






C. Global Average Pooling

The base model (Sec. IV-A) gives us a set of feature maps

M j
f (j ∈ {1, 2, ..., Nf}) for the fine classes. The min-pooling

gives another set of feature maps Mk
c (k ∈ {1, 2, ..., Nc})

for the coarse classes. From these per-category feature maps,

we would like to obtain a classification score for each class.

Similar to [8], [15], we get the classification score of a class

by attaching a global-average pooling layer to each feature

map. In other words, let sjf (j ∈ {1, 2, ..., Nf}) be the

classification score of a fine class and skc (k ∈ {1, 2, ..., Nc})

be the classification score of a coarse class. We calculate

these scores as:

sjf =
∑d

i=1
M

j

f
(i)

d
j ∈ {1, 2, ..., Nf} (2)

skc =
∑d

i=1
Mk

c (i)

d
k ∈ {1, 2, ..., Nc} (3)

Compared with fully connected layers, the main advantage

of global average pooling layers is that there are no param-

eters inside them. This results in less memory footprint and

also makes the model less prone to overfitting.

D. Learning

Our main goal is to learn a fine label classifier using

images from the two disjoint sets. For images in Sfine,

both fine and coarse labels are available. However, images in

scoarse only have coarse class annotations. For training on

those coarse labeled images, the network learns to classify

fine labels by exploiting knowledge from the coarse class.

The hierarchy architecture of our model is able to do weakly

supervised learning. It has two components: an underlying

supervised learner (all the way to the fine class feature maps)

and a bootstrapping layer (coarse class feature maps) on top

of the supervised learner.

For each class (either coarse or fine), the output from

the corresponding global average pooling is forwarded to a

softmax layer to generate the classification loss. Since we

have both fine labels and coarse labels for part of the images,

the network will have two loss components, ℓf for fine label

classification loss, ℓc for coarse label classification loss. For

a training image xi with both labels, the loss function can

be formulated as:

ℓ(xi) = ℓf (xi) + λℓc(xi) if xi ∈ Sfine (4)

where λ is a non-negative hyperparameter used to control

the relative importance of the coarse label classification loss.

For images with only coarse labels, since we do not have

their fine labels to compute ℓf , the loss function should be:

ℓ(xi) = λℓc(xi) if xi ∈ Scoarse (5)

To simplify the learning, we introduce the following

indicator 1(xi) to denote whether the training image xi

belongs to Sfine or Scoarse.

1(xi) =

{

1 if xi ∈ Sfine

0 if xi ∈ Scoarse
(6)

Then the loss functions defined in Eq. 4 and Eq. 5 can be

equivalently written as one loss function:

ℓ(xi) = 1(xi) · ℓf (xi) + λ · ℓc(xi) (7)

The loss of the whole training data is simply the summation

of the loss of each image in the training set.

To optimize the loss function, we use stochastic gradient

descent with momentum of 0.9 and weight decay of 0.0005.

The size of the mini-batch used in our experiments varies

for different models and different combination of Sfine

and Scoarse. We generally follow two guidelines for setting

the mini-batch sizes: 1) keep the ratio of the number of

images from Sfine and Scoarse in each batch equal to

|Sfine|/|Scoarse|; 2) use the largest min-batch size that can

fit into the GPU memory. We use a Titan X with 12GB

memory in the experiments, so the min-batch size varies

from 128 to 400. The initial learning rate for all models

is set to 0.01 and is further reduced whenever the model

performance reaches plateau.

V. EXPERIMENTS

In this section, we evaluate our proposed model and

compare it with other approaches. We first describe some

implementation details and the base models we have

chosen (Sec. V-A). Then we present results on two

datasets: CIFAR100 (Sec. V-B) and a subset of ILSVRC

2010 (Sec. V-C). If not otherwise stated, the results are based

on top-1 fine label classification accuracy (%).

A. Implementation Details and Base Models

We consider two existing CNN architectures as our base

models. These base models can be used in our experiments

with several minor modifications.

NIN: For the CIFAR100 dataset, a 3-layer Network-In-

Network (NIN) [8] is used as the base model, this base

model is a replication of the one used in the original paper.

For the ImageNet dataset, we choose a 4-layer NIN [8],

which has more depths and number of parameters compared

with the 3-layer model. Both models have also been used

as base net for HD-CNN [14] and Taxonomy-Regularized

Deep CNN [15]. Since NIN architecture will generate class-

wise feature maps by itself, we can directly use it in

our experiments with only minor modification (change the

output volume of the last convolutional layer to match the

number of fine classes and remove the softmax layer).

