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Abstract

In this paper we present our system for scalable, robust, and fast city-scale
reconstruction from Internet photo collections obtaining geo-registered dense 3D
models. The major achievements of our system are the e�cient use of coarse
appearance descriptors combined with strong geometric constraints to reduce the
computational complexity of the image overlap search. This unique combina-
tion of recognition and geometric constraints allows our method to reduce from
quadratic complexity in the number of images to almost linear complexity in the
Internet photo collections size. Accordingly, our 3D modeling framework is inher-
ently better scalable than other state of the art methods and in fact is currently
the only method to support modeling from millions of images. In addition, we
propose a novel mechanism to overcome the inherent scale ambiguity of the re-
constructed models by exploiting geo-tags of the Internet photo collection images
and readily available StreetView panoramas for fully automatic geo-registration
of the 3D model. Moreover, our system also exploits image appearance clustering
to tackle the challenge of computing dense 3D models from an image collection
that has signi�cant variation in illumination between images along with a wide
variety of sensors and their associated di�erent radiometric camera parameters.
Our algorithm exploits the redundancy of the data to suppress estimation noise
through a novel depth map fusion. The fusion simultaneously exploits surface and
free space constraints during the fusion of a large number of depth maps. Cost
volume compression during the fusion achieves lower memory requirements for
high-resolution models. We demonstrate our system on a variety of scenes from
an Internet photo collection of Berlin containing almost three million images from
which we compute dense models in less than the span of a day on a single PC.
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1 Introduction

City models from aerial images have recently been commercially introduced. The
biggest limitation is that when observed from the ground the texture and geometry
have very limited resolution. The next generation of 3D models will need to employ
ground based imagery to overcome this limitation. To obtain those models, we have
proposed the �rst real-time 3D reconstruction system, which collects ground reconnais-
sance video [12] in the range of multiple million frames for small cities and computes 3D
models. Alternatively, researchers proposed to use crowd sourced Internet photo collec-
tions to avoid the image collection e�ort required for city-scale 3D modeling [1, 3, 9, 16].
These Internet Photo Collections (IPC) typically include several million images for a
city and cover the sites of interest in the city. The major challenge added compared to
video is there no information about the spatial ordering of the views is provided, i.e.
there is no information about which views overlap with each other. The massive amount
of unordered image data requires one to solve the overlap search e�ciently to obtain a
highly scalable 3D reconstruction system that meets the demands of 3D modeling from
millions of ground reconnaissance images.

In this paper we discuss our system for city-scale 3D reconstruction from crowd
sourced photo collections, which can compute city-scale 3D models from three million
images on a single PC in less than the span of a day. Our method is designed to reduce
the computational complexity of the reconstruction problem to close to linear for the
most expensive parts of the reconstruction pipeline. We achieve this by jointly using
geometric constraints and recognition based constraints allowing for a highly e�cient
method. In contrast to most other crowd based 3D modeling algorithms our system
e�ciently solves the high resolution dense reconstruction problem by exploiting the
redundancy in the estimated multi-view geometries enforcing surface and free-space
constraints. Additionally, the proposed method is able to use readily available geo-
registered street view imagery (for example, those provided by Google StreetView) to
automatically scale and geo-reference the computed 3D city models. In summary our
method is currently outperforming the state of the art methods in crowd sourced 3D
reconstruction by three orders of magnitude in performance while in contrast to those
methods also solving the dense reconstruction problem.

2 Related Work

There are currently two main classes of city scale reconstruction algorithms, the �rst
uses bag of words methods to identify scene overlap, which is then used to bootstrap
large-scale structure from motion registration delivering camera registration and sparse
3D point clouds of the scene [1, 16]. Even with a cloud computer of 62 CPUs these
methods only scale to the registration of a few hundred thousand images within 24
hours, not meeting the demand of true Internet scale photo collections. The second
class of methods uses appearance based image grouping followed by epipolar geome-
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try veri�cation to identify overlapping images. A set of identi�ed characteristic views
(iconics) is afterwards exploited to bootstrap the e�cient image registration through
structure from motion [3, 9]. These methods can scale to the processing of a few million
images on a single PC within 24 hours as shown in our work [3].

