
The University of North
Carolina at Chapel Hill RTSS Õ98 1

Kevin Jeffay
F. Donelson Smith

Arun Moorthy
James H. Anderson

Department of Computer Science
University of North Carolina at Chapel Hill
http://www.cs.unc.edu/Research/Dirt/

Proportional-Share Scheduling of Operating
System Services for Real-Time Applications

The University of North
Carolina at Chapel Hill RTSS Õ98 2

Motivating Problem

¥ Real-time and non-real-time tasks present in
current day workload

¥ Aim: To support this workload on general
purpose desktop computers

The University of North
Carolina at Chapel Hill RTSS Õ98 3

Potential Solutions/Related Work

¥ Build a new real-time operating system
È Rialto (Jones et al., 1997)

¥ Real-time extensions to existing operating systems
È Real-Time Mach (Tokuda et al., 1990)

È SMART Solaris System (Nieh et al., 1997)

¥ Virtual Machine Emulation
È Real-Time Linux (Barbarnov & Yodaiken)

È Real-Time IBM Microkernel (Bollella & Jeffay, 1995)

The University of North
Carolina at Chapel Hill RTSS Õ98 4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

Time (msec.)

N
um

be
r

of
 It

er
at

io
ns

 (
x

10
00

)

client 1

client 2

client 3

Proportional Share Scheduling of
User Processes

Σwi = 6 Σwi = 13.5

w2 = 2

w3 = 1

w1 = 3

w2 = 4.5

w3 = 6

¥ Proportional share
ensures fair allocation

¥ Processes assigned a
weight w
È weight determines

processÕs share

¥ Fairness can be used
to ensure real-time
execution
È Real-time processes

have a fixed share

È Non-real-time
processes have a
variable share

The University of North
Carolina at Chapel Hill RTSS Õ98 5

Proportional-Share-based
Real-Time Extensions

¥ SFQ SVR4 Unix (Goyal et al., 1996)

¥ Mach- and FreeBSD-based Lottery Scheduling
(Waldspurger & Weihl, 1994)

¥ FreeBSD: EEVDF version (Stoica et al., 1996)

All perform Proportional Share Scheduling

at the User-Level

The University of North
Carolina at Chapel Hill RTSS Õ98 6

Scheduling of OS Services
Integrated Resource Allocation

Process Lifetime

User Context Kernel Context

¥ Extensive research

¥ Sophisticated process scheduling

¥ Relatively less attention

¥ Process-independent scheduling

Undesirable Effect: Improper Allocation of Resources within
the Kernel might adversely affect Real-Time performance

Solution: Integrate Scheduling of Operating System Activities
and Application Scheduling

The University of North
Carolina at Chapel Hill RTSS Õ98 7

Example: Protocol Processing in BSD Unix

Device Driver Layer

Protocol Input
Queue

Protocol Layer
(UDP/IP)

Socket
Receive
Queues

Socket Layer

Network
Interface CardReceiving Host

splimp

splnet

spl0

 Applns.+ Advantages

È Fast response

È High throughput

Ð Disadvantages

È Static priority network
processing

È Receive livelock

È No packet distinction

App 1 App 2 App 3

The University of North
Carolina at Chapel Hill RTSS Õ98 8

Real-Time Network & Protocol Processing
Principles

Example: Real-Time Mach (Lee et al., 1996)

¥ Protocol stack is a library

¥ Protocol processing is
È schedulable

È fully preemptible

Schedule Protocol Processing exactly
like any other activity

The University of North
Carolina at Chapel Hill RTSS Õ98 9

Proportional-Share Network &
Protocol Processing

Device Driver Layer

Protocol Input
Queue

Protocol Layer
(UDP/IP)

Socket
Receive
Queues

Socket Layer

Network
Interface CardReceiving Host

splimp

splnet

spl0

 Applns.W1 W2 W3

W1 = W1 + W2 + W3

Logical Process for
Protocol Processing

Explicitly Schedule Protocol Processing

App 1 App 2 App 3

App1

App2

UDP/IP

Time

q

The University of North
Carolina at Chapel Hill RTSS Õ98 10

Real-Time Network & Protocol Processing
Principles (Contd.)