Note that although we use the same notation NIN for the

two NINs in the experiments for CIFAR100 and ImageNet,

they are different models as we have stated above. This also

holds true for the following AlexNet models.

AlexNet: Here we consider a small scale AlexNet intro-

duced in [18] as the second base model for CIFAR100. It

differs from the original AlexNet[3] in two ways to make it

more suitable to be used for small datasets like CIFAR100.

First, it has 3 convolutional layers instead of 5. Second, the
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Figure 5: Top-1 validation accuracy on CIFAR100 dataset

using NIN as base model. We achieve the best validation

performance with λ = 1.

convolutional layers are followed by one fully connected

layer instead of three. We set the dimension of the feature

map to be 36 (i.e. d = 36). In order to use it for our purpose,

we replace the last FC1001 layer with a FC1024 layer and

attach Nf
2 parallel FC36 layers behind it. The resulting

model will be able to generate a feature map for each of

the 100 fine classes.

For the ImageNet dataset, we use the popular

ILSVRC2012 winning model AlexNet[3]. Our

implementation of AlexNet is the same as the Caffe

AlexNet [19], except that ours is a single column version,

which has unrestricted connectivity between layers. For this

model, the FC1000 layer is removed and Nf parallel FC36

layers are attached to generate the per-class feature maps.

B. CIFAR100

The CIFAR100 dataset [17] consists of 60000 32x32 color

images from Nf = 100 fine classes. Each fine class has

500 training images and 100 test images. These 100 fine

classes are further grouped into Nc = 20 coarse classes,

with exactly 5 fine classes in each coarse class. For example,

the coarse class flowers contains 5 different fine classes:

orchid, poppy, rose, sunflower and tulip. See Fig. 2 for some

example classes on this dataset.

For each fine class, we randomly choose half of the train-

ing images to be part of the coarse label subset Scoarse and

the remaining half to be part of the fine label subset Sfine,

i.e. |Scoarse| = |Sfine| = 0.5|S| where S = Scoarse∪Sfine.

We use a small set of images from the training set as

validation to set the hyperparameters. Once the optimal

hyperparameter is chosen, we reset our model and learn it

on the entire training set. All the images are preprocessed

with global contrast normalization and ZCA whitening as in

[20], [8].

As stated in Sec. IV-D, the weighting parameter λ helps to

balance the relative importance of our two loss components.

We first conduct a series of experiments to see how the

performance varies when λ changes. The result is shown

1FC100 denotes a fully connected layer with an output volume of 100.
2Nf = 100 for CIFAR100 dataset and 387 for ImageNet subset.

method NIN AlexNet

baseline 51.28 45.98
ours 57.40 49.15

upper bound 64.32[8] 52.80

Table I: Results on the CIFAR100 dataset. We report the

overall accuracy of the fine label prediction. We consider

two base models: NIN, AlexNet. For each base model, we

compare our method (2nd row) with a baseline approach

(1st row) which ignores Scoarse and learns a standard

classification using only Sfine. Our method significantly

outperforms the baseline in all cases. We also show the

result of an oracle model (3rd row). This oracle model

is obtained by learning a standard classification model on

Sfine∪Scoarse, but it uses the fine labels for Scoarse (while

our method uses the coarse labels on Scoarse). This oracle

model can be considered as an upper bound for our method.

in Fig. 5. Based on this result, we set the hyperparameter

λ = 1 for all the following experiments in this paper.

Table I (2nd row) shows the result of our method (trained

on S = Sfine∪Scoarse) using each of the two base models.

For comparison, we consider a baseline method that learns

the model using only the subset Sfine. In other word, this is

a standard classification model trained on Sfine. The result

of this baseline approach is shown in Table I (1st row).

Our approach significantly outperforms the baseline method

in all cases. For both the baseline and our approach, NIN

performs much better than AlexNet on this dataset. This is

probably because this dataset is relatively small. Although

AlexNet is a powerful model, it is designed for large-scale

datasets (e.g. ImageNet) and might be prone to overfitting

on small datasets (e.g. CIFAR100).

