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thank for many fruitful discussions. I thank our system administrator Torge Storm for always

fixing my machine and providing enough data space for all my sequences which was really a

hard job. Of course I also would like to thank the other members of the group Jan Woetzel,

Daniel Grest, Birger Streckel and Renate Staecker for their help, the discussions and providing

the exciting working environment.

Last but not least, I would like to express my gratitude to my wife Miriam for always

supporting me and my work. I also want to thank my sons Joshua and Noah for suffering

under my paper writing. Finally I thank my parents for always supporting my education and

my work.

i





Contents

1 Introduction 1

2 Basic concepts 5

2.1 Camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Plane at infinity π∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Absolute conic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Absolute dual quadric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Multiple-View geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Homography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Fundamental matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.3 Essential matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Rotation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Self-Calibration using the absolute conic . . . . . . . . . . . . . . . . . . . . . . 22

2.8.1 Kruppa equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Self-Calibration with the absolute dual

quadric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Critical camera motions for self-calibration . . . . . . . . . . . . . . . . . . . . . 25

3 Previous work on self-calibration 31

3.1 Self-Calibration of a rotating camera . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Camera with constant intrinsics . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Camera with some varying intrinsics . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Camera self-calibration with some known extrinsics . . . . . . . . . . . . 36

3.1.4 Error analysis of calibration from purely rotating cameras . . . . . . . . 40

3.2 Self-Calibration from general motion . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Camera with constant intrinsics . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Camera with varying intrinsics . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Multi-Camera system with constant inner orientation . . . . . . . . . . . 47

4 Self-Calibration with known rotation 51

4.1 Rotating camera with known orientation . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Self-Calibration with fully varying intrinsic parameters . . . . . . . . . . 52

4.1.2 Self-Calibration with constant intrinsic parameters . . . . . . . . . . . . 54

iii



iv CONTENTS

4.1.3 Relation to the general self-calibration . . . . . . . . . . . . . . . . . . . 55

4.1.4 Evaluation for rotating cameras . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.5 Error in rotations about the coordinate axes . . . . . . . . . . . . . . . . 61

4.1.6 Influence of errors in rotation . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.7 Comparison to previous approaches . . . . . . . . . . . . . . . . . . . . . 69

4.2 Freely moving camera with known orientation . . . . . . . . . . . . . . . . . . . 72

4.2.1 Linear self-calibration with fully varying intrinsic parameters . . . . . . . 72

4.2.2 Constraints needed to reach a linear calibration . . . . . . . . . . . . . . 73

4.2.3 Evaluation for freely moving cameras . . . . . . . . . . . . . . . . . . . . 74

4.2.4 Influence of errors in rotation . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.5 Relation to the Kruppa equations . . . . . . . . . . . . . . . . . . . . . . 80

4.2.6 Relation to the general self-calibration . . . . . . . . . . . . . . . . . . . 80

4.3 Critical motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 No rotation at all or rotations about 180◦ . . . . . . . . . . . . . . . . . 83

4.3.2 Rotation about one axis . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 Rotation about the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.4 Rotation about the y-axis . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.5 Rotation about the z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Experimental results 89

5.1 Results for a rotating camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Algorithm for self-calibration with known orientation . . . . . . . . . . . 89

5.1.2 Synthetic scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.3 Real image sequence with constant camera parameters . . . . . . . . . . 96

5.1.4 Real image sequence with varying parameters . . . . . . . . . . . . . . . 99

5.2 Experimental results for a freely moving camera . . . . . . . . . . . . . . . . . . 102

5.2.1 Algorithm for self-calibration of a freely moving camera . . . . . . . . . . 102

5.2.2 Synthetic scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.3 Real image sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusions 111

A Projective geometry and camera model 113

A.1 Camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1.1 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2 Projective geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2.1 Projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2.2 Transformations in projective space . . . . . . . . . . . . . . . . . . . . . 119

A.2.3 Two dimensional projective space IP2 . . . . . . . . . . . . . . . . . . . . 120

A.2.4 Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2.5 Three dimensional projective space IP3 . . . . . . . . . . . . . . . . . . . 125

A.2.6 Quadric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2.7 From world to pixel coordinates . . . . . . . . . . . . . . . . . . . . . . . 128



CONTENTS v

A.2.8 Projection matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2.9 Radial distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B Purely Rotating camera 135

B.1 Self-calibration with varying intrinsics . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2 Self-calibration equations for cameras with zero skew . . . . . . . . . . . . . . . 137

B.3 Self-calibration with constant intrinsics . . . . . . . . . . . . . . . . . . . . . . . 139

C Freely moving camera 141

C.1 Freely moving camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

D Sensitivity of rotation calibration 145

D.1 Sensitivity for a purely rotating camera . . . . . . . . . . . . . . . . . . . . . . . 145

D.2 Sensitivity for a freely moving camera . . . . . . . . . . . . . . . . . . . . . . . . 147

E Critical Rotations 149

E.1 No rotation of the camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

E.2 Rotation about the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

E.3 Rotation about the y-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

E.4 Rotation about the z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153





Notation

For a better readability the notation used throughout the thesis will be summarized here. For

matrices of any dimension capital letters will be used for example A. If the dimension of the

matrix A is of interest then it will be denoted as subscript e.g. An×m for a n×m matrix. The

element in row r and column c of the matrix is denoted as (A)r,c.

Unless stated differently the indices j, i and k will be used for image indices. The 3 × 4

projection matrix of a metric camera will always be denoted as P . If it is a projective camera

projection matrix it is denoted as P p.

Further the following notations are used for the different geometric entities:
x̄ = [x, y]T point in the Euclidian space IR2

X̄ = [X, Y, Z]T point in the Euclidian space IR3

x = [x, y, w]T point in the projective space IP2

X = [X, Y, Z, W ]T point in the projective space IP3

π plane in projective three dimensional space IP3

π∞ plane at infinity

Hπ
j,i homography that maps a point from image j into image i

over the plane π

Fj,i Fundamental matrix that maps a point from image j into

a line in image i

ei epipole in image i

Ki camera calibration matrix of camera i

Rj,i rotation between camera j and i

Ω absolute conic

ω image of the absolute conic

ω∗ dual image of the absolute conic
∼= equality up to scale

‖A‖F Frobenius norm of the matrix A

φ rotation angle of the rotation about the x-axis

Φ rotation angle of the rotation about the y-axis

Θ rotation angle of the rotation about the z-axis

vii





Chapter 1

Introduction

One research topic of computer vision is to obtain a 3D-model of a scene from images of

the scene. Image based reconstructions are capable of modeling even small details of the

observed scene. Due to the achievements in computer graphics and the development of consumer

computer graphics cards such reconstructions can be displayed even on a standard computer.

This development created a need for automatic model generation for visualization purposes,

that can be generated by the scene reconstruction techniques known in computer vision. These

models often look more realistic than hand-crafted models used in the past because they exploit

the texture information contained in the images. They allow the reconstruction of small details

and exhibit a very natural visual appearance that can’t be reached by hand-crafted models.

The first approaches for reconstruction from two images used cameras undergoing unknown

motion with known intrinsic camera parameters like focal length and principal point were pro-

posed by [LH81, TH84]. Hence the unknown camera motion has to be estimated simultaneously

with the reconstruction of the scene. This estimation of scene geometry and camera motion

is called structure from motion. Later Azerbayejani et al. in [AHP93], Spetsakis and Aloi-

monos in [SA90] and Szeliski and Kang in [SK93] proposed approaches to use image sequences

and a full perspective camera model. A method for structure from motion using factorization

and an affine camera model were proposed by Tomasi and Kanade [TK92]. In this case the

major remaining problem is the correspondence problem. Given an image of a 3D scene point

in one camera image the challenge is to find the image of the same 3D scene point in any other

camera image of the scene. This estimation of correspondences is a research topic of its own.

In computer vision research was undertaken during the last decade to weaken the con-

straints of known camera parameters. This leads to the scene analysis from uncalibrated image

sequences often called uncalibrated structure from motion and it is still an active research

topic. The camera motion in this case can be determined only up to a projective transformation.

The earlier work in this field was pioneered by Faugeras in [Fau92] and Hartley in [Har92] for

two camera images. Beardsley et al. proposed an approach for reconstruction from multiple

images in [BTZ96]. The reconstruction up to a projective transformation has the disadvan-

tage that there is no meaningful measurement of angles and distances possible in the skewed

projective space. Hence the knowledge of the projective transformation is required in order to

transform the projective reconstruction into a metric reconstruction.

The estimation of this projective transformation from the images themselves or from the

1



2 CHAPTER 1. INTRODUCTION

projective reconstruction is the subject of self-calibration. It includes the calibration of the

intrinsic camera parameters and the transformation from a projective reconstruction into an

affine reconstruction by determining the position of the plane at infinity. The major progress

in self-calibration occurred in the last thirteen years. The first contribution in this field was

the work of Maybank and Faugeras in [MF92] when they proved that it is possible to estimate

the constant intrinsic parameters of a camera that moves freely observing an unknown scene.

In the following years several self-calibration techniques were proposed by Hartley in [Har94a],

Maybank et al. in [FLM92], Heyden et al. in [HÅ96] and Triggs in [Tri97] that improved

the performance of the achieved results and introduced new self-calibration concepts like the

absolute quadric. In the late nineties researchers proposed techniques to overcome the limitation

of constant intrinsic parameters for the camera, e.g. Heyden et al. in [HÅ97, HÅ98] and Pollefeys

et al. in [PKG98, PKG99]. All these approaches use the image data alone and sometimes

additional constraints for camera motion, constraints on scene structure respectively constraints

on the camera calibration like a limited number of varying intrinsic parameters. Since the

self-calibration approaches have to rely on the available image content they may suffer from

degeneracy and uncertain data. Therefore the self-calibration approaches tend to be sensitive

to noise. After the introduction of the first approaches for uncalibrated structure from motion

it was realized that there are some critical motion sequences for the camera self-calibration

which lead to errors during the reconstruction process.

Often the images are not the only source of information that is available. Fortunately, in

many applications additional information like orientation is available. This is delivered by other

sensors like the rotation information of the motor of surveillance cameras (video conferencing

cameras) or arm positions of cameras mounted on robots. Cameras in cars use inertial sensors

to measure orientation or TV studios often already measure the orientation of the camera with

in-door tracking systems. Future cars will be equipped with fixed or even rotating or zooming

cameras for driver assistance, where at least partial orientation and translation information

is available. This additional information is not exploited to improve camera calibration by

most of the self-calibration approaches mentioned above. There were only a few approaches

proposed in the early nineties that incorporated the known camera orientation. Basu in [Bas93]

simultaneously with Du and Brady in [DB93] introduced a self-calibration for a rotating camera

in an active vision system. These approaches needed an explicit control of the camera motion.

Stein introduced an approach that uses arbitrary camera motion to calibrate the intrinsic

camera parameters in [Ste95]. All of these approaches that use the orientation assume to have

a camera with constant intrinsic parameters that rotates about its optical center.

The self-calibration of the intrinsic camera parameters using available orientation data of

the camera is the major topic of this thesis. The proposed approach does not require any

active control of the camera nor constant intrinsic parameters. First of all an approach for

the self-calibration of a camera rotating about its optical center with known orientation will

be proposed. Additionally a self-calibration technique for a freely moving camera with known

orientation will be introduced. Accordingly, the motion of the camera can be arbitrary due to

the fact that an automatic model switching as proposed by Torr in [Tor97, Tor98] can choose

the right self-calibration approach in dependence of the camera motion.
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Furthermore the known orientation provides information that helps to detect critical motion

sequences for reconstruction. Hence using the camera orientation improves the reliability of

scene reconstruction from image sequences. The benefits of using the proposed self-calibration

methods in conjunction with scene reconstruction has already been published in [FK03a]. Basi-

cally using the proposed self-calibration leads to a direct estimation of an Euclidian reconstruc-

tion without any intermediate projective reconstruction. This provides a more constrained and

stable model generation process. The next section will summarize the main contributions of

this work.

Main contributions of the thesis

The main contributions of this thesis can be summarized as follows:

• A self-calibration approach for rotating cameras with known orientation will be intro-

duced. This approach does not require any constraints on the intrinsic camera param-

eters in contrast to all previously proposed approaches. Furthermore it is the only self-

calibration that is linear in the intrinsic camera parameters. This approach was already

published in [FK03b]. The extension of this approach using the statistical properties of

the errors in order to get a more reliable self-calibration was published in [FK03c].

• For a rotating and freely moving camera with known orientation a self-calibration ap-

proach was introduced in [FK03b]. This technique is also linear in the intrinsic camera

parameters. To achieve a linear solution one constraint on the intrinsic camera param-

eters is needed, e.g. one component of the principal point. This self-calibration can be

done even if it is not possible to establish a consistent reconstruction for all involved

cameras because it only uses pairwise image relations. An improvement of this technique

for self-calibration without any constraint on the intrinsic camera parameters that further

exploits the statistical properties of the errors was published in [FK03c].

Overview of the thesis

The basic concepts used throughout the thesis and the relations between two different images of

a static scene are discussed in chapter 2. Furthermore it will introduce the different concepts of

self-calibration and reconstruction. The general technique of calibrated structure from motion

is introduced and afterwards the uncalibrated structure from motion is described. The absolute

conic and the absolute quadric as frequently used entities for self-calibration are also discussed

in chapter 2. The following chapter 3 will give a detailed overview of the previous work in

self-calibration.

In chapter 4 the new linear calibration approaches for cameras with known orientation are

introduced. After a detailed description of the new approaches the relation to the previous

work is discussed. Furthermore the robustness of the proposed approaches is measured using

synthetic data and analyzed analytically. Afterwards the critical camera rotations for self-

calibration with the novel approaches are analyzed. In chapter 5 the new approaches are
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evaluated using synthetic data and real image sequences with ground truth data. Chapter 6

will summarize the achievements of this work.



Chapter 2

Basic concepts

The main subject of this thesis is camera self-calibration by exploitation of the known orienta-

tion of the camera. In this chapter the basic concepts of multi-view geometry will be introduced

as well as the basic geometric entities exploited by the various self-calibration techniques. A

general knowledge about projective geometry, conics in the two dimensional projective space

IP2, quadrics in the three dimensional projective space IP3 and the camera model in these

spaces is needed for the understanding of this chapter. These entities are explained in detail in

appendix A.

After a short overview of the used notation for points, camera projection matrices and the

camera calibration matrix in section 2.1 the sections 2.2 to 2.4 will introduce special entities

of the projective space that are often exploited for self-calibration. Afterwards section 2.5

will investigate the relations between multiple images of the same static scene. There are two

types of image relations between two different views of the same scene. These relations are

the homography, explained in section 2.5.1, and the Fundamental matrix introduced in section

2.5.2. Depending on the camera motion and the scene structure one of these two relations is

present between two different views.

The first major work on self-calibration (denoted as auto-calibration in [HZ03]) of a camera

by simply observing an unknown scene was presented in [MF92, FLM92]. It was proven that self-

calibration was theoretically and practically feasible for a camera moving through an unknown

static scene with constant but unknown intrinsics. Since that time various methods have

been developed. There are two major types of self-calibration methods. The first type of

methods uses constraints on the image of the absolute conic. The second major type of methods

determines the intrinsic camera parameters and the position of the plane at infinity by placing

constraints on the dual absolute quadric. Section 2.7 will introduce the general problem of

reconstructing a 3D scene from a sequence of images. It will show the limitations introduced

for the reconstruction from uncalibrated cameras. The following sections 2.8 and 2.9 will

introduce the two major types of self-calibration methods to overcome the limitations of the

reconstruction from uncalibrated cameras. The last section 2.10 of this chapter will discuss

the image sequences that are critical for self-calibration caused from specific camera motions

during the image taking.

5



6 CHAPTER 2. BASIC CONCEPTS

2.1 Camera model

This section will introduce the notation used to describe the camera projection and the intrinsic

camera parameters. A more detailed explanation is given in appendix A.2.7 and appendix A.2.8.

The projection of a 3D scene point X̄ ∈ IR3 in homogenous coordinates X = [X, Y, Z, W ]T ∈
IP3 onto an image by a camera may be modeled by the equation

x = PX. (2.1)

where the image point x in projective coordinates is x = [x, y, w]T ∈ IP2 and P is the 3 × 4

camera projection matrix (see appendix A.2.8). The matrix P is a rank-3 matrix which is the

camera projection matrix in metric spaces given by

P = K[RT | −RT C̄], (2.2)

and is called metric. The rotation matrix R and the vector C̄ ∈ IR3 represent the Euclidian

transformation between the camera and the world coordinate system. These parameters are

called extrinsic parameters since they describe the camera pose in the world coordinate

system. The intrinsic parameters of the camera are contained in the camera calibration

matrix K which is an upper triangular matrix

K =

 f s u

0 a · f v

0 0 1

 , (2.3)

where f is the focal length of the camera expressed in pixel units. The aspect ratio a of the

camera is the ratio between the size of a pixel in x-direction and the size of a pixel in y-direction.

The principal point of the camera is [u, v]T and s is a skew parameter which models the angle

between columns and rows of the CCD-sensor. More details about the camera calibration are

given in appendix A.2.7.

