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Motivating Problem

¥ Real-time and non-real-time tasks present in
current day workload

¥ Aim: To support this workload on general
purpose desktop computers
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Potential Solutions/Related Work

¥ Build a new real-time operating system
È Rialto (Jones et al., 1997)

¥ Real-time extensions to existing operating systems
È Real-Time Mach (Tokuda et al., 1990)

È SMART Solaris System (Nieh et al., 1997)

¥ Virtual Machine Emulation
È Real-Time Linux (Barbarnov & Yodaiken)

È Real-Time IBM Microkernel (Bollella & Jeffay, 1995)

The University of North
Carolina at Chapel Hill RTSS Õ98 4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

Time (msec.)

N
um

be
r 

of
 It

er
at

io
ns

 (
x 

10
00

)

client 1

client 2

client 3

Proportional Share Scheduling of
User Processes

Σwi = 6 Σwi = 13.5

w2 = 2

w3 = 1

w1 = 3

w2 = 4.5

w3 = 6

¥ Proportional share
ensures fair allocation

¥ Processes assigned a
weight w
È weight determines

processÕs share

¥ Fairness can be used
to ensure real-time
execution
È Real-time processes

have a fixed share

È Non-real-time
processes have a
variable share
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Proportional-Share-based
Real-Time Extensions

¥ SFQ SVR4 Unix (Goyal et al., 1996)

¥ Mach- and FreeBSD-based Lottery Scheduling
(Waldspurger & Weihl, 1994)

¥ FreeBSD: EEVDF version (Stoica et al., 1996)

All perform Proportional Share Scheduling

at the User-Level
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Scheduling of OS Services
Integrated Resource Allocation

Process Lifetime

User Context Kernel Context

¥ Extensive research

¥ Sophisticated process scheduling

¥ Relatively less attention

¥ Process-independent scheduling

Undesirable Effect: Improper Allocation of Resources within
the Kernel might adversely affect Real-Time performance

Solution: Integrate Scheduling of Operating System Activities
and Application Scheduling
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Example: Protocol Processing in BSD Unix

Device Driver Layer

Protocol Input
Queue

Protocol Layer
(UDP/IP)

Socket
Receive
Queues

Socket Layer

Network
Interface CardReceiving Host

splimp

splnet

spl0

 Applns.+ Advantages

È Fast response

È High throughput

Ð Disadvantages

È Static priority network
processing

È Receive livelock

È No packet distinction

App 1 App 2 App 3
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Real-Time Network & Protocol Processing
Principles

Example: Real-Time Mach (Lee et al., 1996)

¥ Protocol stack is a library

¥ Protocol processing is
È schedulable

È fully preemptible

Schedule Protocol Processing exactly
like any other activity
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Proportional-Share Network &
Protocol Processing

Device Driver Layer

Protocol Input
Queue

Protocol Layer
(UDP/IP)

Socket
Receive
Queues

Socket Layer

Network
Interface CardReceiving Host

splimp

splnet

spl0

 Applns.W1 W2 W3

W1 = W1 + W2 + W3

Logical Process for
Protocol Processing

Explicitly Schedule Protocol Processing

App 1 App 2 App 3

App1

App2

UDP/IP

Time

q
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Real-Time Network & Protocol Processing
Principles (Contd.)

Example: Lazy Receiver Processing (Druschel &
Banga, 1996)

¥ One queue per socket on receiver

¥ Lazy protocol processing

Early Packet Demultiplexing

The University of North
Carolina at Chapel Hill RTSS Õ98 11

Protocol Processing
Destination Queues

Device Driver Layer

Destination
Queues

Protocol Layer
(UDP/IP)

Socket
Receive
Queues

Socket Layer

Network
Interface CardReceiving Host

splimp

splnet

spl0

 Applns.
¥ One queue per socket

È  as in LRP

¥ Varying queue lengths
È Queue length is a function of

process weights

App 1 App 2 App 3

The University of North
Carolina at Chapel Hill RTSS Õ98 12

Hierarchical Packet Scheduler

¥ Assign weight/cost to each
packet

¥ Proportional-share sub-
allocation of quantum

P1

P2

IP

Time

q

Sub-Allocation of Quantum by IP

Port i

Port j

Port k

q
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Experimental Setup
(FreeBSD 2.2.2-Release)

¥ Audio receiver     (5%   CPU utilization)
¥ M-JPEG receiver (45% CPU utilization)
¥ tftp receiver         (20% CPU utilization)
¥ Dhrystone (100 - x% CPU util.)

Audio Sender
50 packets/sec

M-JPEG Sender
90 packets/sec

100 Mbps
Ethernet

tftp Sender
Normal: 200 packets/sec
Broken: 1000 packets/sec

32 Kbps 1.06 Mbps
2.35 Mbps (Normal)

or
11.76 Mbps (Broken)
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 Outline of Experiments

Device Driver Layer

Protocol Layer
(UDP/IP)

Socket Layer

Receiving Host

 1. Baseline: Unmodified FreeBSD

 2. Prop-share at user-level

 3. Prop-share at user-level & IP

 4. Prop-share at user-level & IP with
destination queues

 5. Prop-share at user-level & IP with
destination queues & packet scheduling

App 1 App 2 App 3

In each trial:
¥ Regular senders
¥ Bursty senders
¥ Broken tftp sender
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Experimental Results
Unmodified FreeBSD: 1ms quantum

3000 packets

3300 received/5400 packets

12000 packets

Normal
senders

Broken
tftp

sender

Audio

M-JPEG

tftp

Dhrystone 7.3 * 106  iterations

5.5 * 106  iterations
48000 drops

Packets received
Drops at the socket queue

3000 packets

2400 received/5400 packets

Audio

M-JPEG

tftp

Dhrystone
12000 packets
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Proportional-Share Scheduling
at the User-Level

3000 packets

5400 packets

12000 packets

Normal
senders

Broken
tftp

sender

Audio

M-JPEG

tftp

Dhrystone 4.6 * 106  iterations

0.9 * 106  iterations

Packets received
Drops at the socket queue

3000 packets

5400 packets

Audio

M-JPEG

tftp

Dhrystone
12000 packets 48000 drops
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Proportional-Share at the
User-Level and IP

3000 packets

5400 packets

12000 packets

Normal
senders

Broken
tftp

sender

Audio

M-JPEG

tftp

Dhrystone 4.9 * 106  iterations

8.8 * 106  iterations

Packets received
Drops at the socket queue

757 received/3000 packets

2000 received/5400 packets

Audio

M-JPEG

tftp

Dhrystone
12000 packets 15200 + 32800 drops

Drops at the protocol 
input queue
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Proportional-Share at the User-Level and IP
Destination Queues (With and Without Packet Scheduling)

3000 packets

5400 packets

12000 packets

Broken
tftp

sender
(No

packet
schedul-

ing)

Broken
tftp

sender
(With
packet
schedul

-ing)

Audio

M-JPEG

tftp

Dhrystone 1.1 * 106  iterations

1.3 * 106  iterations

Packets received
Drops at the socket queue

3000 packets

5400 packets

Audio

M-JPEG

tftp

Dhrystone
12000 packets 48000 drops

Drops at the protocol 
input queue

31000 + 17000 drops
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Proportional-Share Scheduling of Operating
System Services for Real-Time Applications

¥ Operating system activities need to be scheduled
as well as user processes

¥ Proportional-share is effective in both domains

¥ Developed a limited proportional-share version
of FreeBSD
È Network subsystem in kernel is implemented in a

prop-share manner

È User processes are scheduled in a prop-share fashion

È Solution to the receive livelock problem

Conclusions


