A Theory of Rate-Based Execution

What’s wrong with the Liu & Layland model?

- Loosely speaking, nothing is periodic or sporadic in a distributed system.
- The essential problem seems to be the requirement that the arrival process be somehow constrained.

Goals

- Extend the Liu and Layland theory of real-time processor scheduling to:
 - Support notions of execution rate that are more general than periodic or sporadic execution.
 - Support integrated real-time device and application processing.
 - Support responsive non-real-time computing.

Rate-Based Execution Concept

- Schedule tasks at the *average rate* at which they are expected to be invoked:
 - Make buffering a first-class concept in the model.
 - Understand the fundamental relationships between feasibility, response time, and processing rate.

- Develop a model of tasks wherein:
 - Tasks complete execution before a well-defined deadline.
 - Tasks make progress at application-specified rates.
 - No constraints are placed on the external environment.
Rate-Based Execution
Formal model

- Process make progress at the rate of processing x events every y time units, each event is processed within d time units.

- For task i with rate specification (x_i, y_i, d_i), the j^{th} event for task i, arriving at time t_{ij}, will be processed by time

$$D(i, j) = \begin{cases}
 t_{ij} + d_i & \text{if } 1 \leq j \leq x_i \\
 \max(t_{ij} + d_i, D(i, j-x_i) + y_i) & \text{if } j > x_i
\end{cases}$$

- Deadlines occur at least d time units after a job is released.
- Deadlines separated by at least y time units.

Example: Periodic arrivals, periodic service

- Task with rate specification $(x = 1, y = 2, d = 2)$

$$D(i, j) = \begin{cases}
 t_{ij} + d_i & \text{if } 1 \leq j \leq x_i \\
 \max(t_{ij} + d_i, D(i, j-x_i) + y_i) & \text{if } j > x_i
\end{cases}$$

Rate-Based Execution
Bursty arrivals

- Task with rate specification $(x = 1, y = 2, d = 6)$

- Task with rate specification $(x = 3, y = 6, d = 6)$
Rate-Based Execution

Comparison of different rate specifications

Rate specification

\((x = 1, y = 2, d = 6)\)

Rate specification

\((x = 3, y = 6, d = 6)\)

Using RBE Tasks

What problems do they solve?

- RBE tasks provide a more natural way of modeling inbound packet processing of fragmented messages.

A Theory of Rate-Based Execution

Feasibility under preemption constraints

- Feasibility conditions for periodic and sporadic tasks, for all other known execution environments, also hold for RBE tasks:
 - Feasibility under non-preemptive scheduling
 - Feasibility under scheduling with critical sections
 - Feasibility under scheduling with interrupt handlers
- Thus feasibility is not inherently a function of release times:
 - Under deadline-driven scheduling, feasibility is a function of the implementation of a task set
 - Under static-priority scheduling, feasibility is a function of the behavior of the external environment

Feasibility of RBE Tasks

Feasibility under preemptive scheduling

- Feasibility conditions of RBE tasks with rate specifications \((x, y, c, d)\) are precisely the same as for periodic tasks:

\[
\forall L, L > 0: \quad L \geq \sum_{i=1}^{n} \left(\frac{L - d_i + y_i}{y_i} \right)x_i c_i
\]
A Theory of Rate-Based Execution

On the relationship to periodic tasks

• But can’t an RBE task be modeled as x instances of a periodic task (with some appropriate precedence relationship between instances)?

A Theory of Rate-Based Execution

A corollary on static priority scheduling

• Under a static priority scheduling scheme, the processor demand in any interval can be unbounded
 – Thus event driven, rate-based execution is not possible under static priority scheduling schemes

A Theory of Rate-Based Execution

Summary

• Traditional Liu & Layland theory is not directly applicable to distributed real-time systems
• The theory of scheduling periodic & sporadic tasks applies verbatim to RBE tasks
 – Polynomial & pseudo-polynomial time schedulability conditions exist for
 » Preemptive scheduling
 » Non-preemptive scheduling
 » Scheduling with interrupt handlers
 » Scheduling with critical sections
 – The earliest-deadline-first scheduling algorithm is optimal

A Theory of Rate-Based Execution

Summary

• The feasibility of a set of “periodic tasks” was never inherently a function of the periodic arrival requirement
 – The only requirement is that exist a minimal separation between deadlines
• But if static priority scheduling methods are employed then (in the worst case) periodic arrivals are required
 – Static priority methods require a well-behaved external environment
 – Deadline methods require a well-behaved operating system