In projective spaces IPn two points x and y are equal if the a scale ρ exists such that

x = ρy with ρ 6= 0. (2.4)

This is called equality up to scale and will be denoted by∼= throughout this thesis. The following

sections will introduce some special geometric entities of the three dimensional projective space

IP3 that are often used for self-calibration.

2.2 Plane at infinity π∞

The plane at infinity π∞ is the extension of the three dimensional space IP3 that is not contained

in the Euclidian space IR3. As explained in appendix A.2.2 points on the plane at infinity π∞
stay on the plane at infinity under affine point transformations in IP3. Please note that a point

is moved on the plane at infinity by an affine transformation but it does not leave it. Since

the plane at infinity π∞ is described by the vector [0, 0, 0, 1]T ∈ IP3 it has the normal vector

nπ = [0, 0, 0] and its distance d∞ to the origin is infinity as explained in appendix A.2.5.
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Parallelism of planes can be defined with the plane at infinity similar to parallelism of lines

in IP2 which exploits the line at infinity (see appendix A.2.3).

Theorem 1 (Parallelism of planes) Two planes are parallel if and only if the line of inter-

section is on the plane at infinity π∞.

This can be proved similar to the proof of the theorem of the parallelism of lines given as

theorem 9 in appendix A.2.3. Furthermore for a line parallel to a plane the following constraint

is sufficient.

Theorem 2 (Line parallel to a plane) A line and a plane are parallel if and only if the

point of intersection between the line and the plane is on the plane at infinity π∞.

With these two theorems it is easy to understand that affine transformations in IP3 preserve

parallelism of planes and likewise the parallelism of planes and lines because the intersection

points remain on the plane at infinity π∞.

2.3 Absolute conic

The absolute conic Ω∞ is a point conic that lies on the plane at infinity π∞. For the plane

at infinity at position π∞ = [0, 0, 0, 1]T (often called metric framework) the absolute conic is

defined by the two following equations

X2 + Y 2 + Z2

W 2

}
= 0. (2.5)

These equations hold for points X = [X, Y, Z, W ]T ∈ IP3 that are on the absolute conic Ω∞.

This can be simplified for point X = [X, Y, Z, 0]T ∈ π∞ on the plane at infinity to

[X, Y, Z]I3×3[X, Y, Z]T = 0. (2.6)

Hence for all points on the plane at infinity in a metric framework the conic matrix C∞ of the

absolute conic is given as the identity matrix I3×3. Further from (2.6) it can be seen that the

absolute conic does not contain real points on the plane at infinity. Conics that do not contain

real points are called proper virtual conics. Proper virtual conics are non-degenerate conics

that does not contain any real point on the defining plane.

A useful property of the absolute conic Ω∞ is that it is a fixed conic under any similarity

transformation. This is formalized by the next theorem.

Theorem 3 (Absolute conic is fixed under similarity transformations) The absolute

conic Ω∞ is fixed under any projective transformation if and only if it is a similarity trans-

formation. That means

H−T Ω∞H−1 = Ω∞



8 CHAPTER 2. BASIC CONCEPTS

Proof: It is mandatory that the point transformation H is an affine transformation because

only affine transformations leave the points on the plane at infinity π∞ on the plane at infinity.

For the remainder of the proof only the transformation of points on the plane at infinity is used.

Then the conic matrix is Ω∞ = I3×3. Using the structure of an affine transformation (A.26)

and the transformation rule for conics (A.22) leads to A−T
3,3 I3×3A

−1
3,3 = I3×3. This requires an

orthogonal matrix A3,3 so the transformation has to be a similarity transformation.2

This invariance under similarity transformations means that for a moving and rotating

camera the image of the absolute conic only depends on the camera calibration. Hence this

invariance to the motion of the camera provides an omnipresent calibration object which can

be used to compute the intrinsic camera parameters. For example in the real world the moon

is invariant against translation. E.g. if one moves on a straight street the moon is always at

the same position. Hence the moon can be seen as a translation invariant object because its

image position does not depend on the camera translation. There is no example for rotation

invariant objects in the real world since it can’t contain any real point as shown above. So far,

it was shown that the image of the absolute conic in the camera is always at the same position

because the translation and rotation of the camera doesn’t matter for its image position.

2.4 Absolute dual quadric

In the previous section the absolute conic Ω∞ was introduced. This section will focus on the

dual of the absolute conic Ω∞. It is a degenerate quadric on the plane at infinity called the

absolute dual quadric Q∗
∞. The absolute dual quadric Q∗

∞ is formed by planes tangent to the

absolute conic. So the rim of these planes forms the absolute conic Ω∞ on the plane at infinity.

The corresponding point quadric is called the absolute quadric Q∞ and was first introduced by

Semple and Kneebone in [SK52].

The quadric matrix of the absolute dual quadric Q∗
∞ is in a metric framework given as

Q∗
∞ =

[
I3×3 0

0 0

]
. (2.7)

It can be easily seen that the conic has rank three. Hence the absolute dual quadric is a degen-

erate quadric. An absolute dual quadric transformed with a projective point transformation H

and use of the transformation rule for dual quadrics (A.33) leads to

(Q∗
∞)p = HQ∗

∞HT = H

[
I3×3 0

0 0

]
HT . (2.8)

From (2.7) and (2.8) it can be seen that the absolute dual quadric can be represented through

a symmetric 4 × 4 matrix. According to the full rank of the projective transformation H,

the transformed quadric (Q∗
∞)p has still rank 3 and is still a symmetric matrix. A symmetric

4× 4 matrix has generally ten independent parameters. The invariance to scale of the quadric

matrices reduces the number of degrees of freedom by one. Hence for the absolute dual quadric

there are eight degrees of freedom left due to the rank 3 constraint.

If the projective transformation H is a similarity transformation the absolute dual quadric

Q∗
∞ remains constant.
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Theorem 4 (Absolute dual quadric is constant under similarity transformations)

If and only if the projective transformation H is a similarity transformation the absolute dual

quadric Q∗
∞ is fixed under the transformation H

Q∗
∞ = HQ∗

∞HT .

The proof of this theorem is similar to the proof of theorem 3 about the fixed absolute conic

under similarity transformations.

It can be seen from (2.7) that the plane at infinity is the null vector of the absolute dual

quadric Q∗
∞. This can be verified by using the canonic form of the conic from (2.7) and the

quadric equation (A.31).

The next section will investigate the relations between two consecutive images of a static

scene.

2.5 Multiple-View geometry

This section will introduce the relation between multiple views of the same 3D scene. This

relation depends on the camera motion. For a camera rotating about its optical center (purely

rotating camera) a mapping between the two images can be computed from the camera ori-

entations and the camera calibrations. For a point in the first camera the mapping gives the

corresponding image point in the second camera. The details about this mapping process are

given in section 2.5.1. For a freely moving camera that observes a general 3D scene more knowl-

edge is required, otherwise only the projection of the projection ray into the second image can

be determined. In order to get a point-to-point mapping, knowledge about the depth dependent

shift (parallax) is needed. Section 2.5.2 explains this in detail.

2.5.1 Homography

For a purely rotating camera the optical center is fixed in space over time, because the projection

ray of a scene point is given by the line that contains the optical center and the 3D scene point.

Hence each projection ray is constant for a rotating camera. The corresponding points in two

images are intersections of the same projection ray with a rotated plane as illustrated in figure

2.1(a).

This section introduces the homography as a projective transformation in IP2. It is a plane-

to-plane mapping which means that the homography maps a point from one image plane onto

the corresponding point in the second image plane. In general it is a bijective mapping between

two planes. Interpreting the homography as a mapping between planes introduces a further

application for homography mapping. The homography is a mapping between an arbitrary

scene plane and the image plane. This plane-to-plane mapping does not limit the camera to a

pure rotation. Hence the camera is allowed to move and rotate freely because all points in the

first camera can be mapped over the scene plane into the second image. Algebraically this is

simply the concatenation of the homographies between the first image and the scene plane and

the scene plane and the second image. This is shown in figure 2.1(b).
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Figure 2.1: Mapping of point x̄1 from camera image 1 into point x̄2 in camera image 2. (a)
Homography mapping for a rotating camera. (b) Mapping with the homography over a world
plane.

To deduce the structure of the homography Hπ
j,i the 3D scene point X̄ on the world plane

π is projected into both cameras j and i (shown in figure 2.1(b) ). Without loss of generality

the coordinate system of camera j is assumed to be identical with the world coordinate system

which implies that Rj = I3×3 and C̄j = 03×1. The second camera is at position C̄i and has

orientation Ri. According to (2.2) the camera projection matrices are

Pj = Kj [I3×3|03×1] and Pi = Ki[R
T
i | −RT

i C̄i].

A 3D scene point X̄ = [X, Y, Z]T projects into the image point xj in the first image and the

image point xi in the second image. Using the projection matrices Pj and Pi the image points

xj and xi are given by

xj = Kj [X, Y, Z]T and xi = KiR
T
i [X, Y, Z]T −KiR

T
i C̄i. (2.9)

The transformation that maps the image point xj from the first image over plane π into the

second image at point xi is the homography Hπ
j,i:

xi
∼= Hπ

j,ixj . (2.10)

The image position for a 3D scene point X̄ that lies on plane π is developed in dependence on

the plane parameters nπ and dπ in the following. An image point xj = [x, y, 1]T in the first

camera has the 3D Euclidian world coordinates

X̄j = K−1
j [x, y, 1]T = K−1

j xj ∈ IR3. (2.11)

Together with the optical center C̄j = 03×1 of the camera it defines the projection ray rj

rj(ρ) = [0T
3×1, 1]T + ρ[X̄T

j , 0]T ∈ IP3

for the image point. The corresponding 3D scene point X on the plane π of xj is the intersection

point of the ray rj and the plane π. For the point X ∈ IP3 on the plane π exists a ρj such
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that X = rj(ρj) fulfills the plane equation (A.24) in IP3. Furthermore for each point M̄ on the

plane nT
π M̄ = −dπ holds, where nπ is the normal vector of the plane. Accordingly the scale ρj

of X is given as

ρj = − dπ

nT
π X̄j

(2.12)

Consequently the intersection point X on the plane π has the coordinates

X = rj(ρj) =

[
dπX̄j

−nT
π X̄j

]
. (2.13)

The projection of this point into the second camera with equation (2.9) delivers

xi = dπKiR
T
i X̄j + KiR

T
i C̄in

T
π X̄j ,

with X̄j from (2.11) it delivers

xi = dπKiR
T
i K−1

j xj + KiR
T
i C̄in

T
π K−1

j xj

⇔ xi = dπKi(Rj,i +
Rj,itj,i

dπ
nT

π )K−1
j xj , (2.14)

where Rj,i = RT
i Rj is the rotation between the cameras i and j. The translation between

camera j and camera i is denoted as tj,i = C̄i − C̄j = C̄i − 03×1. According to (2.10) the

homography Hπ
j,i is given as

Hπ
j,i = Ki

(
Rj,i +

Rj,itj,in
T
π

dπ

)
K−1

j , (2.15)

The homography Hπ
j,i of a purely rotating camera is a special case of the homography in (2.15)

because of the fixed camera center. Consequently the camera translation tj,i is zero, which

results in the homography H∞
j,i

H∞
j,i = KiRj,iK

−1
j (2.16)

for a purely rotating camera. The homography H∞
j,i in (2.16) is called the infinite homography

and maps over the plane at infinity.

Homography estimation from images The homography can be estimated from the images

alone. Most estimation techniques use image correspondences given as point matches, optical

flow etc. Using those correspondences the mapping (2.10) of a point from one image into another

image is performed yielding a constraint for the homography. Due to the two degrees of freedom

of a point in the two dimensional projective space IP2 equation (2.10) provides two constraints

for the homography. Any projective transformation in IP2 has eight degrees of freedom as

explained before. A counting argument leads to the conclusion that four independent point

correspondences are needed to estimate the homography.

The constraint for a homography Hj,i provided by a point correspondence (xk
j ,x

k
i ) between

the point xk
j in camera j and a point xk

i in camera i can be written with (2.10) and (A.10) as

xk
i ×

(
Hj,ix

k
j

)
= 03×1 (2.17)



12 CHAPTER 2. BASIC CONCEPTS

where × is the cross product of two vectors in IR3. This can be written as
01×3 −wk

i

(
xk

j

)T
yk
i

(
xk

j

)T

wk
i

(
xk

j

)T
01×3 −xk

i

(
xk

j

)T

−yk
i

(
xk

j

)T
xk

i

(
xk

j

)T
01×3


 (Hj,i)1,{1,2,3}

(Hj,i)2,{1,2,3}
(Hj,i)3,{1,2,3}

 = 03×1. (2.18)

This equation system contains two linear independent equations as a consequence of the two

degrees of freedom of a point in IP2. From four point correspondences a unique solution for

the homography can be computed. For more than four point correspondences a least squares

solution can be computed. If the data is noise free the estimated homography is the correct

homography.

Noise in the input data introduces an estimation error. Accordingly the estimation result

is not the exact homography. It is a general projective transformation that is close to the

homography but does not fulfill the constraints given by (2.15). Due to the scale invariance of

any projective transformation the estimated homography is arbitrary scaled with respect to the

homography in (2.15). I.e. the estimated homography is equal up to scale to the homography

in (2.15). According to the scale invariance of projective transformations the scale can’t be

determined.

So far it was introduced that the homography is a bijective point mapping between two

planes. This mapping can be estimated using the images correspondences only. The homogra-

phy depends on the extrinsic and intrinsic camera parameters as expressed in (2.15). The two

cases for homography mapping of camera images are a purely rotating camera on the one hand

and a freely moving camera that observes a planar scene on the other hand.

The next section will introduce the image relation between two images of a non planar 3D

scene captured by a freely moving camera.

2.5.2 Fundamental matrix

In the previous section a bijective transformation between two images was introduced. For a

freely moving camera that observes a general 3D scene the coordinates of an image point depend

on the depth of the scene point, on the intrinsic camera parameters and on the extrinsic camera

parameters. The original depth of the scene point can’t be measured in one image. Hence it is

not possible to compute a point to point mapping between two images.

However, for each point xj in an image j the projection ray can be determined. This

projection ray can be projected into a second image i. The projection is a line li that corresponds

to all possible depths of the 3D scene point. Therefore the corresponding point xi in the second

image has to lie on this line li. This line li is called epipolar line and is illustrated in figure

2.2. To be more precise the epipolar line li is a line segment. It starts with depth zero and

ends with the projection of the intersection point of the projection ray and the plane at infinity

π∞ into the second image. The point with depth zero is called the epipole ei, which is the

projection of the camera center C̄j into the second camera i. Hence all epipolar lines contain

the epipole since each projection ray starts at the camera center of the first camera j.
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The two camera centers C̄j and C̄i and the 3D scene point X define a plane, called the

epipolar plane. The epipolar line li is the intersection of the epipolar plane and the image

plane. This defines a corresponding epipolar line lj in camera j as the intersection of the

epipolar plane and the image plane of camera j. This relation between two images of a freely

moving camera observing a general 3D-scenes is called epipolar geometry.

X

j

epipolar plane

x

epipolar line

C
_

l 

e C epipole e

li

xj

j

j

_

i

i

i

Figure 2.2: Epipolar geometry: A point in one image lies on the corresponding epipolar line
in the other image. The epipolar line is the intersection of the epipolar plane with the image
plane.

This point-to-line relation can be described by a linear function, which will be deduced in

the following. As explained above, the epipole ei is the projection of the camera center C̄j into

camera i, and all epipolar lines li contain the epipole ei. It is known that a line in IP2 can be

defined by two points (for details see appendix A.2.3). Therefore a second point is needed to

define the epipolar line. This point can be constructed as the intersection of the projection ray

and an arbitrary plane π in the 3D scene coordinate system. This plane can either be virtual

or real. Once the plane π is fixed a homography Hπ
j,i can be used to map the point xj into

camera i. The point xi = Hπ
j,ixj in the second image can now be used to define the epipolar

line li. From the line equation (A.4) in IP2 it follows

li = ei × xi =
(
ei ×Hπ

j,i

)
xj = Fj,ixj . (2.19)

with

Fj,i = [ei]×Hπ
j,i = [ei]×Ki

(
Rj,i +

Rj,i

dπ
(C̄i − C̄j)n

T
π

)
K−1

j (2.20)

where [·]× is the cross product matrix1. The matrix Fj,i is called the Fundamental matrix.

It maps the point xj in image j onto a line li in image i. The choice of the mapping plane π

1The cross product matrix is the matrix form for the column-wise cross product of a vector a = [a1, a2, a3] ∈
IR3 with any matrix B ∈ IR3×·

[·]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .
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does not effect the resulting Fundamental matrix Fj,i:

Fj,i = [ei]×Hπo

j,i = [ei]×Hπu

j,i

for two different planes πo and πu. This will be proved in the following. The homography Hπo

j,i

has the structure from (2.15) and the Fundamental matrix Fj,i with the homography Hπo

j,i is

then given by

Fj,i = [ei]×

(
1

ρj,i
Ki

(
Rj,i +

Rj,i(C̄i − C̄j)n
T
πo

dπo

)
K−1

j

)
. (2.21)

Without loss of generality the center C̄j of camera j is the origin of the coordinate system. Then

from (2.1) it follows that the epipole ei is given as ei = KiRj,iC̄i. With that the Fundamental

matrix from (2.21) is

Fj,i =
1

ρj,i

(
[ei]×KiRj,iK

−1
j +

[ei]×ein
T
πo

K−1
j

dπo

)
. (2.22)

As the nullspace of the cross product matrix [ei]× is ei the Fundamental Fj,i matrix is

Fj,i =
1

ρj,i
[ei]×KiRj,iK

−1
j . (2.23)

It follows that the Fundamental matrix Fj,i is independent from the mapping plane of the

homography because the mapping plane is not contained in the fundamental matrix. This

leads to the following theorem

Theorem 5 (Decomposition of the Fundamental matrix) Given the Fundamental ma-

trix Fj,i between two camera images j and i the three parameter family of decomposition of the

Fundamental matrix is

Fj,i = [ei]×Hπ
j,i with Hπ

j,i = KiRj,iK
−1
j + eiv

T and vT =
nT

π

dπ
K−1

j , (2.24)

where v is a vector from IR3 that defines the mapping plane π for Hπ
j,i.

