A Theory of Rate-Based Execution

Kevin Jeffay
Department of Computer Science
University of North Carolina at Chapel Hill
jeffay@cs.unc.edu

Steve Goddard
Computer Science & Engineering
University of Nebraska – Lincoln
goddard@cse.unl.edu

http://www.cs.unc.edu/Research/Dirt/

What’s wrong with the Liu & Layland model?

- Loosely speaking, nothing is periodic or sporadic in a distributed system
- The essential problem seems to be the requirement that the arrival process be somehow constrained
A Theory of Rate-Based Execution

Goals

- Extend the Liu and Layland theory of real-time processor scheduling to:
 - Support notions of execution rate that are more general than periodic or sporadic execution
 - Support integrated real-time device and application processing
 - Support responsive non-real-time computing

Rate-Based Execution

Concept

- Schedule tasks at the *average rate* at which they are expected to be invoked
 - Make buffering a first-class concept in the model
 - Understand the fundamental relationships between feasibility, response time, and processing rate

- Develop a model of tasks wherein:
 - Tasks complete execution before a well-defined deadline
 - Tasks make progress at application-specified rates
 - No constraints are placed on the external environment
Rate-Based Execution

Formal model

• Process make progress at the rate of processing x events every y time units, each event is processed within d time units

• For task i with rate specification (x_i, y_i, d_i), the j^{th} event for task i, arriving at time $t_{i,j}$, will be processed by time

$$D(i, j) = \begin{cases}
t_{i,j} + d_i & \text{if } 1 \leq j \leq x_i \\
\text{MAX}(t_{i,j} + d_i, \ D(i,j-x_i)+y_i) & \text{if } j > x_i
\end{cases}$$

– Deadlines occur at least d time units after a job is released

– Deadlines separated by at least y time units

Rate-Based Execution

Example: Periodic arrivals, periodic service

• Task with rate specification $(x = 1, y = 2, d = 2)$

$$D(i, j) = \begin{cases}
t_{i,j} + d_i & \text{if } 1 \leq j \leq x_i \\
\text{MAX}(t_{i,j} + d_i, \ D(i,j-x_i)+y_i) & \text{if } j > x_i
\end{cases}$$
Rate-Based Execution

Bursty arrivals

- Task with rate specification \((x = 1, y = 2, d = 6)\)

Rate-Based Execution

Bursty arrivals

- Task with rate specification \((x = 3, y = 6, d = 6)\)
Rate-Based Execution
Comparison of different rate specifications

Rate specification
$(x = 1, y = 2, d = 6)$

Rate specification
$(x = 3, y = 6, d = 6)$

Using RBE Tasks
What problems do they solve?

- RBE tasks provide a more natural way of modeling inbound packet processing of fragmented messages
A Theory of Rate-Based Execution

Feasibility under preemption constraints

- Feasibility conditions for periodic and sporadic tasks, for all other known execution environments, also hold for RBE tasks
 - Feasibility under non-preemptive scheduling
 - Feasibility under scheduling with critical sections
 - Feasibility under scheduling with interrupt handlers

- Thus feasibility is not inherently a function of release times
 - Under deadline-driven scheduling, feasibility is a function of the implementation of a task set
 - Under static-priority scheduling, feasibility is a function of the behavior of the external environment

Feasibility of RBE Tasks

Feasibility under preemptive scheduling

- Feasibility conditions of RBE tasks with rate specifications \((x, y, c, d) \) are precisely the same as for periodic tasks

\[
\forall L, L > 0: L \geq \sum_{i=1}^{n} \left\lfloor \frac{L - d_i + y_i}{y_i} \right\rfloor x_i c_i
\]
A Theory of Rate-Based Execution
On the relationship to periodic tasks

- But can’t an RBE task be modeled as \(x \) instances of a periodic task (with some appropriate precedence relationship between instances)?

A Theory of Rate-Based Execution
A corollary on static priority scheduling

- Under a static priority scheduling scheme, the processor demand in any interval can be unbounded
 - Thus event driven, rate-based execution is not possible under static priority scheduling schemes
A Theory of Rate-Based Execution

Summary

- Traditional Liu & Layland theory is not directly applicable to distributed real-time systems

- The theory of scheduling periodic & sporadic tasks applies verbatim to RBE tasks
 - Polynomial & pseudo-polynomial time schedulability conditions exist for
 - Preemptive scheduling
 - Non-preemptive scheduling
 - Scheduling with interrupt handlers
 - Scheduling with critical sections
 - The *earliest-deadline-first* scheduling algorithm is optimal

- The feasibility of a set of “periodic tasks” was never inherently a function of the periodic arrival requirement
 - The only requirement is that exist a minimal separation between deadlines

- But if static priority scheduling methods are employed then (in the worst case) periodic arrivals are required
 - Static priority methods require a well-behaved external environment
 - Deadline methods require a well-behaved operating system