Example: Lazy Receiver Processing (Druschel &
Banga, 1996)

¥ One queue per socket on receiver

¥ Lazy protocol processing

Early Packet Demultiplexing

The University of North
Carolina at Chapel Hill RTSS Õ98 11

Protocol Processing
Destination Queues

Device Driver Layer

Destination
Queues

Protocol Layer
(UDP/IP)

Socket
Receive
Queues

Socket Layer

Network
Interface CardReceiving Host

splimp

splnet

spl0

 Applns.
¥ One queue per socket

È as in LRP

¥ Varying queue lengths
È Queue length is a function of

process weights

App 1 App 2 App 3

The University of North
Carolina at Chapel Hill RTSS Õ98 12

Hierarchical Packet Scheduler

¥ Assign weight/cost to each
packet

¥ Proportional-share sub-
allocation of quantum

P1

P2

IP

Time

q

Sub-Allocation of Quantum by IP

Port i

Port j

Port k

q

The University of North
Carolina at Chapel Hill RTSS Õ98 13

Experimental Setup
(FreeBSD 2.2.2-Release)

¥ Audio receiver (5% CPU utilization)
¥ M-JPEG receiver (45% CPU utilization)
¥ tftp receiver (20% CPU utilization)
¥ Dhrystone (100 - x% CPU util.)

Audio Sender
50 packets/sec

M-JPEG Sender
90 packets/sec

100 Mbps
Ethernet

tftp Sender
Normal: 200 packets/sec
Broken: 1000 packets/sec

32 Kbps 1.06 Mbps
2.35 Mbps (Normal)

or
11.76 Mbps (Broken)

The University of North
Carolina at Chapel Hill RTSS Õ98 14

 Outline of Experiments

Device Driver Layer

Protocol Layer
(UDP/IP)

Socket Layer

Receiving Host

 1. Baseline: Unmodified FreeBSD

 2. Prop-share at user-level

 3. Prop-share at user-level & IP

 4. Prop-share at user-level & IP with
destination queues

 5. Prop-share at user-level & IP with
destination queues & packet scheduling

App 1 App 2 App 3

In each trial:
¥ Regular senders
¥ Bursty senders
¥ Broken tftp sender

The University of North
Carolina at Chapel Hill RTSS Õ98 15

Experimental Results
Unmodified FreeBSD: 1ms quantum

3000 packets

3300 received/5400 packets

12000 packets

Normal
senders

Broken
tftp

sender

Audio

M-JPEG

tftp

Dhrystone 7.3 * 106 iterations

5.5 * 106 iterations
48000 drops

Packets received
Drops at the socket queue

3000 packets

2400 received/5400 packets

Audio

M-JPEG

tftp

Dhrystone
12000 packets

The University of North
Carolina at Chapel Hill RTSS Õ98 16

Proportional-Share Scheduling
at the User-Level

3000 packets

5400 packets

12000 packets

Normal
senders

Broken
tftp

sender

Audio

M-JPEG

tftp

Dhrystone 4.6 * 106 iterations

0.9 * 106 iterations

Packets received
Drops at the socket queue

3000 packets

5400 packets

Audio

M-JPEG

tftp

Dhrystone
12000 packets 48000 drops

The University of North
Carolina at Chapel Hill RTSS Õ98 17

Proportional-Share at the
User-Level and IP

3000 packets

5400 packets

12000 packets

Normal
senders

Broken
tftp

sender

Audio

M-JPEG

tftp

Dhrystone 4.9 * 106 iterations

8.8 * 106 iterations

Packets received
Drops at the socket queue

757 received/3000 packets

2000 received/5400 packets

Audio

M-JPEG

tftp

Dhrystone
12000 packets 15200 + 32800 drops

Drops at the protocol
input queue

The University of North
Carolina at Chapel Hill RTSS Õ98 18

Proportional-Share at the User-Level and IP
Destination Queues (With and Without Packet Scheduling)

3000 packets

5400 packets

12000 packets

Broken
tftp

sender
(No

packet
schedul-

ing)

Broken
tftp

sender
(With
packet
schedul

-ing)

Audio

M-JPEG

tftp

Dhrystone 1.1 * 106 iterations

1.3 * 106 iterations

Packets received
Drops at the socket queue

3000 packets

5400 packets

Audio

M-JPEG

tftp

Dhrystone
12000 packets 48000 drops

Drops at the protocol
input queue

31000 + 17000 drops

The University of North
Carolina at Chapel Hill RTSS Õ98 19

Proportional-Share Scheduling of Operating
System Services for Real-Time Applications

¥ Operating system activities need to be scheduled
as well as user processes

¥ Proportional-share is effective in both domains

¥ Developed a limited proportional-share version
of FreeBSD
È Network subsystem in kernel is implemented in a

prop-share manner

È User processes are scheduled in a prop-share fashion

È Solution to the receive livelock problem

Conclusions