The projection to the image point xi of the 3D scene point X into camera i is always on

the line li. It can be expressed algebraically with the line equation (A.11) as

xT
i li = xT

i Fj,ixj = 0. (2.25)

The constraint is known as the epipolar constraint. From the epipolar constraint it can be

seen that the Fundamental matrix has rank 2 because the epipole is the right null space of

the Fundamental matrix Fj,i. This results from the nullspace of the cross product matrix [·]×.

The Fundamental matrix has seven degrees of freedom because a general 3× 3 matrix has nine

degrees of freedom; one is removed by the scale invariance and another by the rank 2 constraint.

The mapping of points from camera i into lines in camera j is given by the transposed

Fundamental matrix Fi,j = F T
j,i and can be deduced from the epipolar constraint (2.25) by

(xT
i Fj,i)xj = (F T

j,ixi)
Txj = lTj xj .

The epipole ej in camera j is the left nullspace of the Fundamental matrix Fj,i. After intro-

ducing the basic properties of the Fundamental matrix the computation of the Fundamental

matrix will be described in the next paragraph.
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Estimation of the Fundamental matrix The epipolar constraint (2.25) provides one linear

constraint for the Fundamental matrix Fj,i from a point correspondence in the two images. Since

the Fundamental matrix has seven degrees of freedom seven independent correspondences are

sufficient to compute the Fundamental matrix. From the epipolar constraint (2.25) the following

linear equation can be extracted for a correspondence (xj ,xi)

[xix
T
j yix

T
j wix

T
j ]︸ ︷︷ ︸

Af

f9×1 = 0. (2.26)

Hereby f = [(Fj,i)1,1, (Fj,i)1,2, . . . , (Fj,i)3,3] is the vector that contains the entries of Fj,i and the

point in camera i is given by xi = [xi, yi, wi]
T . For seven point correspondences a matrix Aseven

that contains the Af for the correspondences as rows can be constructed. The Fundamental

matrix is then computed as the nullspace of Aseven. The 7 × 9 matrix Aseven has rank seven.

Then the nullspace is two dimensional and every matrix F = λF1 + (1 − λ)F2 is a solution

of the linear equation system, where F1 and F2 are the Fundamental matrices corresponding

to the two null-vectors of Aseven. Exploiting the rank 2 and the resulting condition det(F ) =

det(λF1 + (1 − λ)F2) = 0 leads to the characteristic polynomial. The solution for the correct

Fundamental matrix is therefore the root of the polynomial.

The next section will introduce the Essential matrix as a specialization of the Fundamental

matrix. The Essential matrix exploits a known camera calibration to add more constraints for

the point-line mapping.

2.5.3 Essential matrix

The Essential matrix Ej,i is a Fundamental matrix for normalized coordinates and has the same

properties as the above introduced Fundamental matrix. It maps normalized image points from

image j to a line in image i. For normalized image points the calibration matrices Ki and Kj

are the identity matrices. Then from (2.23) it follows that the Essential matrix Ej,i is

Ej,i = [ei]×Rj,i = RT
j,i[Rj,itj,i]×. (2.27)

It follows that the Essential matrix has only five degrees of freedom. The rotation Rj,i and

the translation tj,i have both three degrees of freedom. The overall scale ambiguity reduces

the degrees of freedom by one. In addition to the Fundamental matrix the eigenvalues of the

Essential matrix have to fulfill the following constraint:

Theorem 6 (Eigenvalues of the Essential matrix) A matrix in IR3×3 is an Essential ma-

trix if and only if its singular values are one double singular value and the third singular value

is zero.

A proof for this constraint is given in [HZ03].

After introducing the relations between multiple views of a 3D scene the next section will

discuss the basic properties and representations of rotations.
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2.6 Rotation data

The subject of this thesis is the camera calibration from known orientation. The different

representations of orientation data will be introduced in this section. Some comparisons of the

different representations will also be given. In the following it will not be distinguished between

orientation and rotation.

According to Eulers rotation theorem every rotation can be described by a rotation about

the three axes x, y and z of the coordinate system. Hence the camera rotation can always be

described by a rotation about the three axes x, y and z. Then the rotation is an isometric

transformation in IR3 and it can be interpreted as projective transformation in IP2. In the

following the rotation is usually used as a projective transformation that maps points of IP2.

A parameterization is called fair parameterization if it does not introduce additional

numerical sensitivities than inherent in the problem itself [HT99]. This measurement for the

parameterization is used here to measure the quality of the parameterization (representation)

of the rotation.

Euler angles This is probably the best known parameterization of a rotation. Every rotation

R can be described as a concatenation of rotations about the axes x, y and z. The rotation

Rx, Ry and Rz for a right handed coordinate systems are given by

Rx(φ) =

 1 0 0

0 cos φ − sin φ

0 sin φ cos φ

 , Ry(Φ) =

 cos Φ 0 sin Φ

0 1 0

− sin Φ 0 cos Φ

 ,

Rz(Θ) =

 cos Θ − sin Θ 0

sin Θ cos Θ 0

0 0 1

 ,

where Rx, Ry and Rz are the matrices for rotation about the axes x, y and z. Then the rotation

R can be written as product of these three rotation matrices.

Due to the fact that the matrix multiplication is not commutative one has to choose the

”right” order of the matrices to get the wanted rotation matrix R. The non commutativity

here reflects the fact that the result of a sequence of rotations depends on the order of the

rotations. This disadvantage of the representation of the rotation makes it difficult to use this

representation as a sequence of rotations about the axis x, y and z . A more detailed overview

of the Euler angles can be found in [WW92]. The Euler angles are not a fair parameterization

of the rotation.

Summarizing it was seen that it is possible to represent an arbitrary rotation as a concate-

nation of rotations about the axes of the coordinate system and the resulting parameterization

is not fair.

Eigenvalues and eigenvectors of rotation matrices Each rotation in IR3 can be repre-

sented as an orthonormal2 3× 3 matrix. For the orthonormal matrices the computation of the

2A is an orthonormal matrix if and only if A−1 = AT . This shows that the transposed is the inverse matrix.
The orthonormal matrices are a group under multiplication. I.e. for two orthonormal matrices A and B the
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eigenvalues and eigenvectors is easier than in the general case [Wil65]. For a rotation matrix it

is known that the eigenvalue structure is:

eigval(R) = [1, eiφ, e−iφ], (2.28)

where φ ∈ [−π, π] [Pea83, Fra83]. According the identity matrix I3×3, that can be interpreted

as a zero rotation with φ = 0, then (2.28) leads to the triple eigenvalue 1. Once the eigenvalues

are computed the eigenvector can be calculated as the solution of the equation system

(R− λI)x = 0, (2.29)

where λ is an eigenvalue and x is the corresponding eigenvector. It was shown that the rotation

matrix always has one eigenvalue one and two complex eigenvalues that are conjugated.

Axis angle representation In general every rotation can be described by a rotation about

an axis r̄ by an angle φ. This representation gives a description of the rotation that is unique

up to a scale by one or minus one. I.e. the axis and angle can be scaled by −1 without changing

the transformation. This is easy to see because a scale of the rotation axis by minus one inverts

the direction of the rotation. Therefore the rotation angle has to be change its sign to describe

the same rotation as before.

The rotation axis r̄ of a rotation has to be invariant under this rotation. That means it is an

eigenvector corresponding to the eigenvalue 1. In (2.28) it was introduced that every rotation

R has an eigenvalue one. So the corresponding eigenvector is the rotation axis. The angle of

the rotation about the axis r̄ is contained in the complex eigenvalues

λ = eiφ = cos φ− i sin φ

where φ is the angle of rotation about the axis r̄ [Fra83]. The rotation matrix R(r, φ) for a

given axis r̄ = [x, y, z] with ‖r̄‖ = 1 and an rotation angle φ is given by [Ale98]

R(r, φ) = x2 + (1− x2) cos φ xy(1− cos φ)− z sin φ xz(1− cos φ) + y sin φ

xy(1− cos φ) + z sin φ y2 + (1− y2) cos φ yz(1− cos φ)− x sin φ

xz(1− cos φ)− y sin φ yz(1− cos φ) + x sin φ z2 + (1− z2) cos φ

 . (2.30)

From (2.30) it follows that the rotation is ambiguous to a scale by -1 of the angle φ and the

axis r̄. To get the axis r̄ and the angle φ from a given rotation matrix R it is not needed to

compute all eigenvalues. The trace of R is according to (2.30) given by

trace(R) = x2 + (1− x2) cos φ + y2 + (1− y2) cos φ + y2 + (1− y2) cos φ

= 1 + 2cosφ,

with ‖r̄‖ = 1. The angle φ can be computed as

cos φ =
1

2
(trace(R)− 1) . (2.31)

product AB is also orthonormal.



18 CHAPTER 2. BASIC CONCEPTS

The sign of the angle φ can’t be determined with (2.31) and is chosen without loss of generality

as a positive angle. Then the rotation axis r̄ has to be computed properly. With (2.30) it is

(R)3,2 − (R)2,3 = 2x sin φ

(R)1,3 − (R)3,1 = 2y sin φ

(R)2,1 − (R)2,3 = 2z sin φ.

The correct axis r̄ is

r̄ =
1

2 sin φ

 (R)3,2 − (R)2,3

(R)1,3 − (R)3,1

(R)2,1 − (R)2,3

 . (2.32)

For φ = 0 the rotation axis can be chosen arbitrarily because the resulting rotation is the

identity.

It was discussed that the representation of a rotation through an axis and an angle provides

a unique representation. The ambiguity of a scale of -1 does not effect the representation

because the resulting rotation matrix is the same. Further in [SN01] it was shown that the axis

angle representation is a fair parameterization.

Quaternions Quaternions are another fair parameterization of the rotation. The quaternions

parameterize the rotation as a vector of length four. The quaternions are linked to the axis

angle representation directly by

h =

[
cos

φ

2
, sin

φ

2
r̄T

]T

, (2.33)

where h is the quaternion that describes the same rotation as R(r̄, φ) in (2.30). In [SN01]

Schmidt and Niemann showed that the quaternions are in general comparable to the axis

angle parameterization. For details of the quaternions it is referred to [Fau93]. More different

rotations and comparisons of the different representations are given in [Kui99, Stu64, Shu93,

Sho85, Gol80]

In the following a rotation about at least the x-axis and the y-axis of the camera coordinate

system is denoted as a general rotation. We don’t assume a rotation about the optical axis

(equal to the z-axis) of the camera coordinate system because this special rotation is only a

rotation inside the image plane and therefore it gives no information for the focal length and

the aspect ratio of the camera self-calibration.

The previous sections introduced the relations between two different images of a static scene

in dependence of the camera motion as well as the various representations of orientation. In

the following section the principles of scene reconstruction from image sequences are explained.

2.7 Reconstruction

Over the last fifteen years, a lot of techniques were developed to reconstruct a scene only using

the image information [MF92, FLM92, PKG98, HÅ96, HÅ97, Bou98, RC02]. This section
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describes the general problem of reconstruction of a 3D scene given a sequence of images of

an uncalibrated camera, often called uncalibrated structure from motion. To perform the

reconstruction, the 3D points have to be computed from their projections into the images. The

projection of the 3D scene point X is given by equation (2.1)

x ∼= PX

with the camera projection matrix P . The projection equation is not invertible because the

projection matrix P itself is not invertible. The reconstruction algorithms solve the inversion

of the projection by exploiting multiple images of the scene. Most reconstruction algorithms

have the following common structure.

1. Estimation of point correspondences between the images. Standard matching and tracking

techniques are used here [LK81, HS88].

2. Computation of the Fundamental matrix from point correspondences between the images.

In this step the estimation techniques introduced in section 2.5.2 are applied.

3. Computation of an initial set of projectively skewed camera projection matrices exploiting

the estimated Fundamental matrices.

4. Computation of the skewed 3D scene points from the projection matrices of step 3 and

the point correspondences in the images of step 1 with triangulation. Computation of the

skewed projection matrices of all cameras.

5. To reach a metric reconstruction a self-calibration of the estimated cameras has to be

computed and the projective skew of the scene is obtained. Afterwards the scene is

transformed into a meaningful Euclidian scene [Tri97, PKG98, HZ03].

6. Global optimization of the previously estimated cameras and scene points for example

with bundle adjustment [TMHF00].

The step 5 is sometimes not performed in the existing approaches or other optimization schemes

performed during step 4. The topic of this section is mainly step 3 which computes an initial

pair of camera projection matrices P1 and P2 for the first two images of the image sequence.

Afterwards the projection matrices Pi with i > 2 for all other images of the sequence are

computed according to this first camera pair. The computation of the projection matrices Pi

with i > 2 will be discussed at the end of this section.

Reconstruction from image sequences of uncalibrated cameras occurs for example for re-

constructions from image sequences without any additional information. I.e. the external and

internal calibration of the cameras are unknown. So the only source of information is the

image point in pixel coordinates as projection of the 3D scene point. Without the camera

calibration it is not possible to compute the projection ray of an image point in the real world

which is required for triangulation. Assuming an identity camera calibration matrix, the ray

corresponding to the pixel position can be determined together with the optical center of the

camera. According to the ignored camera calibration the ray is skewed with the internal camera
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calibration of the camera. However the skewed rays of two or more cameras can be used to

triangulate a 3D scene point. Consequently the whole achieved reconstruction will be skewed

with a projective transformation.

The Fundamental matrix F1,2 provides a relation between the image planes of two uncali-

brated cameras as shown in section 2.5.2. It depends on the relative translation ∆C̄1,2 and the

relative orientation ∆R1,2 between the cameras. Moreover it depends on the intrinsic camera

parameters of the involved cameras. When trying to find two consistent camera projection

matrices given a Fundamental matrix, without loss of generality the first cameras coordinate

system is assumed to be identical with the world coordinate system. Then the cameras can be

chosen as [HZ03]

P p
1 = [I3×3|0] and P p

2 =
[
[e2]xF1,2 + e2a

T
2 |λe2

]
(2.34)

where e2 is the epipole in the second image, a2 ∈ IP2 is an arbitrary vector and λ ∈ IR \ {0}
a non-zero scale factor for the length of the camera translation. Please note, that the vector

a2 represents the ambiguity of the mapping plane of the homography contained in the first

three rows and columns of the projection matrix. This ambiguity is a result of the ambiguous

decomposition of the Fundamental matrix as explained in theorem 5.

The skewed projection matrices P p
1 and P p

2 from equation (2.34) can be used to triangulate

the 3D points X̃ from the image correspondences ([HZ03] page 318). These 3D scene points

X̃ are called projectively skewed because the triangulation used a set of skewed rays. The

projective skew depends on the internal camera parameters and on a2.

So far an initial set of camera projection matrices P p
1 and PP

2 was determined and after-

wards a projectively skewed scene X̃ was triangulated. The cameras are ambiguous in the

mapping plane of the homography and the scale of the camera translation vector as mentioned

above. In the following the transformation between the projectively skewed cameras and the

corresponding metric cameras will be investigated.

It is known for a given Fundamental matrix F that for any two camera pairs (P p
1 , P p

2 ) and

((P p
1 )′, (P p

2 )′) which have the same Fundamental matrix F , a non-singular transformation exists

such that [HZ03]

Pi = P p
i H = [Mi|λei] H (2.35)

with H ∈ IR4×4. Accordingly there is a transformation H4×4 which transforms P p
1 and P p

2 from

equation (2.34) into the corresponding metric cameras P1 = [K1|03×1] and P2 = [K2R
T
2 | −

K2R
T
2 C2]. From the ambiguous scale λ of the reconstruction in (2.34) it follows that the entry

(H)4,4 in H4×4 can be set to one. From the transformation of P p
1 into P1

[K1|03×1] = [I3×3|03×1]H4×4 =

 (H)1,1 (H)1,2 (H)1,3 (H)1,4

(H)2,1 (H)2,2 (H)2,3 (H)2,4

(H)3,1 (H)3,2 (H)3,3 (H)3,4

 , (2.36)

where (H)m,n is the element in row m and column n of the matrix H4×4. It follows that H4×4

is of the form

H4×4 =

[
K1 03×1

ṽT 1

]
. (2.37)
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Looking at the projection equation (2.1) for the projectively skewed 3D scene points

x ∼= P pX̃ ∼= P pH4×4H
−1
4×4X̃ = PX, (2.38)

leads to the observation that H−1
4×4 can be used to map the projectively skewed scene X̃ into

the corresponding metric scene X often denoted as a metric frame. The mapping has to ensure

that the plane at infinity π̃∞ is mapped to π∞ = [0, 0, 0, 1]. Looking at the position of the

plane at infinity in the projectively skewed reconstruction gives

π̃∞ = H−T
4×4π∞ =

[
K−T

1 −K−T
1 ṽ

01×3 1

]
π∞ =

[
−K−T

1 ṽ

1

]
. (2.39)

So the vector [K−T
1 ṽ, 1] encodes the plane at infinity in the computed projective reconstruction.