We also consider an oracle model learned from the entire

training data S = Sfine∪Scoarse, but the learning algorithm

has access to the fine labels on Scoarse as well. In other

words, this is similar to the baseline method (1st row in

Table I), but the oracle model is trained on a larger training

dataset. The result of this oracle will establish an upper

bound for our method, i.e. this is the performance that our

model can achieve in the extreme case when the entire

training data have fine labels. The result of this oracle model

is shown in Table I (3st row).

Fig. 6 shows some qualitative examples of the our method

and the baseline NIN model on the CIFAR100 dataset. As

we can see from the first two rows, compared with the

baseline model, the top-5 predictions made by our model are

more semanticly relevant to the ground truth and contains

more fine classes from the same coarse class as the ground

truth. For example, for the rose (one of the fine classes from

the coarse class flowers) image in the 2nd row, our model

has 5 fine classes belonging to the coarse class flowers as its

top-5 guesses while the baseline model has only two. This

also holds true even for the failure cases in the 3rd row.



In addition, we have found that the base network is easily

fooled by objects with similar shape or color from other

coarse classes. For example, in the 4th row, the baseline

model misclassifies ray and shark (both belong to the coarse

class fish) as dolphin, which is from another coarse class

aquatic mammals. This is probably because the example

images of ray and shark highly resemble those of dolphin.

However, our model is able to avoid this kind of mistakes

since it is trained to leverage the knowledge from extra

coarsely labeled data.

C. ImageNet

We use a subset of the ILSVRC 2010 dataset [1] as our

second dataset and this dataset has also been used in [4]

for the same problem. We follow the experiment setup in

[4]. The leaf synsets of ILSVRC 2010 are collected as fine

classes and their parents as coarse classes, and the class

subtrees that overlap are ignored. The original training set

are reduced to have 487K images for Nc = 143 coarse

classes and Nf = 387 fine classes. Among those 143 coarse

classes, 94 of them have 2 fine classes, 26 of them have 3

fine classes, and the rest have 4-9 fine classes. There are

between 1.4K and 9.8K images for each coarse class and

between 668 and 2.4K images for each fine class. For the

validation set and test set, there are 50 and 150 images per

fine class respectively. The reduced training set is then split

into two disjoint sets for each fine class. The set Scoarse has

only coarse labels, while the set Sfine has both fine labels

and coarse labels. We assume |Scoarse| = |Sfine| = 0.5|S|
unless specified otherwise.

During both training and testing time, the original images

are resized to have a minimum side of 256 pixels. Randomly

cropped and flipped 224x224 patches are forwarded into the

learning algorithms. During testing, we follow the 10-view

testing in [3]. The predictions of ten 224x224 patches (the

center patch and 4 corner patches as well as their horizontal

reflections) are averaged as the final prediction.

It is worth noting that we train all the models from scratch.

In computer vision, a common practice for learning CNNs

is to use some model pre-trained from ImageNet as the

starting point and fine-tune the model on the training data

[15]. However, this is problematic in our setting. The fine

classes on this dataset are a subset of ImageNet. So any

model pre-trained on ImageNet would implicitly have seen

the fine labels of a large portion of the images from Scoarse.

Because of this, we choose to learn the model from scratch

without using any pre-trained models.

Following [4], we evaluate the performance of our

model by varying the relative size of Scoarse and Sfine.

We first fix |Scoarse| = 0.5|S| and vary |Sfine| ∈
{0.1|S|, 0.2|S|, 0.5|S|}. Table II shows how the performance

varies with different sizes of |Sfine| when using either NIN

or AlexNet as the base model. Again, we compare our

method with the baseline that only uses Sfine and the upper

|Sfine| 0.1|S| 0.2|S| 0.5|S| 0.1|S| 0.2|S| 0.5|S|
baseline 32.51 43.90 56.49 39.28 50.58 63.40

ours 50.77 56.70 65.97 58.43 62.27 67.23

upper bound 62.47 64.11 66.93 64.98 65.45 68.73

NIN AlexNet

Table II: Results on ImageNet (with either NIN or AlexNet

as the base model) for different Sfine sizes. We fix

|Scoarse| = 0.5|S| and set |Sfine| to 0.1|S|, 0.2|S| and

0.5|S|. Similarly to Table I, we compare our method (2nd

row) with the baseline method (1st row) that only uses Sfine.

