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* Real-time and non-real-time tasks present in
current day workload

« Aim: To support this workload on general
purpose desktop computers
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Potential Solutions/Related Work

Proportional Share Scheduling of
User Processes

* Build a new real-time operating system
» Rialto (Jones et al., 1997)
* Real-time extensions to existing operating systems
» Real-Time Mach (Tokuda et al., 1990)
» SMART Solaris System (Nieh et al., 1997)
* Virtual Machine Emulation
» Real-Time Linux (Barbarnov & Yodaiken)
» Real-Time IBM Microkernel (Bollella & Jeffay, 1995)
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* Proportional share
ensures fair allocation _
f 701 Zwi =6

* Processes assigned a
weight w 601

» weight determines
process’s share sol

* Fairness can be used
to ensure real-time 4°f =3
execution

» Real-time processes '
have a fixed share 5

» Non-real-time

processes have a
variable share 1or @ i
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Proportional-Share-based
Real-Time Extensions

Scheduling of OS Services

Integrated Resource Allocation

* SFQ SVR4 Unix (Goyal et al., 1996)

* Mach- and FreeBSD-based Lottery Scheduling
(Waldspurger & Weihl, 1994)

* FreeBSD: EEVDF version (Stoica et al., 1996)

All perform Proportional Share Scheduling
at the User-Level
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Process Lifetime

User Context Kernel Context

« Extensive research * Relatively less attention

« Sophisticated process scheduling * Process-independent scheduling

Undesirable Effect: Improper Allocation of Resources within
the Kernel might adversely affect Real-Time performance

Solution: Integrate Scheduling of Operating System Activities
and Application Scheduling
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Example: Protocol Processing in BSD Unix

Real-Time Network & Protocol Processing
Principles

+ Advantages Applns.
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Schedule Protocol Processing exactly
like any other activity

Example: Real-Time Mach (Lee et al., 1996)
* Protocol stack is a library

* Protocol processing is
» schedulable
» fully preemptible
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Proportional-Share Network &
Protocol Processing

Real-Time Network & Protocol Processing
Principles (Contd.)

Logical Process for
Protocol Processing

Time —
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App2
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Explicitly Schedule Protocol Processing
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Early Packet Demultiplexing

Example: Lazy Receiver Processing (Druschel &
Banga, 1996)

* One queue per socket on receiver
* Lazy protocol processing
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Protocol Processing
Destination Queues

Hierarchical Packet Scheduler

* One queue per socket
» as in LRP

* Varying queue lengths

» Queue length is a function of
process weights
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Experimental Setup
(FreeBSD 2.2.2-Release)

Outline of Experiments

* Audio receiver (5% CPU utilization)
* M-JPEG receiver (45% CPU utilization)
* tftp receiver (20% CPU utilization)

* Dhrystone (100 - x% CPU util.)
100 Mbps
Ethernet 2.35 Mbps (Normal)
32 Kbps or
11.76 Mbps (Broken)

M-JPEG Sender
90 packets/sec

Audio Sender

tftp Sender
50 packets/sec ip

Normal: 200 packets/sec
Broken: 1000 packets/sec
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1. Baseline: Unmodified FreeBSD

T opay

Socket Layer

X}

Protocol Layer
(UDP/IP)

2. Prop-share at user-level

3. Prop-share at user-level & IP

4. Prop-share at user-level & IP with
destination queues

5. Prop-share at user-level & IP with
destination queues & packet scheduling

In each trial:

* Regular senders } - i

* Bursty senders Device Drlver Layer
* Broken tftp sender A

Receiving Host I
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Experimental Results
Unmodified FreeBSD: 1ms quantum

Proportional-Share Scheduling
at the User-Level

Audio 3000 packets B Packets received

M-JPEG 3300 received/5400 packets

Normal
senders

tfip 12000 packets

Dhrystone 7.3 * 106 iterations

B Drops at the socket queue

Audio 3000 packets
Broken .
M-JPEG 2400 received/5400 packets
tfip
sender ifip

12000 packets 48000 drops

Dhrystone [ 5.5 * 10° iterations
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Audio 3000 packets B Packets received
B Drops at the socket queue
Normal | M-JPEG 5400 packets
senders
tfip 12000 packets

4.6 * 10° jterations

Audio 3000 packets
Broken
tfip M-JPEG 5400 packets
sender ifip

12000 packets 48000 drops

Dhrystone [l 0.9 * 10 iterations
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Proportional-Share at the
User-Level and IP

Proportional-Share at the User-Level and IP
Destination Queues (With and Without Packet Scheduling)

Normal
senders

Broken

tftp
sender

w

Audio 3000 packets I Packets received
B Drops at the socket queue
M-JPEG T B Drops at the protocol
tfitp 12000 packets mput queue

4.9 * 10° iterations

Audio 757 received/3000 packets

M-JPEG 2000 received/5400 packets
tfip
12000 packets 15200 + 32800 drops
Dhrystone

8.8 * 100 iterations
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Broken
tfip
sender
(No
packet
schedul-

ing)

Broken
tfip
sender
(With
packet
schedul

-ing)

G

B Packets received

Audio 3000 packets

B Drops at the socket queue
B Drops at the protocol
input queue

M-JPEG 5400 packets

tfip

12000 packets
1.1 * 106 iterations

31000 + 17000 drops

Audio 3000 packets
M-JPEG 5400 packets
ifip

12000 packets
Dhrystone I 1.3 * 10° iterations

48000 drops
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Proportional-Share Scheduling of Operating
System Services for Real-Time Applications
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Conclusions

Operating system activities need to be scheduled
as well as user processes

Proportional-share is effective in both domains

Developed a limited proportional-share version
of FreeBSD

» Network subsystem in kernel is implemented in a
prop-share manner

» User processes are scheduled in a prop-share fashion
» Solution to the receive livelock problem
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