It follows that the projective skew can be written as

H4×4 =

[
K1 03×1

vT KT
1 1

]
, (2.40)

where v = −K−1
1 ṽ is the normal of the plane at infinity in the projective reconstruction. The

normal vector v depends on the chosen a2 in equation (2.34) as well as on the camera motion.

If the vector v is the zero vector then the plane π∞ is still at its canonical position and the

reconstruction X̃ is called an affine reconstruction.

The above described method provides an initial set of cameras for the first two images. The

remainder of this section will dicuss how the camera projection matrices for all other images of

the image sequence can be computed. In the following two different types of methods for the

computation of these camera projection matrices will be discussed.

The most common method introduced by Beardsley et al. [BTZ96] is to use the 3D scene

points X respectively X̃ to compute all other cameras using (2.1). Beardsley used the computed

scene points as a known calibration pattern for all further cameras. Once a new camera is

estimated the new points are triangulated and used to estimate the position of the next camera.

This method can be used for all above mentioned cases of known and unknown extrinsic and

intrinsic camera parameters. Please note that the projective skew H4×4 is constant for all

cameras used to reconstruct the projectively skewed scene points X̃, because the projectively

skewed 3D points X̃ are used to estimate the new camera projection matrices. Therefore

(2.38) is valid for all projection matrices of the image sequence. This fact will later be used to

self-calibrate the cameras and it will be referred to as a globally consistent frame.

Another approach introduced by Avidan and Sashua in [AS01] exploited the Trifocal-tensor

to compute the camera projection matrices without any 3D scene information (for details about

the Trifocal tensor see [HZ03, Moo98]). The technique uses the properties of the Trifocal-tensor

to estimate a decomposition of the pairwise Fundamental matrices with a common mapping

plane for all homographies from the decompositions. Hence the arbitrary mapping plane is

fixed for all homographies. This decomposition can be used to compute the camera projection

matrices of the remaining images of the sequence. The technique further guarantees that these

projection matrices are all projectively skewed with the same projective skew H4×4 without

using any 3D scene information.
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This section gave an overview about the different situations for reconstruction. The com-

puted scene points X respectively X̃ were characterized and the structure of the estimated

camera projection matrices was denoted.

The next section will introduce the self-calibration using constraints on the image of the

absolute conic to determine the projective skew matrix H4×4.

2.8 Self-Calibration using the absolute conic

In this section the absolute conic is introduced as a geometric property that can be used for

self-calibration. The self-calibration uses the fact that the absolute conic is invariant under

camera motion as explained in section 2.3. Self-calibration addresses the case of reconstruction

from unknown intrinsic camera parameters. From the previous section it is known that in

general the estimated camera projection matrices are projectively skewed with a homography

H4×4 from (2.40). It depends on the internal parameters of the first camera K1 and the normal

[vT , 1]T of the plane at infinity. The subject of self-calibration is to determine these unknowns

which is equal to estimate H4×4. The input of each self-calibration is either a sequence of

projectively skewed camera projection matrices or a sequence of images.

The Euclidian cameras Pi corresponding to the cameras P p
i of the projective reconstruction

from (2.38) which are estimated from the Fundamental matrix with (2.34) are given by Pi =

[Mi|ei]H4×4 = P p
i H4×4. Looking at the first three rows and columns of the projection matrices

leads to the translation independent expression

KiR
T
i
∼= (Mi + eiv

T )K1, (2.41)

Rearranging equation (2.41) leads to

RT
i
∼= K−1

i (Mi + eiv
T )K1.

This formulation of the general self-calibration problem is transformed to a rotation independent

equation using the property RRT = I of the rotation matrix into

KiK
T
i
∼= (Mi + eiv

T )K1K
T
1 (Mi + eiv

T )T .

Then the basic equations for self-calibration are given by

ω∗i
∼= (Mi + eiv

T )ω∗1(Mi + eiv
T )T , (2.42)

where ω∗ is the dual image of the absolute conic (DIAC)

ω∗l = KlK
T
l . (2.43)

I.e. ω∗l is the dual (line) conic mapped from the plane at infinity into the image l. It can be

deduced by applying the transformation rule of conics (A.22) to the absolute conic Ω∞ from

equation (2.6) on the plane at infinity. The homography H∞
l that maps points on the plane at

infinity into the image of camera l is given by H∞
l = KlR

T
l , where Kl is the camera calibration
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matrix of camera l and Rl is the rotation of camera l. Accordingly the mapping of the absolute

conic Ω∞ from equation (2.6) into image l is given by

ωl = (H∞
l )−T Ω∞ (H∞

l )−1 = K−T
l RT

l I3×3RlK
−1
l = K−T

l K−1
l ,

which is called the image of the absolute conic (IAC). The dual image of a non-degenerate conic

is given by the inverse of the conic matrix (see appendix A.2.4). Consequently the DIAC ω∗l is

the inverse of the IAC ωl which is equivalent to (2.43).

Equation (2.42) relates the unknown entries of the dual image of the absolute conic (DIAC)

with the known entries of the projectively skewed camera projection matrices. Further it can be

seen in (2.42) that the DIAC is a symmetric 3×3 matrix which has six degrees of freedom. Due

to the overall scale ambiguity equation (2.42) provides five linear independent equations. The

dual image of the absolute conic (DIAC) (see section 2.3) is more attractive for self-calibration

because it directly contains the intrinsic parameters of the cameras.

From equation (2.42) it can be seen that there are only eight unknown parameters left

in (2.43), five intrinsic parameters in the first camera and three parameters in v. All other

parameters are provided by the known camera projection matrices. Different proposed self-

calibration methods introduced different constraints for ω∗1 from the constraints on the camera

calibrations Ki with i = 2, . . . , n.

In (2.42) the homography (Mi−eiv
T ) is used to map the DIAC from camera 1 into camera i.

If this homography is the homography H∞
i that maps over the plane at infinity, then equation

(2.42) leads to the so called infinite homography constraint

ω∗i
∼= H∞

i ω∗1(H
∞
i )T . (2.44)

If det(H∞
i ) = 1 is chosen, then the unknown scale factor is canceled out and (2.44) is

Euclidian equality.

2.8.1 Kruppa equations

The Kruppa equations [Kru13] are chronological the first proposed equations for self-calibration.

Therefore this calibration approach is shortly discussed here. This self-calibration approach was

introduced by Maybank and Faugeras in [MF92]. The Kruppa equations exploit the correspon-

dence of epipolar lines that are tangent to the image of the absolute conic ω. The image of the

absolute conic in the first image is ω and for a second camera with the same internal calibration

it is also ω. Now two epipolar lines l1 and l2 tangent to the IAC ω in the first camera can be

found. These epipolar lines can be used to define a degenerate point conic ωp. This degenerate

point conic ωp can be defined using the point line duality together with the dual image of the

absolute conic ω∗. Accordingly two points on the epipolar lines l1 and l2 -like the epipole e in

the first view- and the DIAC ω∗ define this conic ωp as

ωp = [e]xω
∗[e]x. (2.45)

It follows that every point x on l1 or on l2 lies also on the point conic ωp. Similarly a point

conic ω′p for the second image is defined using the epipolar lines l′1 and l′2 corresponding to l1
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and l2. These lines are given as the intersection of the epipolar plane of l1 respectively l2 and

the image plane of the second camera. The epipolar lines correspond under the homography

H∞. Then the point conics correspond also under the homography H∞:

ω′p
∼= (H∞)−T ωp (H∞)−1 .

Using the definition (2.45) of the point conic leads to

[e′]xω
∗[e′]x ∼= (H∞)−T [e]xω

∗[e]x (H∞)−1

[e′]xω
∗[e′]x ∼= Fω∗F T . (2.46)

Equation (2.46) are the Kruppa equations as originally introduced by Viéville in [VL95] into

Computer Vision. Once the homogenous scale is eliminated a set of equations quadratic in the

unknowns of ω∗ can be obtained [VL95, HZ03]. This formulation of the Kruppa equations is

in generally not easy to apply. There were several formulations introduced later that are easier

to apply for self-calibration [Har97a, ZF96, Luo92, LF97a].

There are several difficulties in solving the Kruppa equations. The constraints provided by

the Kruppa equations are weaker than the constraints provided by the infinite homography

constraint (2.44) [HZ03]. However if only two views are given then the Kruppa equations give

exactly the constraints available for the DIAC ω∗ of (2.43). If there is no rotation between the

cameras the Kruppa equations provide no constraints for the DIAC because the Fundamental

matrix F is then equivalent to the cross product matrix of the epipole [e′]x. Due to these

limitations they are rarely used for the self-calibration of cameras.

The next section will introduce a more tractable concept for self-calibration which is used

instead of using the Kruppa equations.

2.9 Self-Calibration with the absolute dual

quadric

This section will introduce another class of self-calibration techniques using the absolute dual

quadric (see section 2.4). The absolute dual quadric Q∗
∞ is very attractive because it simulta-

neously represents the plane at infinity π∞ and the absolute conic Ω∞ on the plane at infinity.

The projection of the absolute quadric Q∞ into the image is given as

ω∗ ∼= PQ∗
∞P T , (2.47)

where P can be any projectively skewed camera projection matrix [Tri97]. The main benefit is

that it correlates the projection of the absolute dual quadric with the dual image of the absolute

conic ω∗ from (2.43). In the previous sections constraints on the camera calibration matrices

were transferred into constraints on the dual image of the absolute conic (DIAC). Equation

(2.47) offers now the possibility to get constraints for the absolute quadric using the DIAC.

The DIAC itself directly depends on the camera calibration matrices of the concerned cameras.

The major problem for using (2.47) is that it is only an equality up to scale. These scales can

be eliminated by using ratios of components and cross-multiplication as constraints

(ω∗)i,j(PQ∗
∞P T )k,l − (ω∗)k,l(PQ∗

∞P T )i,j = 0. (2.48)
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Triggs showed in [Tri97] that 5 of the resulting 15 equations are linear independent. This can

be seen because there are 6 degrees of freedom for (2.47) contained in the DIAC minus one for

the scale ambiguity. The number of unknowns is 13 because there are 8 degrees of freedom in

the absolute dual quadric Q∗
∞ as explained below and 5 degrees of freedom in the DIAC ω∗.

For the remainder of this section the basic properties of the absolute dual quadric will

be discussed. The most important property for self-calibration is that in a Euclidian space

the absolute dual quadric is given as shown in (2.7). For a projective space skewed by a

transformation H4×4 from (2.40) (see section 2.7) the absolute dual quadric is

H−T
4×4Q

∗
∞H−1

4×4 = (Q∗
∞)p .

From (2.8) it follows that the absolute dual quadric is positive or negative semidefinite [HZ03]

depending on the sign of the projective scale because the eigenvalues are scaled by the projec-

tive scale [GL89]. From equation (2.7) and equation (2.8) it can be seen that the vector π∞
representing the plane at infinity in the projective reconstruction is in the null-space of (Q∗

∞)p.

After determining the absolute dual quadric from the image data the rectifying homography

H4×4 can be determined by the Eigenvalue decomposition [GL89]. It decomposes any symmet-

ric matrix S into S = UDUT , where U is an orthonormal matrix and D is a diagonal matrix

that contains the eigenvalues of S. Please note that this decomposition gives the exact H4×4

only for noise free data. For noisy data it does not enforce the known constraints for H4×4 and

Q∞. Therefore these constraints have to be enforced in a second nonlinear optimization step

to get the transformation H4×4 more precisely. Afterwards the rectifying homography H4×4

can be used to get Euclidean reconstruction and metric camera projection matrices.

The next section will inspect the limitations of the introduced self-calibration techniques in

dependence of the camera motion during the image taking.

2.10 Critical camera motions for self-calibration

Shortly after introducing the first self-calibration approaches it was realized that not all im-

age sequences offer the possibility to determine the intrinsic and extrinsic camera parameters

uniquely. For example for sequences with pure translation it is not possible to get Euclidian re-

construction, only affine reconstruction can be computed [Stu97a, Stu96]. Such image sequences

are called Critical Motion Sequences (CMS). Several researchers inspected special cases of CMS

in [Tri97, Zel96, PGO97]. The work of Sturm [Stu97a, Stu96] provided a complete list of CMS

for constant intrinsic parameters. The case of some varying intrinsic parameters or special cam-

era configurations were discussed in [Stu99, KTÅ00]. This section will give an overview about

the different types of CMS. At first the CMS for constant intrinsics are discussed because this

is clearly a subset of the CMS for cameras with varying intrinsics. Afterwards the work for

cameras with some varying intrinsics namely the focal length is reviewed.

Whether the motion sequence is critical or not does not depend on the calibration of the

camera during the image acquisition. For the analysis here the calibration matrix K can be

assumed to be the identity matrix. The calibration of the cameras is not possible if there are

other proper virtual conics (PVC) apart from the absolute conic Ω that have a fixed projection
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into the images because the constraints for self-calibration only exploit these properties of

invariance. In that case it is not possible to distinguish between the images of the PVCs and

the image of the absolute conic. The achieved calibration is therefore ambiguous. In his work

[Stu97a, Stu96], Sturm looked for the image sequences that keep a specific PVC invariant.

These specific PVCs can be divided into a few different classes. From these classes Sturm

derived a set of critical motion sequence classes. The next paragraphs will show the results in

more detail.

Potential absolute conics on π∞: At first the PVCs on the plane at infinity are inspected.

Sturm derived the constraint that a rotation that keeps the eigenspace of the PVC on the

plane at infinity constant also leaves the projection invariant [Stu96]. This constraint is also a

sufficient constraint for the CMSs [Stu97b]. Therefore only the eigenspaces of the conics have

to be analyzed. In general there are three types of conics on the plane π∞ depending on the

eigenvalue structure.

The first type has a triple eigenvalue. This class contains only the absolute conic itself.

Therefore this class of PVCs is not critical for self-calibration. The second type has one double

and one single eigenvalue. The eigenspace of this class corresponds to a plane and a line

orthogonal to the plane3. Looking at the transformations that conserve the eigenvectors of

these PVCs leads to all rotations about the line and a rotation of 180◦ about a line in the plane

coincident to the line. The third type of conics has distinct eigenvalues. This represents three

mutually orthogonal lines. Then only rotation by 180◦ about any of the three lines defined by

the eigenvectors leaves the PVC invariant. Please note that all transformations of the latter

case are covered by the transformations of the second types of conics with one double eigenvalue

and one single eigenvalue because the rotation in the plane is a superset of the rotation about

an axis. In both cases the identity transformation represents a transformation that lets the

PVC invariant. The above types of PVC that have an invariant image projection under the

described transformations gives the first class of CMS.

• CMS-Class 1 Motion sequences for which all relative rotations are either rotations by

an arbitrary amount about some line l or by 180◦ about lines perpendicular to l.

Further Sturm identified several subclasses of the CMS-Class 1 with more potential absolute

conics due to more restrictive motions in the subclasses

• CMS-Class 1.1 Motion sequences for which all rotations are by an arbitrary angle about

an axis parallel with an arbitrary but fixed line. This refers to an arbitrary translating

camera where all rotation axes are parallel.

• CMS-Class 1.2 Motion sequences for which all rotations are by 180◦ about mutually

orthogonal axes.

• CMS-Class 1.3 Motion sequences for which all rotations are by 180◦ about a specific

axis.

3The eigenspaces of different eigenvalues of a symmetric matrix (like the PVC) are orthogonal [GL89].
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• CMS-Class 1.4 Motion sequences with no camera rotation at all (i.e. pure camera

translation).

These characterizes the possible classes of ambiguities for proper virtual conics on the plane at

infinity. The next possibility is that there is a PVC which is not on the plane at infinity but

has an invariant image in all cameras like the absolute conic.

Potential absolute conics not on π∞: The previous discussion only looked at the camera

orientation because the translation of the camera is not important for the image of a conic on

the plane at infinity. For conics on any other plane the projection also depends on the position

of the camera. The deduction of an algebraic description was done in [ZF96] but it is not clear

if this description holds for more than three cameras. Therefore Sturm started with a specific

camera pose and orientation. Then he looked for cameras that have the same image of the PVC.

To get all classes of CMS in this case one has to inspect all possible PVCs4. This provides a

geometric description of the classes of CMS instead of an algebraic description. Sturm found

four additional classes of CMS by proving that the possible class of transformations is given by

the planar reflections of the image of the PVC in the symmetry planes of the PVC [Stu97b]. A

detailed description of this group of transformations can be found in [Stu97b]. Sturm deduced

that for a CMS the camera centers can only lie on two equally sized circles for a circle. For

an ellipse there are only eight points left where the camera center can be placed. These eight

points lie also on two equally sized circles as for the circle as image of the potential absolute

conic. Therefore these circles represent the group of possible camera center positions for CMSs.

