

University of North Carolina at Chapel Hill

What TCP/IP Protocol Headers **Can Tell Us About the Web**

Félix Hernández Campos F. Donelson Smith Kevin Jeffay David Ott

SIGMETRICS, June 2001

http://www.cs.unc.edu/Research/dirt

Motivation Traffic Modeling and Characterization

- Can we continuously acquire network traffic data using off-the-shelf hardware and software?
- Can we use this information to construct up-to-date, application-level traffic models?
 - Populate traffic generator with analytic distributions for simulations and lab experiments
- Can we study the traffic generated by a *large population* of users while protecting their privacy?
- Case study: Web Traffic

Internet Traffic Characterization **Previous Work**

- Traffic modeling before the WWW explosion
 - Danzig et al. (91, 92)
 - -Paxson (94)
- Browsing-based web traffic models
 - -Mah(95)
 - Crovella et al. (95, 98)
- Models of TCP connections in the web - Cleveland et al. (00)
- Other large-scale trace analyses related to the web - Gribble & Brewer (97), Balakrishnan et al. (98), Wolman et al. (99), and Feldmann (00)

Methodology Trace Acquisition

• Study Internet traffic generated by a large and diverse population

Methodology Benefits of TCP/IP Header Tracing

- Light-weight
 - Off-the-shelf hardware
 - Freely available software
- Privacy
 - Easy to address by anonymizing IP address offline
- Efficient
 - Reduces storage requirements
 - » E.g. 161 GB for headers instead of 803 GB for entire packets
 - Reduces processing requirements during tracing
 - » Header extraction and recording only
- Large-scale
 - E.g. 7 days x 12 hr, 1 Gbps link (20% avg. util.), 35K users

- Three sets of traces from UNC
 - October 99, October 00, April 01
 - 1 hour-long tracing periods (1-6 GB per trace)
 - 42 traces in each set
- Two sets of traces from NLANR (for comparison)
 - October 99, October 00
 - -2 sites
 - » San Diego Supercomputing Center
 - » Univ. of Michigan/Merit
 - 90 second tracing periods (3-67 MB per trace)
 - 58 traces in each set

Trace Collection

		99	00	01
Packets	Total	525 M	1873 M	2419 M
	ТСР	85%	91%	91%
	HTTP	38%	29%	28%
Bytes	Total	212 GB	721 GB	905 GB
	TCP	86%	90%	91%
	HTTP	56%	35%	36%
Total Traces Size		36 GB	127 GB	164 GB
vg. % of Packets Lost by Monitor		0 %	0.02 %	0.003 %

Case Study: Web Traffic Packet Capturing

- We study a large collection of users as web content consumers
- We only capture TCP/IP headers - No HTTP headers

Methodology Do We Really Need HTTP Headers?

- We can infer plenty of HTTP information from TCP/IP headers
 - Request size
 - Response size
 - Embedded objects per web page
 - Servers per page
 - Use of persistent connections
- TCP/IP headers are sufficient for
 - Constructing application-level traffic models
 - Studying the impact of new HTTP dynamics

Web Traffic Analysis **Processing Sequence Overview**

TCP/IP Headers and HTTP **Request/response Exchange**

Packet Capturing Inbound TCP/IP Headers Only

Packet Capturing Inbound TCP/IP Headers Only

• Two fiber links

Packet Capturing Inbound TCP/IP Headers Only

- Only inbound TCP/IP headers are captured
 - Eliminate synchronization and buffering issues on the NIC – Reduce trace size

TCP/IP Headers and HTTP

Cumulative Probability (% Bytes)

Methodology **Request/Response Traces**

• Unidirectional TCP/IP header traces are sufficient for capturing application-level behavior

Cumulative Probability (% Responses)

HTTP Characterization Response Data Sizes – Body CDF

HTTP Characterization Response Data Volumes – Body CDF

Response Size (in bytes)

Complementary Cumulative Probability

HTTP Characterization Response Data Sizes – Tail CCDF

HTTP Characterization Request Data Size – Body CDF

HTTP Characterization Request Data Size – Tail CCDF

Persistent Connections in HTTP Effective Persistence

- An HTTP *persistent connection* can use a single TCP connection to carry one or more request/response exchanges
- This feature is supported in newer versions of the protocol
 - HTTP/1.0 (limited support)
 - HTTP/1.1
- We study how persistent connections are used
 - We define *effective persistence* as *two or more* request/response exchanges in the same TCP connection

23

Effective Persistent Connections Summary Statistics

		UNC 00	NLANR 00
Connections	Non-Persistent	78.1%	63.4%
	Persistent	15.1%	13.8%
	Unclassified	6.8%	22.8%
Objects	Non-Persistent	50.3%	57.2%
	Persistent	49.7%	42.8%
Bytes	Non-Persistent	49.6%	54.3%
	Persistent	40.4%	35.7%

HTTP Characterization Objects in Persistent Connections

HTTP Characterization Other Statistics

- Page-based statistics (based on Mah and Crovella et al.)
 - Think times
 - Top-level vs. embedded objects
 - » Requests and Responses
 - Unique TCP connections per page
 - Unique server IP addresses per page
 - Consecutive pages per server
 - Number of pages per client
 - Primary vs. secondary servers » Requests and Responses
- Other non-page-based statistics
 - Number of exchanges per client

Limitations **TCP/IP Header Tracing**

- Uncertainties arise when application-level information is inferred from transport-level headers
- We discuss several issues in our paper
 - Pipelining
 - User/browser interactions
 - » Stop and reload
 - Caches
 - » Local cache and proxies
 - TCP segment processing » Segment reordering
- In summary, limited or no impact in our results

Summary and Conclusions Methodology

- Unidirectional TCP/IP header tracing is a powerful and light-weight traffic measurement methodology
- Limitations have a minor impact in application-level results
- We also applied this methodology to
 - SMTP
 - FTP
 - Other application-level protocol

Summary and Conclusions Web Traffic Characterization

- New data to populate traffic generators
 - Request sizes
 - Response sizes
 - Use of persistent connections
- 1-hour long traces are sufficient to capture application-level behavior
 - Short traces cut off large objects, which skews the tails of the distributions
- Persistent Connections:
 - $-\sim$ 15% of all the HTTP connections
 - 40-50% of all the transferred HTTP bytes