Bag of words methods typically provide a higher degree of resulting 3D model
completeness in the reconstruction than the appearance clustering approaches. In order
to achieve higher completeness they compromise the computational complexity of the
method. The �rst approach in this category was the seminal PhotoTourism [16] method,
which deployed exhaustive search for the overlap search. Agarwal et al. [1] employed
feature based recognition and query expansion to improve the computational complexity
of the overlap detection, scaling to the processing of a few hundred images on a cloud
computer (62 CPUs). In contrast, our method scales to millions of images on a single
PC while maintaining model quality and producing dense 3D models.

Appearance based clustering has the strong advantage of scalability, which has
been shown in our work [3] to outperform the most e�cient bag of word approach [1] by
at least three orders of magnitude. This is a result of the close to linear computational
complexity of the method introduced in [3]. Additionally, we deliver the largest so far
obtained 3D models from IPCs.

After the appearance grouping for overlap search, both types of methods use tradi-
tional structure from motion techniques to solve for camera registration [7, 13]. They
exploit error mitigation through increasingly larger bundle adjustment, which optimizes
the 3D structure simultaneously with the pose of the cameras [1, 3, 16, 17]. This step is
one of the remaining performance bottlenecks in the large-scale reconstruction systems,
despite the recent progress in the computational performance of bundle adjustment
through parallelization [19] or hierarchical processing as proposed by Ni et al. [10]. Al-
ternatively, Crandall et al. [2] proposed to use a discrete continuous method to limit
the number of bundle adjustments. However, it requires a computationally expensive
discrete optimization partially executed on a 200 core cluster to initialize the continu-
ous optimizer. Using this method limits the drift drastically and allows for large-scale
reconstruction. Snavely et al. [17] propose to construct a minimal set of views for recon-
struction (skeletal set), which provides the same reconstruction accuracy. The major
drawback for the computational complexity with the skeletal set is that it still requires
a full pair-wise matching of the image connection graph. In contrast, our approach uti-
lizes high-level appearance information to reduce the inherent redundancy in the data
by obtaining an iconic scene representation of the photo collection [3, 9].

Goesele et al. [6] use a patch growing to obtain a dense 3D model from IPC data.
They start from the sparse structure from motion point cloud. Then, the participat-
ing views for each patch are carefully selected based on resolution, color, and viewing
direction. Furukawa et al. [4] proposed another view selection approach for the compu-
tation of the dense 3D point cloud. Both Goesele et al. [6] and Furukawa et al. [4] are
computationally highly demanding compared to our method. We extend our previous
approach from Gallup et al. [5], which achieves scalable reconstruction for a limited
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Figure 1: Overview of the processing steps.

number of views by decoupling the reconstructions in two of the three dimensions of
the 3D space. Our extension overcomes the limitation of Gallup et al. [5] to only be
able to use a limited number of views for the dense computation.

3 Scalable Crowd Sourced Modeling

Our 3D modeling technique consequently limits the computational complexity of each
step of the system. This leads to an overall computational complexity that is close to
linear in the initial registration process, which involves millions of images for a typical
city-scale reconstruction. An overview of the steps of our method is shown in Figure 1.
We evaluate the method on an IPC from Berlin that contains approximately 2.8 million
images downloaded from Flickr. All reported execution times are on our PC with dual
quadcore Xeon 3.33 Ghz processors, four NVidia 295GTX commodity graphics cards,
and 48 GB RAM.

Appearance based grouping (Steps Ê-Ë) Our approach uses appearance clus-
tering for determining overlapping views. To facilitate the clustering we exploit the
gist-descriptor [11] to obtain a compact 368 dimensional vector describing each image.
This descriptor mostly depends on the edge structure of the image, the texture rough-
ness of the image, and the global color distribution in the image. Hence, it will not
change with small viewpoint changes but it will signi�cantly change for scene changes
and wide baseline viewpoints. Using this insight, our method clusters the gist descrip-
tors of the images, which equates to a viewpoint clustering. For the Berlin dataset we
obtain about 4GB of descriptors compared to the IPC of approximately 650 GB.

Given that clustering is an inherently parallel problem it would be optimal to ex-
ecute it on commodity graphics hardware (GPUs), which are highly parallel. Even
the 4GB of gist descriptors exceed the memory of typical graphics hardware. To ob-
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Figure 2: Left: Appearance cluster from the Berlin dataset. Right: Geometrically veri�ed
cluster from Berlin dataset.

tain a more compressed representation we apply a random basis projection followed by
a binarization [14]. This guarantees that with an increasing number of bits the Ham-
ming distance approximates the Euclidian distance of the original descriptors. The best
tradeo� between approximation accuracy and memory usage for our datasets was found
at 512 bits. To cluster using the Hamming distance we employ a k-medoids algorithm
on GPU, which is a k-means for non-metric spaces.