Usage of this deductions leads to the following groups of CMS.

• CMS-Class 2 For a circle as projection of an elliptic cone in the reference view infinitely

many positions are possible that lie on two circles and at each position four orientations

are possible. This is the class containing the subclass of orbital motions of the camera.

• CMS-Class 3 For an ellipse as projection of an elliptic cone in the reference view infinitely

many positions are possible but all positions lie on a degree twelve curve [Stu97b]. Further

at each position there are four choices of the orientation of the camera.

• CMS-Class 4 For an ellipse as projection of a circular cone in the reference view only

four positions for the camera are possible. At each position the camera may rotate freely

about the main axis of the cone and about an axis perpendicular to the main axis of the

cone.

• CMS-Class 5 For a circle as projection of an absolute cone in the reference view two

positions with any rotation of the camera are possible.

Sturm identified some more subclasses in [Stu97a].

4Generally there are three different types of conics possible: the PVC has one triple eigenvalue, it has one
double eigenvalue and one single eigenvalue then it is a circular cone or it has three distinct eigenvalues; then
it is an elliptic cone. The class of proper virtual conics only contains circles and ellipses[Stu97b].
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Further Sturm provided a table of the most practical relevant situations from these classes.

For a better understanding this table is reproduced in table 2.1. It shows the number of

possible camera positions #C in the first column, the number of possible camera orientations

#R and the number of ambiguous potential absolute conics #Ω. The only class of CMS

where the calibration of the intrinsic parameters is possible is the CMS-Class 5 where the

transformation is not contained in any of the other classes.

Description #C #R #Ω

CMS-Class 1.1 ∞3 ∞ ∞
planar motion ∞2 ∞ ∞

pure translations ∞3 1 ∞5

orbital motions 2×∞ 1 ∞2

pure rotations 1 ∞3 ∞3

Table 2.1: Practically important classes of CMS. #C is the number of possible camera positions,
#R is the number of ambiguous camera orientations at each position and #Ω is the number of
potential absolute conics.

Further in [Stu97a] it was found that for ambiguous reconstruction the reconstructed scene

and camera motion are always in the same class of CMS. This is important for the detection

of these situations because it is often not decidable before the reconstruction whether a CMS

is given. With this result the decision can be made after the reconstruction.

For cameras with varying intrinsic parameters all the above classes of CMS are still the

same. In [Stu02] Sturm gave a complete catalog of CMS for cameras with varying intrinsic

parameters. The work in [Kah99, Stu99] also discussed the CMS for cameras with varying

focal length but they didn’t give a complete list of CMS and their results are subsets of the

results of [Stu02]. Here the extentions of the classes found in [Stu02] will be given.

For a camera with varying focal length mainly two new classes (denoted as CMSvarF-

Class of camera motions appear. Both are results of PVCs lying not on the plane at infinity.

• CMSvarF-Class 6 Collinear optical centers of the cameras with coinciding optical axes

except from two cameras that allowed to have arbitrary optical axes orientation. This is

illustrated in figure 2.3 (a).

• CMSvarF-Class 7 The optical centers of the cameras are on an ellipse/hyperbola pair.

The optical axis of the cameras are always collinear to the tangent of the ellipse/hyperbola

at the optical center. This is illustrated in figure 2.3 (b).

One of the major conclusions is that the calibration of two cameras with varying focal lengths

is ambiguous. It is well known that for this case there is a two fold ambiguity for the absolute

conic.

Summary: This chapter introduced the basic concepts used throughout the thesis. The

problem of uncalibrated structure from motion for scene reconstruction was introduced in sec-

tion 2.7. The result of uncalibrated structure from motion was a projectively skewed 3D scene.

To upgrade this reconstruction in a meaningful Euclidian reconstruction the projective skew has
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colinear optical 
centers

potential absolute conic

elliptical optical
centers

hyperbola optical 
centers

potential absolute conic

(a) (b)

Figure 2.3: Additional CMSs for cameras with varying focal length. (a) CMSvarF-Class 6:
Collinear optical centers with coinciding optical axes, (b)CMSvarF-Class 7: Optical centers
of the cameras are on an ellipse/hyperbola pair. (redrawn from [KTÅ00])

to be determined. Accordingly the structure of the projective skew was deduced. Afterwards

the entities absolute conic, dual absolute quadric were introduced. They are often used for self-

calibration which determines the projective skew transformation. The last section discussed the

analysis about the camera motions that are critical for the reconstruction and the estimation

of the projective skew. In the next chapter the previous work done in the self-calibration will

be discussed.
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Chapter 3

Previous work on self-calibration

This section will introduce the previous work on self-calibration of cameras. The self-calibration

approaches are divided in two main groups. The first group is the self-calibration of a camera

that rotates about its optical center. It is often called a purely rotating camera. The second

group of approaches solves the self-calibration of a translating and rotating camera. It will be

denoted as a freely moving camera in the following. For both of these groups there exist only

a few approaches that exploit known orientation of the camera. This chapter is organized as

follows: First the approaches to calibrate a purely rotating camera will be discussed. Afterwards

the approaches for the self-calibration of a freely moving camera are discussed.

3.1 Self-Calibration of a rotating camera

There are several approaches available for the self-calibration of a purely rotating camera

with unknown orientation [Har95, SR97, dAHR01, Har94b, dARH99, Har97b, HHdAR99,

SH98, SH99]. This section will discuss in detail the approach from Hartley introduced in

[Har94b, Har97b] for the self-calibration of a purely rotating camera with constant internal pa-

rameters. It is the most popular approach for this situation. The work of Agapito et al. proposed

in [dARH99, dAHR01] is the first and mostly referred approach for self-calibration of a purely

rotating camera with varying intrinsic parameters. This technique will be discussed here as a

representative approach for the class of self-calibration algorithms for purely rotating cameras

with varying intrinsics. Further some approaches for calibrating a purely rotating camera with

constant internal parameters and known orientation will be introduced. The latter group of

algorithms compares directly to the proposed approach of this thesis, which is a self-calibration

of a camera with varying intrinsic parameters exploiting the known orientation of the camera.

Hence a purely rotating camera with constant intrinsics is a special case that is covered by the

proposed approach of this thesis as published in [FK03b, FK03c]. The error analysis of the

above self-calibration approaches were discussed by Wang et al. in [WKSX02, WKSX04] and

will be summarized in section 3.1.4.

The techniques for the self-calibration of purely rotating cameras rely on the accurate esti-

mation of the homographies between the given camera images. In order to compute an accurate

homography that maps the points with high accuracy it is normally not sufficient to use the

31
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least squares solution of (2.18) for detected feature (e.g. corners) correspondences. In (2.18)

the mapping error is used as measurement. The least squares approach assumes a Gaussian

distribution with zero mean for the mapping errors. Many corner detection methods in fact

give a biased estimation of the corner position that is not Gaussian distributed [SM95, MM01].

Hence the computed least squares solution is often disturbed. To avoid this lack of precision

it is recommended to use a direct matching approach like [BAHH92, SR97, dAHR01, SHK98].

The best results will be achieved with a robust cost function like the GNC cost function pro-

posed by Blake and Zisserman in [BZ87] or another from [BR96] and an outlier process [BR96]

that is induced by the cost function. The GNC function is a piecewise polynomial function that

converges to an upper threshold. Accordingly it avoids the fitting of the solution to outliers.

More details about the cost function are given in [BR96]. In the following the use of these well

estimated homographies is required in order to get accurate calibration results.

3.1.1 Camera with constant intrinsics

Historically the first self-calibration method for a purely rotating camera with unknown but

constant intrinsics was first developed by Hartley in [Har94b, Har97b]. This method used the

infinite homography constraint (IHC) (2.44) to calibrate the camera.

Hartley used the fact that for a purely rotating camera the estimated homography is equiv-

alent to the infinite homography H∞. Hartley uses the infinite homography H∞ estimated

from the images themselves to compute the IHC (2.44) for a camera with constant intrinsics

ω∗ = H∞
i ω∗(H∞

i )T , (3.1)

where ω∗ = KT K is the dual image of the absolute conic from section 2.8. It is equivalent to

using the standard calibration equations (2.43) based on the dual image of the absolute conic

(DIAC). Hartley deduced from the independent components of the DIAC ω∗ that (3.1) provides

five linear independent equations. He showed that one image pair does not provide a sufficient

number of constraints to solve for the DIAC ω∗ uniquely. If only one camera image pair is

used for the calibration there is a one parameter family of calibrations as solution of (3.1) left.

Using the assumption of zero skew for the camera leads to a unique solution. However using a

camera image triplet provides new constraints so that the DIAC ω∗ can be calculated as least

squares solution of (3.1).

To compute the calibration K of the camera from ω∗ Hartley proposed to apply the Cholesky

decomposition [PFTV88] on the dual image of the absolute conic ω∗. Using the Cholesky

decomposition to get K from ω∗ requires that the DIAC is positive-definite or negative-definite.

For noise free data this is enforced by construction. Hartley denoted that for noisy data it is

not guaranteed because the linear computation of ω∗ using (3.1) does not enforce the positive

definiteness of the DIAC ω∗. If the DIAC ω∗ is not positive definite the calibration of the

camera is not possible at all. Hartley mentioned in [Har94b] that in practice this only occurs

for gross errors for the points of the correspondences used to compute the homography H∞.

To get a camera calibration that is as accurate as possible Hartley proposed a nonlinear

optimization of the achieved calibration using (3.1) as cost function and the linear solution as

initialization. For example the mapping error of the correspondences can be minimized using



3.1. SELF-CALIBRATION OF A ROTATING CAMERA 33

equation (2.10) and the structure (2.16) of the infinite homography. Moreover this offers the

possibility to apply further constraints on the calibration of the cameras like known aspect ratio

etc. Hartley measured the performance of the proposed method and showed that the obtained

results are rather stable in the range of usual accuracies of point matching. In his experiments

Hartley also found that some of the components like the focal length and the aspect ratio are

estimated very robustly1. The estimation of the other three components skew and principal

point are not as stable as the estimation of focal length in his experiments. This was also

observed in my experiments and seems to hold for most types of self-calibrations.

In many applications the camera can’t be restricted to have constant intrinsic parameters.

For instance surveillance cameras have to zoom in order to recover more details. The next

section will discuss one approach to calibrate a rotating and zooming camera.

3.1.2 Camera with some varying intrinsics

The approach of Hartley [Har94b] was extended for purely rotating cameras with varying in-

trinsic parameters by Agapito et al. in [dAHR98, dARH99, dAHR01]. In [dARH99] the infinite

homography constraint (2.44) for cameras j and i with varying intrinsic parameters

KiK
T
i = ρ2

j,iH
∞
j,iKjK

T
j

(
H∞

j,i

)T
(3.2)

was used for self-calibration. The scale ρj,i is eliminated by normalizing the infinite homogra-

phies in a manner that det(H∞
j,i) = 1. Then from (3.2) a set of linear equations for the entries

of the DIAC was extracted. Hartley already showed in [Har94b] that this set of equations pro-

vides five linear independent constraints for the entries of the DIAC. Accordingly the number

of intrinsic parameters that are allowed to vary is limited.

Let U be the number of unknown intrinsics of the first camera and V the number of intrinsics

which may vary in subsequent images, the following constraint for the number of unknown

intrinsic parameters of the cameras has to hold:

U + V (n− 1) ≤ (n− 1) · 5 (3.3)

where n is the number of camera images. It can be seen from (3.3) that the number of varying

intrinsics has to be strictly less than 5, i. e. at least one intrinsic parameter of the camera has

to be fixed.

For every set of cameras that fulfills (3.3) unique DIACs ω∗i = KiK
T
i can be estimated

using (3.2). In [dAHR98, dAHR01] Agapito et al. proposed to use the Frobenius norm of the

difference of the mapped dual image of the absolute conic H∞
j,iω

∗
(
H∞

j,i

)T
and the dual image

of the absolute conic ω∗i ∥∥∥∥∥∥∥
ω∗i

‖ω∗i ‖F
−

H∞
j,iω

∗
j

(
H∞

j,i

)T

‖H∞
j,iω

∗
j

(
H∞

j,i

)T
‖F

∥∥∥∥∥∥∥
F

(3.4)

1Robust will throughout the thesis used in the sense of insensitive to disturbances caused by noise in the
data.
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as optimization criterion, where ‖·‖F is the Frobenius norm. It is also used to eliminate the scale

ρj,i in (3.2). The calibration of the cameras can be estimated using a nonlinear optimization

with the cost function (3.4). This leads to a solution for the dual image of the absolute conic

ω∗.

The calibrations Ki can be computed afterwards using the Cholesky decomposition of the

estimated DIACs ω∗i . This computation of the camera calibration has the same problem regard-

ing the positive definiteness of the DIAC ω∗i as described by Hartley in [Har94b] and already

explained in section 3.1.1. Once the calibration is computed the rotations for each view can be

estimated from the homographies by using the structure of the infinite homography (2.16)

K−1
i H∞

j,iKj =
1

ρj,i
Rj,i, (3.5)

where the scale ρj,i can be derived using the orthogonality of Rj,i.

The nonlinear optimization process that uses the cost function (3.4) needs an initialization

close to the real solution in order to converge to the global minimum of the cost function (3.4),

which is the correct DIAC ω∗. Using the infinite homography constraint (3.2) does not provide

an easy way to apply constraints for the intrinsic parameters of the cameras. Zisserman et al.

proposed in [ZLA98] to use the image of the absolute conic (IAC) ω

ω = K−T K−1 =


1
f2

−s
af3

sv
af3 − u

f2

−s
af3

1
(af)2 + s2

a2f4
su
af3 − s2v

a2f4 − v
(af)2

sv
af3 − u

f2
su
af3 − s2v

a2f4 − v
(af)2 1 + (sv−afu)2

a2f4 + v2

(af)2


to apply constraints on the intrinsic parameters. The important property is that using the IAC

gives linear constraints for a zero skew of the cameras:

• For zero skew s the component (ω)1,2 = 0.

• Zero skew and square pixels the aspect ratio a is one, that leads to (ω)1,1 = (ω)2,2. This

is called the square pixel constraint.

• For zero skew and a principal point component in the x-axis which is zero the component

(ω)1,3 becomes zero. Similarly for a principal point component in the y-axis that is zero

(ω)2,3 is zero.

Each of the above constraints provides one linear equation for the IAC. Then with a maximum

of six image pairs the IAC of the first image can be computed. Agapito et al. introduced

in [dARH99, dAHR01] a technique that used the above constraints on the image of the absolute

conic ω (IAC) to apply constraints on the IAC of the first image by

K−T
1 K−1

1︸ ︷︷ ︸
ω1

=
1

ρ2
j,1

(
H∞

j,1

)−T
K−T

j K−1
j

(
H∞

j,1

)−1
. (3.6)

The calibration of the first camera can be computed using the Cholesky decomposition of ω1.

All other IACs can be calculated using (3.6) and the known IAC in the first image. Here
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again the problem occurs that the estimated DIAC is not enforced to be positive definite.

Whenever the estimated DIAC is not positive definite it is not possible at all to compute a

camera calibration. Agapito et al. didn’t refer to this problem in detail.

The linear calibration (3.6) does not cover all possible constraints for the calibration of

the camera; for example a constant intrinsic parameter can’t be modeled linearly using (3.6).

Anyway Agapito et al. proposed to use this linear initialization step even if the cameras only

roughly fulfill the constraints. It was mentioned that it still computes a solution close to the

true calibration. Then this linear solution was used to initialize the nonlinear optimization

process using the infinite homography constraint (3.2) in [dARH99, dAHR01].

During the nonlinear optimization the error function (3.4) is minimized. It measures the

algebraic error in dependence on the estimated homographies H∞
j,i . To get a more accurate

and more reliable calibration Agapito et al. proposed to refine the result based on a statistic

cost function that takes the correspondences into account. This statistical cost function is

the likelihood of the image points position given the rotation and calibration of the cameras.

It depends on the mapping error of the point correspondences in the images, the previously

estimated camera rotations Rj,i and the estimated camera calibration matrices Ki.

The point location during the optimization is modeled by a Gaussian noise process. The

estimated feature positions used for the homography computation are assumed to be disturbed

by Gaussian noise ηpixel with zero mean and variance σpixel. Then the measured feature position

x̄ in the image is

x̄ = x̂ + ηpixel, (3.7)

where x̂ denotes the true feature position. The generating projection ray x ∈ IP2 of this point

can be determined using the estimated camera calibration and the computed rotation from

(3.5) of each camera. This leads to a maximum likelihood estimate (MLE) of

MLE = arg min
Ki,Ri,X̄j

n∑
i=1

#points∑
j=1

∥∥∥x̄j ' KiR
T
i xj

∥∥∥ , (3.8)

for the camera calibrations Ki, the camera rotations Ri, and a set of feature projection rays

X̄, where ' denotes minus after homogenization of the points. Agapito et al. stated that this

estimation sometimes didn’t lead to the correct camera calibration and neither to the correct

rotation. This is mainly caused by the ill conditioned estimation of the principal point.

To avoid these problems Agapito et al. proposed to incorporate prior knowledge and use a

maximum a posteriori approach. This exploits constraints on the principal point of the camera.

The used knowledge is that the principal point probably lies close to the center of the image.

