
Steve Goddard
1

Steve Goddard

Kevin Jeffay

Department of Computer Science

University of North Carolina at Chapel Hill

{goddard,jeffay}@cs.unc.edu

http://www.cs.unc.edu/Research/dirt

Managing Memory Requirements
in the Synthesis of Real-Time

Systems from Processing Graphs

Steve Goddard
2

l Introduction
È Signal processing graphs

È Fundamental design
issues

È Our approach

È Managing memory
requirements

Outline

l Processing graph
model

l Executing nodes

l Managing memory
requirements

l Summary

Processing Graph Model

Deterministic Execution

Manage Latency

Manage Memory

Steve Goddard
3

INSMART
Satellite Receiver Application

l Our dynamic scheduling
algorithm requires memory for
È 1,599 tokens for unique buffers

È 1,101 tokens for shared buffer

l The AGPAN static scheduling
algorithm of [Bhattacharyya,
Murthy, and Lee 1996] requires
332% more buffer space

l The scheduling algorithm of [Ritz
1995] requires 377% more buffer
space

D F

V

G

W

A

P
N

L

B

S

T

J I

C

E K

Q

R

U

H

4

4

11

10

10

11

11

11
11

11

10

10
240

240

240

240

240

240

M

Steve Goddard
4

Fundamental Design Issues

l Can the application meet its hard-
real-time processing requirements?

l What is the latency bound?

l How much memory is required?

norm
interp

noise
mean

zero
fill

format
output

azimuth
ifft

zero
fill

azimuth
ifft

zero
fill

azimuth
ifft

Steve Goddard
5

Our Approach

l Use real-time scheduling theory to
provide deterministic node execution

È Derive node execution rates

È Map nodes to real-time tasks

l Derive latency

l Derive memory requirements

l Understand fundamental tradeoffs
between latency, memory
requirements, and schedulability

norm
interp

noise
mean

zero
fill

format
output

azimuth
ifft

zero
fill

azimuth
ifft

zero
fill

azimuth
ifft

Steve Goddard
6

Related Work

l Processing graphs are a
general paradigm used in
several methodologies
È SDF

È LASM

È SARTOR

È RTP/C

È . . .

l PGM was created by the
U.S. Navy for signal
processing

D F

V

G

W

A

P
N

L

B

S

T

J I

C

E K

Q

R

U

H

4

4

11

10

10

11

11

11
11

11

10

10
240

240

240

240

240

240

M

Steve Goddard
7

Managing Memory
Requirements

l Space for scheduling algorithm
È Code space

È State space

l Space for nodes
È Store code for nodes as a procedure

l Buffering on graph edges
È The amount of intermediate results stored

on graph edges can be quite substantial

È Schedule to reduce data accumulation on
graph edges

È Help signal processing engineers create
memory efficient graphs

norm
interp

noise
mean

zero
fill

format
output

azimuth
ifft

zero
fill

azimuth
ifft

zero
fill

azimuth
ifft

Steve Goddard
8

Outline
for the rest of the story

l Processing graph model
È PGM

l Executing nodes
È Example executions

È Derive execution rates

È Mapping to real-time tasks

l Managing memory requirements
È Focus on buffer requirements

l Summary

Processing Graph Model

Deterministic Execution

Manage Latency

Manage Memory

Steve Goddard
9

Introduction to the U.S. NavyÕs
Processing Graph Method (PGM)

l Each queue has 3 dataflow attributes: p, τ, and c:
È p: amount produced when a node executes − produce(q)

È τ: minimum amount required on a queue for the node to
execute − threshold(q)

È c: amount consumed when a node executes − consume(q)

τ = 7,
c = 5

wu
q

p= 3

Steve Goddard
10

PGM

l Node u produces 3 tokens
È But the input queue to w requires 7 tokens before it is

over threshold

τ = 7,
c = 5

wu
q

p= 3

Steve Goddard
11

l Node u produces 3 more tokens for a total of 6
È But the input queue to w requires 7 tokens before it is

over threshold

τ = 7,
c = 5

wu
q

p= 3

PGM

Steve Goddard
12

l Node u produces 3 more tokens for a total of 9
È Now the input queue to w requires is over threshold

l Two types of latency
È Inherent latency

Ð Node w cannot execute until its input queue is over threshold

È Imposed latency
Ð The scheduling creates additional latency if it delays the

execution of node w

τ = 7,
c = 5

wu
q

p= 3

PGM

Steve Goddard
13

l Node w executes and consumes 5 of the 9
tokens leaving 4

τ = 7,
c = 5

wu
q

p= 3

PGM

Steve Goddard
14

w

l A node executes when all of its input queues are
over threshold

l Both latency and buffer requirements are affected

l May initialize queues with data to reduce initial
latency

u p= 3 τ = 7,
c = 5

v p= 4

τ = 4,
c = 4

PGM

Steve Goddard
15

Outline
for the rest of the story

l Processing graph model
È PGM

l Executing nodes
È Example executions

È Derive execution rates

È Mapping to real-time tasks

l Managing memory requirements
È Focus on buffer requirements

l Summary

Processing Graph Model

Deterministic Execution

Manage Latency

Manage Memory

Steve Goddard
16

Node Execution Example

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time

v

u

Node u has a period of 3
Node v has a period of 5 w

u p= 3 τ = 7,
c = 5

v p= 4

τ = 4,
c = 4

Steve Goddard
17

Node Execution Example

w

0

(1,3)