We also list the results of the oracle model (3rd row) to

provide an upper bound for our method.

|Sfine| 0.1|S| 0.2|S| 0.5|S|
[4] 14.71 16.37 18.46

ours (NIN) 50.77 56.70 65.97
ours (AlexNet) 58.43 62.27 67.23

Table III: Comparison of our methods (with either NIN or

AlexNet as the base model) with previous work in [4] for

different Sfine sizes on ImageNet. We fix |Scoarse| = 0.5|S|
and set |Sfine| to 0.1|S|, 0.2|S| and 0.5|S|. Again, we

compare our method (2nd row) with the baseline method (1st

row) that only uses Sfine. Our method outperforms the

results in [4]. The relative improvement is more significant

when the fine labeled dataset is smaller.

bound performance from the oracle model. We can see that

when |Sfine| becomes larger, all the models perform better.

Both of our models obtain a performance very close to that

of the oracle model (65.97% vs 66.93% for NIN, 67.23%

vs 68.73% for AlexNet). This clearly shows the ability of

our model to utilize the extra coarsely labeled data.

For comparison, we also list the our method (with NIN or

AlexNet as the base model) with [4] in Table III. Since [4]

is not a CNN-based method, it performs much worse than

ours. In fact, even our baseline trained only on Sfine can

significantly outperform [4].

Next we fix |Sfine| = 0.5|S| and vary |Scoarse| ∈
{0.1|S|, 0.2|S|, 0.5|S|}. The results are shown in Table IV.

When |Scoarse| becomes larger, the performance of our

method increases as well. Note that the performance of

the baseline stays the same since the baseline only uses

|Sfine|, so increasing |Scoarse| will not have any effect on

the baseline.

We compare our methods with [4] in Table V when we

fix |Sfine| and vary |Scoarse|. Again, our method performs

significantly better since [4] is not a CNN-based approach.

Fig. 7 shows some qualitative examples of the our method

and the base model (NIN) on the ImageNet dataset. From

the examples, we can make observations similar to those on

the CIFAR100 dataset. The first three rows show that our

model has the ability to make more relevant predictions.

The last row shows examples where the baseline model is

confused by similar objects from other coarse classes, while
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Figure 6: Qualitative examples of baseline NIN model and our model on the CIFAR100 dataset. Ground-truth labels are

marked in red. We use ∗ to indicate that the fine classes belong to the same coarse class as the ground-truth. The first three

rows show that our model can predict more relevant objects in its top-5 guesses. In addition, the ability of our model to

utilize extra coarse labels during training helps it to avoid misclassifying objects into similar objects that belong to another

coarse class. Examples are in the 4th row.

|Scoarse| 0.1|S| 0.2|S| 0.5|S| 0.1|S| 0.2|S| 0.5|S|
baseline 56.49 56.49 56.49 63.40 63.40 63.40

ours 62.53 62.78 65.97 64.19 65.00 67.23

upper bound 63.09 63.54 66.93 65.02 65.94 68.73

NIN AlexNet

Table IV: Results on ImageNet (with either NIN or AlexNet

as the base model) for different Scoarse sizes. We fix

|Sfine| = 0.5|S| and set |Scoarse| to 0.1|S|, 0.2|S| and

0.5|S|. The accuracy increases when there are more coarse

labeled data available.

|Scoarse| 0.1|S| 0.2|S| 0.5|S|
[4] 17.87 18.13 18.46

ours (NIN) 62.53 62.78 65.97
ours (AlexNet) 64.19 65.00 67.23

Table V: Comparison of our methods (with either NIN or

AlexNet as the base model) with previous work in [4] for

different Scoarse sizes on ImageNet. We fix |Sfine| = 0.5|S|
and set |Scoarse| to 0.1|S|, 0.2|S| and 0.5|S|. We compare

our method (2nd row) with the baseline method (1st row)

that only uses Sfine. Our method outperforms the baseline

with no surprise.

our model can make the correct predictions.

VI. CONCLUSION

In this paper, we have investigated the problem of learning

image classification when a subset of the training data (i.e.

Sfine) are annotated with fine labels, while the rest (i.e.

Scoarse) are annotated with coarse labels. Our goal is to

use such weakly labeled data to learn a classifier to predict

the fine labels during testing. We have proposed a CNN-

based approach to address this problem. The commonalities

between fine classes in the same coarse class are naturally

captured by min-pooling in our CNN architecture. Our

experimental results on CIFAR100 and ImageNet show

that our method outperforms the baseline that learns to

classify fine labels only based on Sfine. Our method also

significantly outperforms previous work [4] addressing the

same problem.
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