The assumed noise model is a Gaussian distribution whose mean is the image center. With

that a maximum a posteriori estimation of the probability of the intrinsics is given by

MAPpp = MLE +
∑

i∈cameras

(ci − ppprior)
T

[
σ2

x 0

0 σ2
y

]−1

(ci − ppprior). (3.9)

where σx and σy are the standard deviations of the Gaussian noise model of the principal point,

ppprior is the prior knowledge about the principal point and ci is current estimate of the principal
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point of camera i. Minimizing the cost function (3.9) leads to better and more reliable results

for the camera calibration and the orientations of the cameras.

The next subsections will discuss the approaches for camera self-calibration using additional

constraints.

3.1.3 Camera self-calibration with some known extrinsics

In the previously discussed approaches only the image data was used except from (3.9) which

incorporates the orientation of the camera explicitly. In (3.9) the orientation is contained

explicitly but it was not the intention to use any previous knowledge of the camera orientation.

There exist only a few approaches that combine image analysis and partially known extrinsics

like the camera orientation for self-calibration in literature. This lack of attention is somewhat

surprising since this situation occurs frequently in a variety of applications: cameras mounted in

cars for driver assistance, robotic vision heads, surveillance cameras or PTZ-cameras for video

conferencing often provide rotation information. In [DB93, Bas93, BR97, Ste95] the calibration

of cameras with constant intrinsics and known rotation were discussed. They use nonlinear

formulations of the optimization problem in the Euclidian space IR2 namely the image plane

coordinate system. Hence all these approaches have to use nonlinear optimization techniques

in order to estimate the intrinsic camera parameters. Stein additionally estimated the radial

distortion of the camera in [Ste95] by using the known orientation. Du and Brady used a special

camera motion to estimate the radial distortion of the camera [DB93].

More often, calibrated cameras are used in conjunction with rotation sensors to stabilize

sensor drift [NF02]. The next paragraphs will discuss the approaches from [DB93, Bas93, BR97].

The technique introduced by Stein in [Ste95] will afterwards be discussed in more detail since

it is more general than the approaches in [DB93, Bas93, BR97].

Du and Brady approach: In [DB93] Du and Brady introduced a self-calibration approach

for an active vision head with constant intrinsic camera parameters. They exploited the known

orientation of the camera and the correspondences of at least two feature points.

The used model of the calibration assumes that the skew is zero. The provided self-

calibration method uses the mapping of an image point under the known camera rotation.

This leads to two nonlinear equations in the unknown camera parameters focal length, aspect

ratio and principal point for each point. Hence two features provide a sufficient number of

constraints to solve the equations proposed by Du and Brady. For more available feature cor-

respondences Du and Brady propose to use a nonlinear least squares optimization. Starting

from the nonlinear equations Du and Brady deduce a nonlinear calibration method that incor-

porates the motion of the features in order to directly compute the camera parameters from

three tracked points. This method uses a rotation about the x-axis and afterwards a rotation

about the y-axis. These rotations about one axis at a time require an active vision system.

Furthermore the radial distortion is estimated by Du and Brady in [DB93]. The estimation

uses the known orientation, the previously computed calibration and a set of points in the

image. It is not sufficient to use only two point correspondences to compute a radial distortion.

After detecting several points in the image the camera is rotated. Then the two feature positions
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are predicted based on the pinhole camera model, the estimated focal length, the computed

aspect ratio and the estimated principal point. Next the observed error between the predicted

feature position and the observed feature position can be used to compute the radial distortion

of the camera.

In [DB93] it was mentioned that the features have to be detected with an accuracy of less

then 0.2 pixel for an image of size 512×512 pixel in order to get a reliable camera calibration. In

general it was seen in [DB93] that the estimation of the principal point is an ill-posed problem.

The accuracy of the proposed approach was not measured in detail.

Basu approach: In [Bas93, BR97] Basu introduced concurrently with Du and Brady an-

other self-calibration approach for a camera in an active vision system. The cameras intrinsic

parameters were assumed to be fixed and the skew of the camera was ignored in the model. In

contrast to Du and Brady in [Bas93] Basu used points on lines to estimate the flow between

two images. This has the advantage of a more stable feature for the tracking and usually a

higher precision of the feature position in the direction perpendicular to the direction of the

line. The drawbacks are the problems caused by the aperture problem2 [Stu11, Hil84, Hil87].

The self-calibration equations for the focal length developed by Basu rely on small rotations

to estimate focal length and aspect ratio. The usage of these small rotations requires a high

precision for the orientation measurements. In contrast to the focal length estimation the

estimation of the principal point uses large rotations of up to 180◦. Further this estimation of the

principal point used the previously determined focal length and aspect ratio. By exploiting these

large rotations for the principal point estimation Basu tries to overcome the poorly conditioned

principal point estimation.

In order to self-calibrate the camera Basu developed two separate nonlinear equations for

the intrinsic camera parameters. Each equation is only valid for the rotation about one axis at

a time. Accordingly one equation models the rotation about the x axis. The second equation

models the rotation about the y-axis. Depending on the axis of camera rotation the equa-

tion that exploits the rotation about this axis is chosen for the self-calibration. Therefore

the approach of Basu requires precise rotations about the x, y and z-axis of the camera co-

ordinate system. With a freely rotating camera this approach can’t be used to calibrate the

camera because a rotation about one axis at a time can’t be assured. Further Basu gave an

error analysis for the proposed approach in [BR97]. In order to simplify the self-calibration

Basu linearized the nonlinear equations with several multiple step techniques which estimate

the parameters independently. For example first of all the focal length was determined with

small rotations. Afterwards the principal point was estimated with larger rotations using the

previously determined focal length.

The approach was evaluated with synthetic data to measure the noise robustness. The

computed results gave reasonable precisions as shown in [BR97]. Unfortunately not all data

was given to compute relative errors afterwards.

So far the approaches of Du, Brady from [DB93] and Basu in [Bas93, BR97] were explained.

2Aperture problem denotes the fact that the motion of a line is locally ambiguous because each sensor
(algorithm) has a finite field of view: it ”looks” at the world through something like an aperture.
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These approaches were the first self-calibration approaches that exploited the known camera

orientation. The approaches in [DB93] and in [Bas93, BR97] use an active vision system to get

well defined camera rotations, because their calibration equations use rotations about one axis

at the time. The achieved quality of the calibrations is reasonable. The main disadvantage is

that both techniques can’t be applied for the calibration of a freely rotating camera due to the

fact that the approaches rely on the rotation about one axis at a time. The next introduced

approach of Stein [Ste96, Ste95, Ste93] overcomes this limitation by using general rotations.

Stein approach In [Ste95] Stein introduced a nonlinear calibration for a camera with con-

stant intrinsic parameters and known orientation. The proposed method used the known ro-

tation of the purely rotating camera to determine the intrinsic camera parameters, the radial

distortion of the camera and an improved camera orientation. The technique exploits the pro-

jection equation (2.16) for a rotating camera and the radial distortion (A.45). The used model

for the radial distortion does not assume that the principal point (u, v) of the camera is identical

to the center (ur, vr) of the radial distortion. This leads to the radial distortion model

xu = ur + (x− ur)
(
κ1r

2
d + κ2r

4
d + . . .

)
yu = vr + (y − vr)

(
κ1r

2
d + κ2r

4
d + . . .

)
(3.10)

with the squared radius r2
d with respect to the center (ur, vr) of the radial distortion given by

r2
d = (x− ur)2 + (y − vr)2.

After the correction of the nonlinear radial distortion the linear projection model (2.16) for a

rotating camera is used as mapping function between the cameras. Eliminating the homogenous

scale for the projection equation (2.16) this leads to

x̂i =
r1,1x

u
j + r2,1y

u
j + r3,1

r1,3xu
j + r2,3yu

j + r3,3

ŷi =
r1,2x

u
j + r2,2y

u
j + r3,2

r1,3xu
j + r2,3yu

j + r3,3
(3.11)

as mapping equation for a point (xj , yj) in the first camera j to a point (xi, yi) in the second

camera i. After compensating the radial distortion in the features the sum of the squared

projection errors in the image

E =
∑

i,j∈{correspondences}
((x̂i − xj)

2 + (ŷi − yj)
2) (3.12)

is used as cost function for a nonlinear optimization. Using this cost function Stein estimated all

intrinsics of the camera, the first two coefficients κ1, κ2 of the radial distortion function (3.10)

and the orientation of the camera. The initialization of the nonlinear optimization process was

not discussed in [Ste95] and the convexity of the used cost function (3.12) wasn’t proved.

Stein exploited the known camera orientation for the calibration of a purely rotating camera.

The camera panned and tilted in order to compute a calibration. Stein explained that both
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rotations are mandatory to estimate all camera parameters. This result was later shown from

Sturm in [Stu97a, Stu96] as discussed in section 2.10. Steins arguments described the CMS-

Class 1.1 of section 2.10 on page 26 of Sturm. It is the class of the camera rotations about only

one axis.

The results of the nonlinear calibration of Stein in [Ste95] show that this calibration achieves

very precise calibration results for the internal camera parameters. A summary of Steins mea-

surements for different cameras is shown in table 3.1, the range represents the range of the

achieved accuracies for the intrinsics of the different cameras used. These results were reached

using a rotation that was measured with an error less than ±1.22
60

◦
, which is a very precise mea-

surement of the rotation. The estimated coefficients of the radial distortion have significantly

larger standard deviations than the focal length, the aspect ratio and the principal point. Ana-

lyzing the undistortion function showed that the undistortion still works good because the error

after compensation of the radial distortion is usually less than 0.5 pixels for a 512× 485 pixel

image. This is due to the fact that an error in κ1 in (3.10) can be to some degree compensated

with κ2.

The achieved calibration result probably depends on the initialization of the nonlinear op-

timization step.

parameter standard deviation
focal length 0.08%-0.17%
aspect ratio 0.05%-0.11%

principal point 1.4%-1.8%

Table 3.1: Standard deviation of the estimated parameters using the method proposed by
Stein [Ste95]. These results based on rotation with an error of less than ±1.22

60

◦
. The values are

computed from the results shown in[Ste95]

In [Ste95] Stein also analyzed the influence of translation on the calibration that occurs if

the camera is not exactly rotated about its optical center. This analysis is fully covered by the

later proposed more general analysis of Wang et al. in [WKSX04, WKSX02]. The details of

this analysis can be found in section 3.1.4.

Concluding, all approaches for self-calibration of a purely rotating camera with known

orientation assume constant intrinsic parameters. They all use the motion of a feature between

consecutive images to compute the camera parameters. The approach of Stein [Ste95] showed

the best results for the intrinsic camera parameter estimation. It uses a nonlinear optimization

to compute the calibration. Neither was shown by Stein that the cost function is convex nor was

the initialization given in detail. Steins approach is able to use general rotations to calibrate

the internal parameters. The approach of Basu linearized the nonlinear calibration equations.

This linearization used a multi-step technique due to the ability of the active vision systems

to produce rotations that minimize the error in a specific intrinsic parameter. Du and Brady

developed a solution for the nonlinear equations that relies on rotation about one axis at a time

in order to compute an intrinsic camera calibration. Hence the approaches of Du, Brady and

Basu can’t use general rotations for calibration.
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3.1.4 Error analysis of calibration from purely rotating cameras

During the last years some error analysis was done for the self-calibration of purely rotating

cameras. The work that gives the most general overview about sources of errors is the work from

Wang et al. in [WKSX04]. Wang et al. investigated the errors caused from rotating the camera

not exactly about its optical center since then the cameras optical center is not fixed. In this

case often not the desired infinite homography is estimated. Some of these error sources were

also investigated earlier by Stein in [Ste95]. Further Agapito et al. did some experiments on

the effects of radial distortion on self-calibration in [dAHR01]. This section will summarize the

above mentioned results to give an overview about the sources of errors for the self-calibration

of a purely rotating camera apart from the critical motion sequences from section 2.10.

Errors from homography: At first the errors caused from the homography used are dis-

cussed. These were investigated from Wang et al. in [WKSX04]. The calibration of a rotating

camera always registers the images with respect to the first image. This can be seen from

the above given approaches from sections 3.1.1-3.1.3 which all use this registration, namely

the estimated homographies, as input value of the self-calibration. It is assumed in all these

approaches that the estimated homography is the infinite homography H∞ from (2.16) that

maps over the plane at infinity and has the structure

H∞
j,i = KiRj,iK

−1
j ,

where Rj,i is the rotation between camera j and i. This assumption is violated if the camera

doesn’t rotate exactly about its optical center. In this case the estimated homography is not

always the infinite homography since if the camera observes a dominant plane π in the scene

the estimated homography uses this plane as mapping plane. Hence the estimated homography

does not have the structure of the infinite homography (2.16). This homography contains a

translational component for the camera like in (2.15):

Hπ
j,i = Ki

(
Rj,i +

t̃j,in
T
π

dπ

)
K−1

j with t̃j,i = Rj,itj,i = [tx, ty, tz]
T .

This homography Hπ
j,i is estimated even if an ”averaged” scene plane is observed and the

cameras will be registered against this plane πa. This averaged scene plane can be seen as an

average of all points on the planes present in the scene, and results from the overdetermined

estimation problem for the homography. If the calibration techniques still assume to have the

homography H∞
j,i they implicitly force the computed calibration to fulfill

K̃i

(
Rj,i +

t̃j,in
T
π

dπ

)
K̃−1

j = KiRj,iK
−1
j , (3.13)

where K̃i and K̃j are the estimated calibrations of the cameras i and j. Wang et al. investigated

the error of the solution in dependence of the number of estimated parameters for a camera

with constant intrinsic parameters.
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First of all Wang et al. investigated the estimation of the focal length for known aspect

ratio, skew and principal point. In [WKSX04] this is denoted as one parameter estimation.

Then the camera calibration matrix can be reduced to

K =

 f 0 0

0 f 0

0 0 1

 .

In case of a general homography instead of an infinite homography the estimation of the focal

length using (3.13) leads to (Ri,j)1,1 + txnx (Ri,j)1,2 + txny f ∗ ((Ri,j)1,3 + txnz)

(Ri,j)2,1 + tynx (Ri,j)2,2 + tyny f ∗ ((Ri,j)2,3 + tynz)
(Ri,j)3,1+tznx

f
(Ri,j)3,2+tzny

f (Ri,j)3,3 + tznz


︸ ︷︷ ︸

K̃i

“
Rj,i+

tnT

dπ

”
K̃−1

j

=

 (Ri,j)1,1 (Ri,j)1,2 f ∗ (Ri,j)1,3

(Ri,j)2,1 (Ri,j)2,2 f ∗ (Ri,j)2,3
(Ri,j)3,1

f
(Ri,j)3,2

f (Ri,j)3,3


︸ ︷︷ ︸

KiRj,iK
−1
j

(3.14)

It can be seen that the error is distributed row-wise over the homography. Exploiting the

properties of the distribution function it is possible to deduce a closed form solution for the focal

length that is independent of one component of the camera translation vector t̃j,i [WKSX04].

This shows that one can use a priori knowledge of the error source to reduce the resulting error.

For example a computation that is invariant against ty can be chosen if it is known that the

translation error mainly occurs in the y-component of the camera motion. From equation (3.14)

it can be seen that the disturbances introduced by the translation are decreasing if the rotation

is increasing. This can be used to improve the quality of the calibration by using images with

larger rotation in between to estimate the homography. Such a homography then provides a

calibration with a smaller calibration error. Further Wang et al. showed in [WKSX04] that for

a fronto parallel plane and a panning camera an error free computation of the focal length is

possible.

Wang et al. also investigated the estimation of the focal length and the aspect ratio for

known principal point and skew. This leads to an exact solution for the focal length for a

fronto parallel plane and a panning camera. The aspect ratio can not be computed error free

in any case. For a general rotation prior knowledge can be used for the estimation of the focal

length with a minimal resulting estimation error. Moreover Wang et al. deduced results for the

estimation of aspect ratio and the principal point. In this case it is in general not possible to

compute error free intrinsics as a closed form solution even not in the special cases of a fronto

parallel plane or a panning camera. Concluding Wang et al. showed that the a priori knowledge

about the error distribution can be used to minimize the estimation error caused by the camera

motion and scene planes. In some special cases Wang et al. showed that the right choice of the

equations used to compute the intrinsics avoids errors in the computed intrinsics.
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Errors from radial distortion: Apart from the errors caused by the general homography

instead of the infinite homography for real cameras one has to deal with errors caused from

the radial distortion of a real camera. In contrast to the error in the homography this effect

is a nonlinear disturbance. In general a radial distortion adds an offset (A.45) depending on

the pixel position to each pixels location. Moreover radial distortion changes with the focal

length of the camera. Agapito et al. investigated the effects of radial distortion in [dAHR01] by

experiments on synthetic data and on a real image sequence. The results will be summarized

here. If the homography is estimated from correspondences without correcting the effects of

the radial distortion the estimated intrinsics and also the extrinsics are strongly disturbed.

The disturbance were not analyzed in detail by Agapito et al. in [dAHR01]. Please note that

the direction of the disturbance mainly depends on the sign and absolute value of the radial

distortion. The conclusion of the experiments in [dAHR01] was that the radial distortion has to

be corrected ahead of the calibration. This correction can be done by image based techniques

like proposed in [Kan00, TM00].