For a better cluster initialization we approximate the spatial distribution of the geo-
tagged images with our cluster initialization. As shown in our work [3] this increases
the number of registered cameras by 20% compared to a random initialization. Figure
2 illustrates an example viewpoint cluster. The advantage of our appearance clustering
approach is that it has in practice linear complexity in the number of images.

Geometric cluster veri�cation (Step Ì) Due to the coarseness of the 512 bit
binary descriptors the above appearance clustering leads to noisy clusters. To remove
the unrelated views we enforce a valid epipolar geometry between the images of a
cluster. A naive veri�cation strategy would evaluate all view pairs within a cluster,
which is of quadratic complexity in the number of images. To avoid the combinatorial
explosion, our method �rst identi�es a set of n mutually consistent views (n = 3 for
all results in the paper). Then, it selects the iconic view as the view that has the most
correspondences to the other views. All remaining images are only veri�ed against the
iconic. For high veri�cation performance we exploit USAC, a fast RANSAC scheme
[15] leading to veri�cation rates of approximately 450Hz. Figure 2 shows the veri�ed
clusters. The iconic of each cluster is then used in the following computation to represent
the cluster for the initial registration.

Camera registration (Steps Í-Î) After identifying all iconic views our method
establishes the registration between the di�erent iconics. Li et al. [9] introduced the
iconic scene graph to represent the relationships between the iconic views. The graph
has an edge between two iconics if there is a valid epipolar geometry between the
two images. We take the concept of the iconic scene graph, which was designed for
landmarks where all iconics show the landmark and extend it to city scale modeling
by establishing local iconic scene graphs for each separate site in the dataset. To
compute the local iconic scene graph we test for mutual overlap between the iconics by
enforcing the epipolar geometry with USAC [15]. To avoid the quadratic complexity
of an exhaustive test we use the binary descriptors from step Ê by testing each iconic
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Figure 3: Example iconics and registered cameras for three di�erent sites in Berlin: Branden-
burg Gate, Berlin Dome, Ishtar Gate.

for potential overlap with the k = 10 nearest neighbors in the binary descriptor space.
To foster further connections we exploit the spatial location of the cluster by verifying
potential connections to other iconics in the spatial vicinity. The location of the iconic
is obtained through kernel voting using the geo-located images within the cluster.

Then, we perform structure from motion combined with bundle adjustment for each
local iconic scene graph. Next, all images of all clusters will be registered into the
reconstruction. Example registrations and iconics are shown in Figure 3.

Geo-registration (Step Ï) Given the inherent scale ambiguity for structure from
motion we propose a scale estimation and geo-registration. We empirically observed
that typically there are very few precisely geo-localized photos in the IPC, which of-
ten prohibits accurate geo-registration except for some large-scale models as shown by
Kaminsky et al. [8]. Hence, we exploit the embedded tags (automatic and user clicked)
only to obtain a rough position through kernel voting, where each geo-localized image
casts a Gaussian distributed vote with σ = 8.3m and a three σ cuto� distance. The
rough estimate for the model location is then obtained as the center of gravity of the
largest connected component. In the rare case of no registered geo-located images in the
IPC we propose to use the text tags of the IPC images to obtain a rough geo-location
through a search on Google maps.

To support more accurate geo-location our algorithm employs ubiquitously available
Google StreetView panoramas in the model's vicinity, which have high accuracy geo-
location and orientation1. Given that our obtained camera registration is in a Euclidean
space we transform the latitude/longitude coordinates of the StreetView panoramas into
the Universal Transverse Mercator (UTM) grid, which provides a Euclidean space too
and allows the use of Euclidean distances during the alignment optimization.

Next, we perform a feature based registration of the StreetView panoramas into our
3D model using essentially the registration process of step Î with a viewing ray based
panorama registration. After the registration of the panoramas into the 3D model we
can utilize their coordinates in the 3D model and their known UTM coordinates to
estimate the transformation between the 3D model coordinate system and the UTM
coordinate system with USAC. Figure 4 illustrates a geo-registered reconstruction.

