simplistic)
— Rate-based scheduling abstractions can simplify the design
and implementation of many real-time systems and
improve performance and resource utilization

fThe Case Against Priority Scheduling

T\'/ Example: Display-side multimedia processing
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* The problem: Receive frames from the network and
deliver to a display application so as to ensure...

— Continuous playout
— Minimal playout latency

e The theory: Multimedia is easy — it’s periodic!
— Apply existing theory of periodic or sporadic tasks




) Display-side Media Processing
(\ The practice
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* Nothing is periodic in a distributed system!

* The effects of distributed systems pathology:
— Variable message transmission times
— Out-of-order message arrivals
— Lost & duplicate messages

) Display-side Media Processing
(\ Managing the Network Interface
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* Packets fragmented in the network must be
reassembled
— Messages have deadlines, packets do not
— Applications know about messages, operating systems do not
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) The Case Against Priority Scheduling
T\ Example: Signal processing data flow graphs
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» Rate-Based Computing
Ny, Approaches
* Extend the Liu and Layland model of real-time tasks to
allow the expression of real-time rates
— Hierarchical “server-based” scheduling — Create a “server”

process that is scheduled as a periodic task and internally
schedules the processing of aperiodic events

— Event-based scheduling — Process aperiodic events as if they
were generated by a virtual “well behaved” periodic process

* Adapt “fluid-flow” models of resource allocation
developed in the networking community for bandwidth
allocation to CPU scheduling

— Provide a “virtual processor” abstraction wherein each task
logically executes on a dedicated processor with 1/f(n) the
capacity of the physical processor




D An Event-Based Rate Model
_("g';_ The Rate-Based Execution (RBE) model

s

» Tasks make progress at the rate of processing x events
every y time units and each event is processed within d
time units (in the best case)

* For task i with rate specification (x;, y;, d,), the j event

for task i, arriving at time 7, ;, will be processed by time

t;+d; ifl<j=<x;
DG, j) =

MAX(z;; +d;, D(, j=x)+y;) if j>x,

— D(i,j) gives the earliest possible deadline for the j instance
of task i (= ;; + d))

) The RBE Task Model

-Q&;f Example: Periodic arrivals, periodic service

 Task with rate specification (x=1,y=2,d =2)
N ti,j+di ifl<j=<ux
DG, )) =
MAX(tiJ-+ d;, DQ,j—x)+y;) 1if j>x;

— Deadlines separated by at least y = d = 2 time units
— Deadlines occur at least 2 time units after a job is released
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) The RBE Task Model

X, Example: Periodic arrivals, deadline = period

« Task with rate specification (x=1,y=2,d = 6)

o i+ d; ifl<j=<ux
DG, j) =
MAX(;; +d;, DG, j—=x)+y;) if j>x

1

— Deadlines separated by at least y = 2 time units and occur
at least d = 6 time units after a job is released
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The RBE Task Model

N\, Bursty arrivals

. Task with rate specification (x=1,y=2,d =6)

— Deadlines separated by at least y = 2 time units and occur
at least d = 6 time units after a job is released
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The RBE Task Model

Bursty arrivals

©

* Task with rate specification (x=3,y=6,d =6)

— Deadlines separated by at least y = 6 time units and occur
at least d = 6 time units after a job is released
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The RBE Task Model

XY, Comparison of rate specifications
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» The RBE Task Model
XN, RBE features/properties
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* Provides better response
time for non-real-time

) The RBE Task Model
W\ RBE features/properties
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) The RBE Task Model
(\ RBE features/properties
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arrival rates that exceed
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) Fluid Flow Resource Allocation
W\ Proportional share resource allocation

» Tasks are allocated a share of the processor’s capacity
— Task i is assigned a weight w,
— Task i’s share of the CPU at time 7 is
w
(1) = L

jam " j

 If tasks” weights remain constant in [#,, ,] then task i
receives

t, wW.
Sy = [ 0d = 5 -1

i

units of execution time in [#,, 1,]

) Proportional Share Resource Allocation
T\ Fluid scheduling example

. Welghted round robin scheduling with an infinitesimally
small quantum

 In [z, t,] (if total weight doesn’t change) T, receives
St ) = f f(@0)dr = ZL (-1,

e VY j

Weight Share

T: 4 05
T, 1 0.125
T, 1 0.125
T, 1 0.125
Ty 1 0.125

Time 0 1 2 3 4 5 6 7 8 9

» Proportional Share Resource Allocation
T\ Quantum scheduling example

e Weighted round robin scheduling with integer quanta

* The quantum system doesn’t proportionally allocate
the resource over all time intervals

Weight Share

T. 4 05
T, 1 0.125
T, 1 0.125
T, 1 0.125
T, 1 0.125

Time 0 1 2 3 4 5 6 7 8§ 9
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) Proportional Share Resource Allocation
T\ Task scheduling metrics & goals
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* Schedule tasks so that their performance is as close as
possible to that in the fluid system

e Why is fluid allocation important?
— What about real-time allocation?!
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. Apprommatmg Fluid Allocation
T\ Why is this so important?