There is a lot of work on estimating the radial distortion from images. For image sequences

with a camera with varying intrinsics it is obvious that each image has its own set of radial

distortion parameters. This leads to additional parameters for each image. An estimation of

one set of radial distortion parameters for each image is not useful because it leads to unstable

estimations [dAHR01] for the radial distortions and therefore also for the intrinsics. In [SK99]

Sawhney and Kumar modeled the radial distortion as constant to avoid instabilities. They

provided a direct solution to determine the radial distortion. This solution can be used if the

radial distortion is known as approximately constant a priori. This is often the case if a small

change in focal length is expected. Another solution was introduced by Tordoff and Murray

in [TM00]. They propose to approximate the value of the first coefficient κ1 of the radial

distortion function (A.45) for a small group of images with a cubic polynomial of the focal

length

K1 = α0 + α1f + α2f
2 + α3f

3. (3.15)

Then only the four coefficients α0, . . . , α3 of the polynomial have to be estimated. This

avoids the use of at least one additional parameter per camera and lead to good results in

the test [dAHR01]. It is a clear result that radial distortion has to be eliminated by the self-

calibration process like in [Ste95, TM00] or the radial distortion has to be corrected beforehand.

There are many techniques available to estimate the radial distortion [Ste96, KWT87, Kan00]

for example Kang uses snakes to compute the radial distortion from a single image in [Kan00].

So far a review of the existing approaches of calibrating a purely rotating camera and an

overview over the error sources was provided. It was shown that all existing approaches have

some limitations. The approaches [dAHR01, dAHR98, dARH99, Har97b, Har94b] for calibrat-

ing the intrinsic and extrinsic parameters of the camera have the drawback of using the dual

image of the absolute conic. With noisy data this leads sometimes to the problem of a not

positive definite DIAC and in those cases the calibration can’t be computed. Further, in the

approach [dAHR01, dAHR98, dARH99] proposed by Agapito et al. the number of varying in-

trinsic parameters is limited by (3.3). The few existing approaches [DB93, Bas93, BR97, Ste95]

for calibration exploiting a known camera orientation use nonlinear techniques to calibrate a
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camera with constant intrinsics. There is no approach available that is able to calibrate a

camera with varying intrinsic parameters and known orientation. The next section will discuss

the approaches for self-calibration of a freely moving camera.

3.2 Self-Calibration from general motion

The calibration of a freely moving camera was first investigated by Maybank and Faugeras

in [MF92]. The presented approach proved that it is possible to calibrate a freely moving

camera with constant intrinsic parameters that observes a static scene. Afterwards there were

many approaches for camera self-calibration from unknown general motion and constant intrin-

sics proposed in [FH92, HÅ96, PG97b, Luo92, LF97b, Zel96, Har94a, Tri97, PGO96, PG97a].

These approaches applied various constraints to reach a self-calibration. In section 3.2.1 some

methods for self-calibration of a camera with constant intrinsic parameters will be introduced.

Later researchers payed attention to the self-calibration of a freely moving camera with varying

intrinsic parameters [HÅ97, PKG98]. These approaches will be discussed in section 3.2.2. They

all use the images of the cameras as only source of information.

For a freely moving camera in my knowledge only one approach that exploits known extrinsic

parameters namely known camera orientation is available. The work of Zomet et al. [ZWS01]

uses the known relative orientation of fixed coupled cameras to self-calibrate the cameras. This

technique will be discussed in section 3.2.3.

Another class of self-calibration methods ensures the chirality of the cameras and the points.

The first approach was proposed by Hartley in [Har98]. Later Nistér improved Hartleys ap-

proach in [Nis04]. Further there are some approaches that apply structural constraints on the

scene to achieve a self-calibration of the camera. An interesting approach was recently proposed

by Rother and Carlsson [RC02]. They jointly estimate Fundamental matrices and homographies

from a moving camera that observes simultaneously the scene and some reference plane. The

homography induced by the reference plane generates constraints that are similar to a rotation

sensor and self-calibration can be computed linearly. However, some structural constraints on

the scene are necessary, while the proposed approach of this thesis applies constraints to the

camera only.

3.2.1 Camera with constant intrinsics

There were several methods for the self-calibration of a freely moving camera proposed over the

past twelve years. These methods basically form three different classes. The first class factorizes

the projection matrix and ensures the constraint that the camera calibration is constant like

in [Har94a]. The second class uses the epipolar geometry to get constraints on the absolute conic

on the plane at infinity. The advantage of these methods is that only the pairwise Fundamental

matrices are needed and no 3D scene information is required. The third class requires 3D

scene information. These methods are reconstructing a projectively skewed scene and the

corresponding camera matrices. From these reconstructions the self-calibration is computed

using constraints on the absolute conic or the absolute quadric. In [Tri97] Triggs proposed two
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ways to use the dual image of the absolute quadric from (2.43).

Factorization of the projection matrix A method that uses the QR-decomposition of the

projection matrix was proposed by Hartley in [Har94a]. Hartley derives from (2.35) by using

only the first 3× 3 part of the equation: The following constraint

P p
i H4×3

∼= KiR
T
i (3.16)

with H4×3 as the first three columns of the skewing homography H4×4

H4×3 =

[
K

(Kv)T

]
from (2.40). The unknowns in (3.16) are the calibration matrix K that is assumed to be

constant for all cameras and the normal v of the plane at infinity. Hartley proposed to compute

Ki and Ri through the QR-decomposition. For a camera with constant intrinsic parameters

the computed calibration K should be similar to all Ki computed by the QR-decomposition.

Consequently the following constraint should be fulfilled:

K ∼= Ki ∀i ∈ cameras. (3.17)

For the estimated K this equality is up to scale according to the unknown scale of the camera

projection matrix. This scale in (3.17) can be computed as the ratio of the traces of K and Ki.

Then Hartley proposed to minimize the following error ε(K, v) for all cameras

ε(K, v) = ‖ρiK
−1Ki − I3×3‖F , (3.18)

where ρi is the scale to achieve an Euclidian equality in (3.17). This method doesn’t exploit

the rotation invariant calibration pattern of the image of absolute conic or the dual absolute

quadric. The techniques that use the constraints on the absolute conic or the dual of the

absolute quadric all use rotation invariant equations for self-calibration. An introduction to

these methods will be given in the next two paragraphs.

Self-calibration using the Kruppa equations: As mentioned before, the approach of

Maybank and Faugeras in [MF92] is historically the first self-calibration approach. This ap-

proach uses the Kruppa equations (2.46) from section 2.8.1 to apply constraints on the dual

image ω∗ of the absolute conic. The scale factor in (2.46) was eliminated by using cross-ratios

comparable to those in (2.48). Thus from the Kruppa equation in [MF92] two linear inde-

pendent equations were deduced. Maybank and Faugeras proposed the following minimization

criterion for the error ε

ε =

∥∥∥∥ ω∗

‖ω∗‖F
− Fω∗F T

‖Fω∗F T‖F

∥∥∥∥
F

(3.19)

for all cameras. This formulation is independent from the position of the plane at infinity. This

is an advantage because it is not needed to ensure a consistent framework for the self-calibration

process, i.e. the pairwise Fundamental matrices can be used to calibrate the cameras. According



3.2. SELF-CALIBRATION FROM GENERAL MOTION 45

to the invariance of the Fundamental matrix to projective skew the position of the plane at

infinity is not contained in (3.19). This property is helpful if it is not possible to register all

views into one scene. This advantage becomes a limitation in case of noise. Then the plane at

infinity as a regularization term that ensures a consistent framework for images is not available.

Due to the lack of a consistent frame as regularization this method tends to fit the calibration

of each image pair in a different way [Pol99].

So far, it was explained that self-calibration techniques which use the Kruppa equations only

needs the pairwise Fundamental matrices. This is helpful in situations where the computation

of a global consistent registration is difficult. The next paragraph introduces a calibration that

requires a globally consistent framework in order to calibrate the cameras.

Self-calibration using the dual of the absolute quadric: The absolute quadric as a

geometric entity for self-calibration was introduced by Triggs in [Tri97]. The proposed method

used the fact that the dual absolute quadric is projected into the dual image of the absolute

conic as shown in (2.47). The scale factor in (2.47) is eliminated by using the cross-ratios from

(2.48) for computations that provide five linear equations [Tri97], leaving thirteen unknowns

that have to be estimated. The DIAC has five unknowns as explained in section 2.3. The

number of degrees of freedom of the dual of the absolute quadric was deduced in section 2.4 as

eight.

To solve the self-calibration equations provided by (2.48) Triggs proposed two methods. The

first solving method reduces the error ε(ω∗, Q∗) as the residual error of (2.48). The nonlinear

optimization process additionally ensures the rank 3 constraint of the absolute dual quadric

Q∗. The limitation here is that the self-calibration process has to be initialized.

The second proposed approach for the solution of (2.48) is a quasi linear method for self-

calibration. Triggs used the fact that the equations (2.48) are linear in the entries ωi
iQ

∗
i , where

·i denotes the i-th coefficient of the vector that contains the coefficient of the conic or quadric.

The dual image of the absolute conic has six coefficients parameterizing the conic and the dual

absolute quadric has 10 coefficients like every quadric. This gives sixty different products of

these coefficients and therefore fifty nine unknowns due to the scale ambiguity of conics and

quadrics. Writing the equations in (2.48) as a scalar product leads to fifteen linear independent

equations. Consequently four images are needed to estimate the dual image of the absolute

conic and the absolute quadric. The estimation does not enforce the rank three constraint of the

dual absolute quadric. Accordingly the rank three constraint is enforced afterwards by setting

the smallest singular value of the computed quadric to zero (closest rank three approximation).

Triggs reported that the non-linear method should be preferred for self-calibration, even

despite the issues of initialization. Due to the fact that the nonlinear approach is faster, more

robust and more accurate.

This section introduced some approaches for the self-calibration of a freely moving cam-

era with unknown but constant intrinsic camera parameters. The next section will introduce

approaches that need weaker constraints on the camera parameters.
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3.2.2 Camera with varying intrinsics

Techniques for the self-calibration of a freely moving camera with varying focal length were

introduced by Heyden and Åstrom in [HÅ97] and Pollefeys et al. in [PGP96]. Pollefeys et al.

extended the self-calibration in [PKG98, Pol99] for a camera that has only a zero skew.

Here the approach of Pollefeys et al. [PKG98, Pol99] will be discussed because it is the

algorithm that represents the state of the art in self-calibration of a freely moving camera with

varying intrinsic parameters. Pollefeys et al. are using the projection (2.47) of the absolute

quadric into the images. Looking at the number of degrees of freedom of the absolute quadric

in (2.47) gives fifteen unknown parameters, namely eight for the dual absolute quadric Q∗, six

for the dual image of the absolute conic ω∗ and one for the scale. To get a metric framework

with seven degrees of freedom (six for a similarity transformation, one for the scale) one needs

at least eight constraints. This leads to the a constraint on the minimum length of the image

sequence that is needed to self-calibrate the cameras. It is given by

nK − (n− 1)F ≥ 8 (3.20)

where K is the number of known intrinsics and F is the number of fixed intrinsic parameters.

Hence even one known parameter like zero skew is sufficient to calibrate the camera. Some ex-

amples for the minimal required length of the sequence in dependence on the known parameters

are shown in table 3.2.

constraint known fixed
#required
images

zero skew s 8
Fixed aspect ratio and zero skew s a 5

aspect ratio known and zero skew s, a 4

unknown focal length s, a, u and v 2

constant intrinsics f , s, a, u and v 3

Table 3.2: Length of sequence needed for self-calibration in dependence of the number of given
constraints for a camera with varying intrinsic parameters. Cite from [PKG99].

Pollefeys et al. deduced a minimal parameterization of the dual absolute quadric Q∗
∞ in

(2.47) as

Q∗
∞ =

[
ω∗ −ω∗v

−vT ω∗ vT ω∗v

]
, (3.21)

where v is chosen like in (2.40). Thus [KT v, 1] is the normal vector of the plane at infinity. Using

this minimal parameterization it is possible to use (2.47) for self-calibration. This provides

all unknown entries of the projective skew H4×4 from (2.35) of the reconstruction and the

cameras. Therefore estimating this parameterization of the dual absolute quadric leads to a
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metric reconstruction. Pollefeys proposed to use a nonlinear least squares optimization to solve

(2.47). The proposed optimization criterion is

min
n∑

i=1

∥∥∥∥ ω∗i
‖ω∗i ‖F

− PiQ
∗
∞P T

i

‖PiQ∗
∞P T

i ‖F

∥∥∥∥
F

, (3.22)

where ω∗i = KiK
T
i is the dual image of the absolute conic with the calibration matrix Ki of

the i-th camera. The camera projection matrix of the i-th camera is denoted as Pi and ‖ · ‖F

is the Frobenius norm. The dual image of the absolute conic ω∗i and the projection of the dual

absolute quadric are normalized to have Frobenius norm one in order to eliminate the unknown

scale in (2.47). Pollefeys et al. further provided a linear estimation technique if only the focal

length is known. Then only two images are needed to estimate the varying camera parameters.

The provided self-calibration method was tested in [PKG99, Pol99, PKG98] on synthetic and

real sequences. It can be seen in [PKG99] that the nonlinear self-calibration gives reasonable

results for low noise in the pixel position (less than 1 pixels standard deviation) only. The

model used for this measurement estimates the focal length and the unknown principal point.

For higher noise in the pixel position the error increases dramatically. This originates in the

low redundancy of the equations extracted from (2.47) used for self-calibration. Pollefeys et

al. proposed the presented linear approach for use with a higher noise in the pixel position.

It only estimates the focal length and assumes a known aspect ratio together with a principal

point set to the image center. This linear approach is much more robust because there is more

redundancy that can be used to improve the reliability of the estimation. However due to the

assumptions made for this approach it has a higher error for low image pixel noise than the

nonlinear approach. Pollefeys et al. also measured the performance of their algorithm on a real

image sequence. It was observed that the estimation of only the focal length is rather stable.

If the principal point is also estimated than the estimation is not very stable. For example

for a camera with constant intrinsic parameters the estimated principal point moves by up

to 100 pixel in an image with resolution 768 × 576. An improved self-calibration technique

as extension of this method was later proposed by Pollefeys et al. in [PGV+04]. It exploits

the ranges and uncertainties of the internal camera parameters to weight the self-calibration

equations. Accordingly the self-calibration process is more robust against noise in the input

data.

Summarizing, Pollefeys et al. introduced in [PKG99, Pol99, PKG98] a well accepted ap-

proach for the self-calibration of a freely moving camera with varying intrinsic parameters.

The only assumption needed is a vanishing skew of the camera. Pollefeys et al. evaluated the

approach and proposed to use the nonlinear calibration for a feature localization noise of less

than 1 pixel. For higher noise an estimation of the focal length only was proposed.

3.2.3 Multi-Camera system with constant inner orientation

Zomet et al. proposed in [ZWS01] a self-calibration approach for a multi-camera system. They

estimated the projective skew matrix H4×4 from (2.40) in case of varying intrinsic parameters

of the cameras of the multi-camera system. The assumption that has to be valid for the
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multi-camera system is that the orientation of the camera coordinate systems remains fixed.

This approach is related to the topic of this thesis because it uses a pre-calibrated known

orientation of the cameras to each other for self-calibration. In order to calibrate the extrinsic

parameters of the multi-camera system beforehand Zomet et al. used a calibration pattern. For

this extrinsic calibration of the multi-camera system all intrinsic parameters of the cameras

are set to constant values. Finally the multi-camera system is calibrated using one of the

approaches for self-calibration of a freely moving camera from section 3.2.1. Once this is done

the projective skew H4×4 from (2.40) for the cameras is known and the relative orientation of

the cameras to each other can be computed from the rectified camera projection matrices. This

orientation then has to remain fixed in order to be used for self-calibration. After this pre-

calibration step the intrinsic parameters of the cameras are allowed to vary. The multi-camera

system can be used afterwards to get an image sequence of an unknown scene. The intrinsic

camera parameters of the cameras during the image capturing of new images can be estimated

from the known orientation as explained in the following.

For self-calibration Zomet et al. used a similar approach like Hartley in [Har94a]. Hartley

proposed to deduce the self-calibration equations from (3.16) with the matrix H4×3 containing

the first three columns of the projective skew matrix H4×4 from (2.40). In contrast to Hartley

in [Har94a] Zomet et al. interpreted the matrix H4×3 as a general 4× 3 matrix with twelve

degrees of freedom. However Zomet et al. deduced

PiH4×3Ri
∼= Ki (3.23)

from equation (3.16). With a known rotation Ri equation (3.23) is linear in the intrinsic

parameters of the camera Ki and the matrix H4×3. The projective scale ρi can be modeled

explicitly to achieve an Euclidian equality. This leads to

PiH4×3Ri = ρiKi. (3.24)

The known entries of the camera calibration matrix Ki are used to get calibration equations

from each known camera projection Pi. Zomet et al. used twelve unknown entries in H4×3 and

n unknown scales ρi, where n is the number of cameras. Hence (3.24) imposes three constraints

on the matrix H4×3 and one on the scale ρi if all parameters are allowed to vary. From a

counting argument it follows that four images are needed to calibrate the camera with varying

intrinsic parameters. Zomet et al. deduced the following constraint for the number of cameras

needed to self-calibrate the cameras of the multi-camera system

n + 12 ≤ hn + 1, (3.25)

where h is the number of known intrinsic parameters.