(1,5)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time

v

u

Node u has a period of 3
Node v has a period of 5 w

u p= 3 τ = 7,
c = 5

v p= 4

τ = 4,
c = 4

Steve Goddard
18

Deriving Node Execution Rates

y(w) = lcm{ | k = u,v} = lcm{15,5} = 15
consume(q)¥y(k)

gcd(produce(q)¥x(k), consume(q))

x(w) = y(w)
produce(q)¥x(k)

consume(q)¥y(k)
= 15

3 1

5 3
= 3

Thm: Ex:

(1,3)

(1,5)

w

u p= 3 τ = 7,
c = 5

v p= 4

τ = 4,
c = 4

x
x

x

Steve Goddard
19

Real-Time Task Model

l Rate-Based Execution (RBE) Task Model
È T = (x,y,d,e): x,y are rate specification, d is relative

deadline, and e is worst case execution time

È No restriction on releases, but deadlines assigned
such that no more than x deadlines expire in an
interval of length y for task T.

l EDF Scheduling
È Of the eligible tasks, the task with the nearest

(earliest) deadline is executed first

l Issues
È x,y, and e are constrained, d is free variable

È d is used to manage memory requirements

Steve Goddard
20

Outline
for the rest of the story

l Processing graph model
È PGM

l Executing nodes
È Example executions

È Derive execution rates

È Mapping to real-time tasks

l Managing memory requirements
È Focus on buffer requirements

l Summary

Processing Graph Model

Deterministic Execution

Manage Latency

Manage Memory

Steve Goddard
21

Managing Memory
Requirements

l Scheduling state space
È Only need x,y, and d parameters for nodes

attached to input devices since other nodes
cannot execute faster than their rate
specification.

È Therefore only need d parameter for other
nodes

l Space for nodes
È Store code for nodes as a procedure

l Buffering on graph edges
È A lot of special cases are needed to get tight

buffer bounds

È Common special cases exist

norm
interp

noise
mean

zero
fill

format
output

azimuth
ifft

zero
fill

azimuth
ifft

zero
fill

azimuth
ifft

Steve Goddard
22

≤

Buffer Bounds

τ = 240,

c = 240

U
p = 1

V
q(10,44) (1,24x44)

Thm:

Buf(q)
max(y(V),s(V)+d(V)−s(U))

y(U)
x(U)¥produce(q) + threshold(q) − consume(q)

Solve for d(V):

≤ s(U) − s(V) + Buf(q)¥y(U)

x(U)¥produce(q)
y(V) − s(V) + s(U)

d(V)≤

Steve Goddard
23

Buffer Bounds

≤ ≤

≤≤ Buf(q) d(V)
240 44
350 528
470 1056Ex:

s(U) − s(V) + Buf(q)¥y(U)

x(U)¥produce(q)
y(V) − s(V) + s(U) d(V)

Buf(q) x 44

10 x 1
d(V) 43 − (24 44-1) +x24 44 − (24 44-1) + 43x x

τ = 240,

c = 240

U
p = 1

V
q(10,44) (1,24x44)

Steve Goddard
24

INSMART
Satellite Receiver Application

l Our dynamic scheduling algorithm
requires memory for

È 1,599 tokens using unique buffers

È 1,101 tokens using shared buffer

l The AGPAN static scheduling
algorithm requires space for at least
3,655 tokens

È 2,112 tokens on input queues

È 332% more buffer space than our
dynamic scheduling approach

l Why?
È Schedule cannot start until enough

data has accumulated on the input
queues.

(24(11(4A)B)CGHI(11(4D)E)FKLM(10NSJTUP))QRV(240W)

11

11

D F

V

G

W

A

P
N

L

B

S

T

J I

C

E K

Q

R

U

H

4

4

11

10

10

11

11

11

10

10
240

240

240

240

240

240

M

Steve Goddard
25

INSMART
Satellite Receiver Application

l The scheduling algorithm of [Ritz
1995] requires space for at least 4,153
tokens

È 2,112 tokens on input queues

È 377% more buffer space than our
dynamic scheduling approach

l Why?
È Schedule cannot start until enough

data has accumulated on the input
queues.

D F

V

G

W

A

P
N

L

B

S

T

J I

C

E K

Q

R

U

H

4

4

11

10

10

11

11

11
11

11

10

10
240

240

240

240

240

240

M

(1056A) (264B) (24C) (24G) (24H) (24I) (240J)
(1056D) (264E) (24F) (24K) (24L) (24M) (240N)

(240P) (240S) (240U) VQR(240W)
Steve Goddard

26

Summary

l Real-time scheduling theory is used to provide
deterministic node execution so that latency and
memory requirements can be managed using dynamic
scheduling techniques

l Static scheduling may require significantly more
memory than dynamic scheduling

l Software engineering tools that use our framework for
evaluating and managing latency and memory
requirements would help signal processing engineers

l Our analysis techniques are not limited to signal
processing applications