* Fluid allocation implies real-time progress

* Weights are used to allocate a relative fraction of the
CPU’s capacity to a task ,,

0 = S,

* Real-time progress requires a constant fraction of the
CPU’s capacity

Vi, f(1) = execution cost;, X execution frequency,

— If a task must execute for 16 ms every 33 ms then allocating
f=0.5 ensures real-time execution

* Thus real-time performance can be achieved by adjusting
weights dynamically so that the share remains constant
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) Proportional Share Resource Allocation
W\ Real-time scheduling example

e Periodic tasks allocated a share equal to their processor
utilization

— Round-robin scheduling with infinitesimally small quantum
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— With unit-sized quantum
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) Proportional Share Resource Allocation
T\ Task scheduling metrics & goals
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e Goal: Schedule tasks so that their performance is as
close as possible to that in the fluid system

e Define the allocation error for task i at time ¢ as

lag(f) = allocation the task would have| _ |allocation the task has received
8D = | received in the Sfluid system in the quantum system

= S(t,1) — s{t;,1)
 Schedule tasks so that the lag is bounded for all tasks

over all time intervals
— What is the least upper bound on lag?

24




Proportional Share Resource Allocation
, Ji/ Timing analysis
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* Is a task guaranteed to complete before its deadline?

— How late can a task be?

* Theorem: Let c be the size of the current request of task
T. Task T’s lag is bounded by

-q < lag,(1) < ¢q
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@ Rate-Based Resource Allocation

A 4’» FreeBSD implementation

* We’ve implemented
RBE and proportional
share scheduling in
FreeBSD

* Goal: Provide integrated
real-time computation
and communication
services in a time-shared
operating system

* Technical challenge:
Scheduling OS services
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@ Rate-Based Resource Allocation

| ’/1,1 Integrated real-time resource allocation example

 Data arrives for a video ! X Server E;gze
conference over the ('\/‘
network Socket Layer

* It is processed by the
operating system and
delivered to the
application

Socket
E E receive
queues
Protocol Layer
* The application further i= Protocol input
1

processes and sends to -
the window system

Device Driver Layer

* The window system

paints the screen | Network
interface card
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@ Rate-Based Resource Allocation
|

Integrated real-time resource allocation example

MPEG X Server o

* Technical challenges: Play Space

— Device scheduling and
protocol processing

— Application and system

Socket Layer

call scheduling E E E e
 Candidate technologies ST =
— Proportional share . Oti)P) o
scheduling (EEVDF) o
— Constant Bandwidth E qﬁ(éfloeco input
Servers (CBS)
— Rate-Based extensions to Device Driver Layer
Liu and Layland (RBE)

Network
interface card
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Rate-Based Resource Allocation
Integrated real-time resource allocation example

* Our study: MPEG

Play

— Compare the performance of :
applications of rate-based
scheduling technology at

various levels in the kernel

— For various characterizations
of real-time processing work-

X Server

Socket Layer

Socket
receive
queues

Protocol Layer

loads (IP)
» Well-behaved periodic job/task
arrivals E Protocol input
» Bursty job/task arrivals queue

» “Misbehaved” job/task arrivals

Device Driver Layer

Network

il o
interface card
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Empirical Comparisons
Experimental setup

* Modify FreeBSD UNIX to MPEG User
support rate-based scheduling
in the “top” and “bottom”

halves of the kernel

X Server

Play Space

Socket Layer

Socket
receive
queues

Protocol Layer
(IP)

Protocol input
queue

Device Driver Layer

* Consider the performance of
each rate-based scheme in
1solation and in combinations

— Consider the performance

across a variety of multimedia
workloads

Network

1111 [
interface card
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Experimental Setup
Workload generation

e Audio receiver (5% CPU utilization)
* M-JPEG receiver (45% CPU utilization)
* fftp receiver (20% CPU utilization)

P Dhrystone (100 - x% utilization)
Etherot I 32 Kbps I 1.06 Mbps (normal)
or
11.76 Mbps
(misbehaved)
Audio Sender M-JPEG Sender tftp Sender
50 packets/sec 90 packets/sec Normal: 200 packets/s

Misbehaved: 1000 packets/s

31

Empirical Comparisons
Performance metrics setup

MPEG - QUSEE
 Packets dropped at the IP layer Play RO Space

» Packets dropped at the socket
layer

e Packets delivered to the
application

Socket Layer

Socket
receive
queues

Protocol Layer
(IP)