1The panoramas are automatically downloaded through the Google StreetView API
(http://code.google.com/apis/maps/index.html)
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Figure 4: Geo-registered cameras for the Berlin dome. StreetView panoramas in green and
IPC cameras are in red.
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Figure 5: Example cluster images used for stereo computation and their depth maps

Dense Scene Modeling (Step Ð) After obtaining the geo-registered cameras our
method computes a dense 3D model for each site. The major challenge for IPCs is the
varying appearance of the scene in the di�erent views, which poses signi�cant challenges
for the image based correlation. We exploit our gist-based clustering to overcome this
challenge as it groups the images not only by viewpoint but also by color. Hence,
the resulting clusters are similar in color and allow for a GPU based normalized cross
correlation plane sweeping stereo algorithm to be executed. Example cluster images
and their depth maps are shown in Figure 5. As a result of the varying appearance,
the resulting depth maps contain signi�cant noise. To combat the noise for the �nal
3D model we use the redundancy of the depth maps by fusing them into a mutually
consistent 3D model.

Our fusion method [5, 20] uses a volumetric representation for the scene to enable
the fusion of a large variety of viewpoints. Volumetric methods have the inherent cubic
memory complexity, which prohibits high-resolution models. In contrast to traditional
volumetric models, our fusion [20] only exercises quadratic memory complexity. Hence,
it is able to fuse the depth maps of each site into a high-quality 3D model representation.

Our heightmap fusion [5, 20] takes a set of depth maps along with the external and
internal camera parameters as input. From the camera parameters we automatically
extract the ground plane using a technique similar to Szeliski's method [18], which �ts a
plane through the x-axes of the landscape mode cameras and the y-axes of the portrait
mode cameras. The ground plane then serves as a basis for the heightmap representation
with the height direction along the normal of the estimated ground plane. We chose a
quantization grid for the ground plane to e�ectively de�ne the ground sampling distance

7



Figure 6: Fused 3D models

of our obtained model. Given that our model is correctly scaled we can set the ground
sampling distance directly in units of meter. We typically chose a value between 5 cm
and 30 cm.

For each column (volume above the area of a ground sampling point) we then per-
form a voting process for its occupancy in the height direction using the same quanti-
zation as the ground sampling distance. In the voting, each pixel in each depth map
votes for an occupied cell (voxel in the column) at the depth of the observed surface.
For cells between the camera and the occupied cell it votes for empty and for all cells
behind the observed surface its vote exponentially declines from occupied to a indecisive
vote. After the votes of a column have been accumulated our technique determines the
occupied segments within the column using a regularization to minimize the number
of occupied segments (for more details please see Gallup et al. [5]). Please note that
our method not only uses the surface constraints in the voting but also enforces free
space constraints, which we found to be highly e�cient to suppress noise in the fused
model. We execute this process on commodity graphics hardware to exploit its given
parallelism. This fusion process [5] is limited by the memory, i. e. it can only fuse
a limited number of depth maps per column. Naively this can be overcome by either
streaming all the depth maps from the hard disk for each column, which is prohibitively
expensive in time to due disk bandwidth, or alternatively the cost volume has to be
kept in memory to avoid streaming the depth maps. The later is prohibitive for high
resolution models due to the cubic memory complexity.

To enable the fusion of all available depth maps our method [20] exploits Haar-
wavelet compression for the cost volume, which accurately preserves the transitions
between occupied and empty segments along the column. This enables the algorithm
to present the cost function of each column to be represented with a constant number of
coe�cients k. We empirically found k=30 to perform well and used this for all our ex-
periments. Accordingly, the memory to store the cost function only grows quadratically
with the ground sampling distance allowing our method to perform high-resolution 3D
modeling on commodity graphics hardware using all available depth maps as described
in Zheng et al. [20]. Figure 6 shows some of the resulting models for the Berlin dataset.
The overall processing time of the IPC was 23 hours and 35 minutes.
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4 Conclusion

In this paper we introduced our algorithm for the computation of geo-registered dense
3D models from Internet Photo Collections, which outperforms any existing method for
reconstruction of sparse models by at least three orders of magnitude. The performance
and scalability of our system results from a consequent reduction of computational
complexity using geometric and recognition constraints. Our technique also solves the
automatic geo-registration by exploiting the readily available StreetView imagery along
with its precise location information. Our novel depth map fusion is able to fuse the
information from all available depth maps of a site and hence allows us to obtain highly
detailed dense noise free 3D scene models.
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