Protocol input
queue

* Dhrystone performance

* NIC to application response
time

Device Driver Layer

* Deadline miss percentage
Network

i A
interface card
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Experimental plan

@ Empirical Comparisons

N

e First consider using only MPEG S gﬁiﬁe
— Proportional share, -
— CBS, and Socket Layer
—RBE

Socket
receive
queues

scheduling for all resource
allocation problems

Protocol Layer

(IP)

Protocol input
queue

Device Driver Layer

* Then attempt to match
algorithms to the specific
allocation problems where
they are best suited

Network

il interface card
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Experimental Results Summary

Y Well-behaved, periodic packet arrivals

CBS RBE

00 29770 0 3,000
2 0 119140 0 11,944
0 0 5383/0 0 5443

\— Packets Delivered

Prop Share

Phone 0 0 2,993
ftp 0 0 11,961
M-JPEG|0 0 5,346

IP Drops J/

\— Socket Drops

* In isolation, all rate-based schemes give “perfect” (or very

good) performance
— No packets are dropped

* Liu & Layland rate-based scheduling (RBE) provides the
best response times
— (Not surprising)
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® Experimental Results Summary
%%, Bursty (pareto) packet arrivals

L_.laj
Prop Share CBS RBE
Phone [ 1,585 0 1,312 | 0 0 2,938 |0 0 3,027
ftp 5,315 0 5408 | 5 0 10,760 | 0 O 10,778
M-JPEG 2,705 0 2,498 | 0 0 3,192 0 0 5,287

IP Drops J/ \— Socket Drops . Packets Delivered

* Proportional share scheduling degrades the
performance of all applications uniformly
— A (bad) artifact of quantum-based allocation

* CBS and RBE smooth the arrival process
— Event driven scheduling works well here

— Pure event-driven scheduling (RBE) gives lowest response
times
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Experimental Results Summary

.;__; ¥, “Misbehaved” ftp packet arrivals

Prop Share CBS RBE

Phone 5 0 2997 0 0 2978/ 0 0 2998

ftp| 17,999 0 11,902 17,880 0 12,120 | 0 9,052 20,794

M-JPEG| 56 0 5,390 0 0 53910 0 5444

IP Drops J/ \— Socket Drops \ Packets Delivered

* Proportional share and CBS provide excellent
protection/isolation for well-behaved tasks

— ftp packets dropped at the IP layer
* RBE scheduling drops ftp packets at the socket layer

— Pure event-driven scheduling provides no isolation
— Dhrystone performance suffers drastically
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ﬁ Initial Experiments Summary
)

So what?

e When workload is well-behaved all schemes perform
well

* Pure-event driven scheduling and quantum allocation
don’t work well for “bottom-half” kernel processing

e Server-based allocation doesn’t work well for
application-level processing

Combine the scheduling schemes to
better match the processing
requirements at each level in the system
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» Combining Allocation Policies
WY, Getting the best of all worlds

e CBS+Proportional Share scheduling

Constant Rate|, Bursty Misbehaved
Phone| 0 0 2,869 |0 0 2,998 0 0 2,797
ftp/ 0 0 11,722 |0 0 10,340 17,898 0 11,545
M-JPEG| 0 0 5343 |0 0 4951 O O 5,398
* RBE+Proportional Share scheduling
Constant Rate|, Bursty Misbehaved
Phone| 0 0 2,873 |0 0 2,954 0 0 2,789
ftp/ 0 O 11,802 |0 O 10,437 /17,872 0 11,647
M-JPEG| 0 0 5324 |0 O 4,9\56 0 0 5,393

IP Drops J/ \— Socket Drops _ Packets Delivered
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Conclusions

ﬁ Rate-Based Resource Allocation
{ N

* “One size does not fit all”’ (unless the external
environment is (perfectly) well-behaved)

— Quantum allocation within the kernel leads to coarse-
grained control

— Server-based allocation impractical for applications
— Pure event scheduling doesn’t provide isolation

* Different scheduling algorithms work best at different
levels of the kernel
— Event scheduling best at the device layer

— Server/quantum scheduling best at the application/ system
call layer
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f Rate-Based Resource Allocation

WYy, Summary

e There’s life beyond rate monotonic scheduling

» Rate-based resource allocation simplifies systems
wherein
— Work is generated at non-periodic but structured rates
— Tasks may “misbehave”

* Liu and Layland extensions

— Rate models demonstrate a fundamental distinction
between static priority and deadline scheduling methods

e Fluid flow models
— Real-time +quantum

— No fundamental distinction between real-time and non-
real-time tasks

— Provide strict isolation between tasks
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