Zomet et al. evaluated the proposed approach to get an Euclidian reconstruction, regard-

ing the estimation of the projective skew matrix H4×3 for cameras with varying intrinsics.

The resulting Euclidian reconstruction computed from the projective reconstruction by apply-

ing H4×3 as described in section 2.7 delivered reasonable results, i.e. the achieved Euclidian

reconstruction has reprojection errors of less than one pixel.
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It can be seen that the used parameterization of the projective skew H4×3 is not optimal

because it is interpreted as a general 4 × 3 matrix. Thus it has twelve degrees of freedom

instead of the eight degrees of freedom contained in the projective skewing transformation.

Zomet et al. always take the unknown scale into account for the estimation which introduces

one additional parameter for each new camera. As long as only the known entries with value

zero of the calibration matrices are used this is not needed. In this case each camera provides

only three instead of four constraints but it doesn’t introduce a new unknown parameter.

Summary: In this chapter the previous work in the field of camera self-calibration was

discussed. There are only a few approaches that incorporate a known orientation of the camera.

For purely rotating cameras only non-linear approaches were proposed to get a calibration of the

camera using the known orientation. For a multi-camera system with constant inner orientation

Zomet et al. proposed a linear approach to get the projective skew which is closely related to

the self-calibration.

The approaches for self-calibration of purely rotating cameras proposed from Hartley in

[Har97b, Har94b] and Agapito et al. [dAHR98, dARH99, dAHR01] suffer from noise in the

pixel position. Sometimes this causes that the calibration can’t be estimated due to the fact

that the Cholesky decomposition can’t be applied. The calibration approaches for a freely

moving camera with varying intrinsic parameters proposed by Pollefeys et al. also tend to be

unreliable under noise in the pixel position. To avoid this only the focal length is estimated as

a rough approximation for the camera calibration.
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Chapter 4

Self-Calibration with known rotation

In this chapter novel techniques on the use of available external orientation information for

camera self-calibration will be introduced. The proposed approaches were published in [FK03b,

FK03c]. These techniques address both cases of camera motion, namely purely rotating cameras

and freely moving cameras. The new techniques for self-calibration exploit a known camera

orientation to reach a linear self-calibration. At a first glance requiring orientation data seems

to strongly restrict the field of application but in many situations this orientation information

is already available. In robotic applications the orientation of the camera mounted on the

robot is easy to compute from the known position of the robot. Furthermore in cars the use

of cameras became very popular over the last years. In a modern car the orientation of the

car can be computed from the car sensor data [Zom91, GWF03]. Hence the camera position

can be calculated from the car orientation. In surveillance applications the used cameras

are typically pan-tilt-zoom cameras that also provide orientation information for the camera,

e.g. the orientation can be computed from the known control information of the camera. In

video-conferencing normally the orientation of the camera is known but the internal camera

parameters are unknown because the cameras are zooming in order to get a better image of

the currently interesting person. The requirement of known rotation is less restrictive than

any requirement for knowledge about the scene because it can be measured by a simple sensor

(often also a cheap one) mounted at the imaging device. In fact modern video cameras have

gyroscopes to measure jiggling of the camera. These sensors can also be used to measure the

orientation of the camera.

For the above mentioned broad field of applications the new technique simply uses the

available information about the extrinsic camera parameters. The known rotation will lead to

a linear self-calibration that requires a lower number of camera images than required for the

previously introduced approaches.

If the rotation of a camera is measured by a sensor that is mounted on the camera or by

any external sensor the coordinate systems of the sensor and the camera are generally not

identical. Hence a coordinate transformation between the sensor coordinate system and the

camera coordinate system has to be applied to use the measured information in the camera

coordinate system. This transformation is called ”hand-eye-calibration”. Several solutions for

this problem have been proposed in the robotics research, for instance [TL89, HD95, Dan99]. In

the following a known ”hand-eye-calibration” is assumed or is computed beforehand using one
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of the above approaches. Further, due to the miscellaneous delays during the data recording

and the different sampling rates of the camera and the orientation data in a real system, the

data has to be aligned in time, too. In [CI02, FK03b] techniques were proposed to do this

alignment using the data itself. Nowadays there are some orientation sensors available that

have a hardware solution for the alignment in time which promises to be more precise than

the estimated alignments. For these reasons it is assumed that the alignment in time between

orientation data and camera data is given.

In the next section 4.1 the novel linear self-calibration technique for a purely rotating camera

will be presented. Some basic measurements of the robustness1 of the new approach will be

discussed in sections 4.1.4 to 4.1.6. The relations between the novel approach and the existing

previous approaches for purely rotating cameras from chapter 3 will be discussed in the section

4.1.7. Afterwards a novel linear self-calibration approach for a freely moving camera will be

introduced in section 4.2. The noise robustness of this approach is measured in sections 4.2.3

and 4.2.4. In sections 4.2.5 respectively 4.2.6 the novel approach will be compared to previous

approaches for self-calibration of a freely moving camera. Finally in section 4.3 the critical

rotations for the new approaches will be analyzed.

4.1 Linear self-calibration of a rotating camera with

known orientation

In this section a linear self-calibration approach for a purely rotating camera with known ori-

entation will be introduced. This linear approach exploits given rotation information to reduce

the number of images required for self-calibration and to overcome the limitation on the num-

ber of varying intrinsics of the general self-calibration as in Agapitos approach from [dAHR98],

explained in section 3.2.2 (see also section 2.8 and section 2.9). Moreover the problems of

the existing approaches [dAHR01, Har94b, Ste95] caused by noise that lead to the fact that

sometimes the calibration can’t be computed also will be overcome by the novel approach. At

first the general case of a camera with fully varying intrinsic parameters will be investigated.

Varying camera parameters occur for zooming cameras and for multi-camera systems since then

normally the intrinsic parameters can’t be assumed to be constant. Afterwards the specializa-

tion for a rotating camera with fixed internal parameters is discussed. A basic evaluation of

the linear self-calibration technique on synthetic point data is done in subsection 4.1.4 and the

influence of errors in the measured rotation is analyzed analytically in section 4.1.6.

4.1.1 Self-Calibration with fully varying intrinsic parameters

The image planes of two cameras with the same optical center are correlated by a homography

as explained in section 2.5.1. Therefore each point from camera j can be mapped to the image

plane of camera i using the homography H∞
j,i that maps over the plane at infinity. The structure

of the infinite homography H∞
j,i is given in equation (2.16). According to the structure of the

1Robustness measures the sensitivity of the estimated result to noise in the input data.
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homography, the following equation can be deduced from (2.16):

KiRj,i = ρj,iH
∞
j,iKj . (4.1)

In equation (4.1) the projective scale ρj,i is explicitly modeled to achieve an Euclidian equality in

contrast to the equality up to scale in (2.16). In the following Euclidian equality will be needed

for the computations and introduces one additional parameter - the scale of the homography

- for each image pair. An important property of (4.1) is that it is linear in the calibration

matrices Kj and Ki for known scale ρj,i. The contained relative rotation matrix Rj,i between

camera j and camera i can be computed from the known orientations of the cameras. The

infinite homography H∞
j,i between the cameras can be estimated from the images themselves

(see section 2.5.1). For these reasons the homography H∞
j,i and the rotation Rj,i in the following

will be used as known transformations. The scale ρj,i of the homography H∞
j,i in (4.1) is normally

unknown as discussed in section 2.5.1. Hence the remaining unknowns in (4.1) are the intrinsics

in Ki, Kj and the unknown scale ρj,i. By introducing a scaled calibration matrix K̃i for the

second camera

K̃i =
1

ρj,i
Ki, (4.2)

equation (4.1) becomes linear in Kj and K̃i even for unknown scale ρj,i exploiting the known

homography H∞
j,i and the known relative rotation Rj,i. The structure of the calibration matrix

K̃i from (2.3) provides a simple method to compute the scale 1
ρj,i

directly from K̃i because

it is equal to the last diagonal element of K̃i. Accordingly the calibration matrix Ki can be

computed directly from K̃i by dividing it by its last diagonal element. Therefore the scaled

calibration matrix K̃i is used in the following instead of using the calibration matrix Ki and

the scale 1
ρj,i

separately. Using (4.2) in (4.1) leads to

K̃iRj,i = H∞
j,iKj (4.3)

which is linear in the intrinsics of the camera j and in the elements of the scaled calibration

matrix K̃i. Apart from some degenerate cases equation (4.1) provides nine linear independent

equations (B.1) for each a camera pair. The nine calibration equations (B.1) resulting from

equation (4.3) are given in appendix B.1. An analysis of the linear independency for a general

rotation Rj,i is given in appendix B.1 and the degenerate cases will be investigated in section

4.3. The unknowns in (4.3) are the five intrinsics contained in Kj , the five intrinsics of Ki and

the scale ρj,i contained in K̃i. This is a total of 11 unknowns in the nine equations. If there

are no constraints available for the intrinsics of the cameras, (4.3) has no unique solution for a

single pair of cameras j and i.

With two additional constraints for the intrinsics and the scale ρj,i of the homography the

solution becomes unique, since nine unknown parameters have to be determined and equation

(4.3) still provides nine linear independent constraints.

A useful constraint to get a unique solution for the self-calibration from a single camera pair

is the assumption of zero skew. This is often used for CCD-cameras which fulfill this naturally.

It provides one constraint for each camera. The remaining set of nine equations (B.7) is still
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linearly independent. A proof is given in appendix B.2. Accordingly the self-calibration can be

computed from a single image pair with known relative rotation.

For a third camera k with given rotation Rj,k between camera j and camera k nine additional

linear independent equations are provided by equation (4.3) together with the homography H∞
j,k.

The resulting two sets of linear independent equations can be used to calibrate all three cameras

concurrently with a linear calibration approach. The camera triplet (j, i, k) with estimated

homographies H∞
j,i and H∞

j,k together with the known rotations Rj,i and Rj,k delivers with (4.3)

a set of equations

K̃iRj,i = H∞
j,iKj ,

K̃kRj,k = H∞
j,kKj . (4.4)

The camera triplet has 17 unknowns and (4.4) provides at most 17 independent equations.

That a third camera provides additional linear independent equation can be deduced from the

block structure of the linear equation system (B.2). Following with general relative rotations

Rj,i and Rj,k a unique solution can be computed for the intrinsics and scales ρj,i and ρj,k of

a camera triplet (j, i, k) . The self-calibration can be solved even for fully varying intrinsic

camera parameters of all concerned cameras. Camera j can be seen as a reference view for this

calibration since both homographies refer to it.

At a first glance it seems that introducing a reference camera j is a limitation, which as

matter of fact is not. Assuming to know the homographies H∞
j,i and H∞

j,k in (4.4) does not

require the computation of both homographies directly. If only pairwise homographies can be

computed, the homography H∞
j,k can be calculated from the pairwise homographies H∞

j,i and

H∞
i,k. The homography H∞

j,k to the reference camera is then given by the concatenation of H∞
j,i

and H∞
i,k as H∞

j,k = H∞
j,iH

∞
i,k.

The next section will discuss the special case of constant intrinsic parameters for a purely

rotating camera.

4.1.2 Self-Calibration with constant intrinsic parameters

In many applications a camera with constant intrinsic parameters is used for image capture. For

example in surveillance applications cameras with constant intrinsics over a certain time period

are used. If it is known that the intrinsics are constant for all frames or a sequence of consecutive

frames, this knowledge provides five constraints for each additional camera. Accordingly only

the five intrinsic parameters of the first camera remain as unknown intrinsic parameters. For

cameras with constant intrinsics the self-calibration can therefore be computed from a single

camera pair. The remainder of this section shows how to detect the constant intrinsics followed

by the deduction of the simplified self-calibration problem.

In order to exploit the five additional constraints provided by constant intrinsic camera

parameters it is useful to detect this constancy automatically. For constant intrinsic camera

parameters K according to (2.16) the homography H∞
j,i can be written as

H∞
j,i = KRj,iK

−1. (4.5)
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Hence the homography H∞
j,i is a conjugated rotation matrix2. The structure of the eigenvalues

of a rotation matrix [Pea83, Fra83, HZ03] is known to be

eigval(R) = [1, cos(φ) + i sin(φ), cos(φ)− i sin(φ)], (4.6)

where φ is the angle of rotation about the rotation axis given by the eigenvector corresponding

to the eigenvalue one as earlier explained in 2.6. It is also known that a scaled matrix has the

scaled eigenvalues of the original matrix [Pea83]. Consequently the eigenvalues of the scaled

homography ρi,jH
∞
j,i have the structure

eigval(H∞
j,i) = ρi,j [1, cos(φ) + i sin(φ), cos(φ)− i sin(φ)]. (4.7)

It follows with (4.7) that the scale ρi,j is equivalent to the absolute value of each eigenvalue of

H∞
j,i

ρi,j = |ρi,j · 1| = |ρi,j (cos(φ) + i sin(φ))| = |ρi,j (cos(φ)− i sin(φ))| .

Exploiting the structure of the eigenvalues of the rotation matrix (4.6) with (4.7) it can be

decided whether the camera calibration was constant or not. This decision uses the fact that

for a camera with varying intrinsics the eigenvalues do not have the structure as shown in (4.7).

How to exploit these five additional constraints on the intrinsics and the known scale will be

discussed in the following. Equation (4.1) for a camera pair with constant intrinsic parameters

and the known scale ρj,i is equal to

KRj,i = H∞
j,iK. (4.8)

This is linear in the five intrinsics of the cameras j and i. The resulting calibration equations

are given in appendix B.3.

From a counting argument it follows that the solution of (4.8) is now unique for a single

camera pair, because there are only five unknown intrinsic camera parameters left. Equation

(4.8) provides a set of nine self-calibration equations (B.10) whereof five are linear independent.

The linear independency of the provided equations (B.10) is shown in B.3. Due to the five linear

independent equations delivered by (4.8) it follows that the calibration can be estimated from

a single camera pair with constant intrinsic parameters and known orientation.

So far the novel linear self-calibration equations were developed by exploiting the structure

of the homography. The next section will show that the self-calibration with the dual image of

the absolute conic (DIAC) provides the same calibration equations.

4.1.3 Relation of the linear self-calibration to the general self-cali-
bration

The above introduced novel self-calibration approach used the structure of the homography to

deduce the self-calibration equations for the intrinsic camera parameters. In this section it will

2Matrices A and B are conjugated if A = CBC−1 for some invertible matrix C. The conjugated matrix A
has the same eigenvalues as B and the eigenvectors of B are transformed with C [GL89].
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be shown that using the derivation of the the DIAC (as discussed earlier in section 2.8) will

provide the same self-calibration equations as extracted in (4.3).

Without loss of generality the camera center of a purely rotating camera can be assumed

to be at the origin of the coordinate system. The last column of each projection matrix is

accordingly zero for all cameras and the projection matrix has the form Pi = [Mi|0]. Hence for

a purely rotating camera equation (2.41) can be written as

KiR
T
i
∼= ρi(Mi − eiv

T )K1

with the camera center at the origin this is equal to

K̃iR
T
i = MiK1, (4.9)

with K̃i defined in (4.2) as the scaled camera calibration matrix of camera i. For the self-

calibration using the DIAC like [dAHR01, Har95] without known rotation this equation is

transformed into a rotation invariant equation (2.43). The transformation used the orthogonal-

ity RRT = I3×3 of the rotation. Afterwards the structure of the DIAC is used to compute the

camera calibration with the Cholesky decomposition. For known orientation of the cameras the

transfer to a rotation invariant problem is not necessary. The sub-matrix Mi of the projection

matrix Pi is the mapping from points on the image plane of camera i into the first cameras

image plane, which is chosen as the world coordinate system. Hence the sub-matrix M1 is equal

to I3×3. Therefore (4.9) is

K̃iR
T
i = MiM

−1
1 K1 = H∞

1,iK1, (4.10)

where H∞
1,i represents the homography that maps the points from the image plane of the first

image onto the image plane of the i-th camera over the plane at infinity π∞. Equation (4.10) is

equal to the novel self-calibration approach (4.3) deduced using the structure of the homography

H∞
1,i. It provides the same set of linear constraints for the intrinsics of the cameras.

The novel self-calibration equation (4.10) can be transformed into an equation for the dual

image of the absolute conic

K̃iK̃
T
i = ω∗i

∼= H∞
1,iK1K

T
1

(
H∞

1,i

)T
(4.11)

by multiplying each side by its transposed and using the equality from (4.3). This trans-

formation can be seen as a linear combination of the constraints provided by (4.10). Equation

(4.11) is equivalent to the infinite homography constraint (2.44) introduced in section 2.8. In

contrast to the novel approach the infinite homography constraint does not exploit the known

rotation.

Hartley proposed in [Har94b] to use (4.11) to estimate the DIAC and afterwards to apply

the Cholesky decomposition to calculate the camera calibration. Moreover the Cholesky de-

composition is used to invert the linear combination of the constraints from (4.10) in (4.11).

Employing the Cholesky decomposition introduces the problems with the positive definiteness

of the dual image of the absolute conic as earlier explained (see section 3.1.1). The proposed

novel approach overcomes these problems because it computes the intrinsics directly from (4.10)

respectively (4.3).
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So far the novel self-calibration equations were introduced and the number of constraints

provided by these equations was shown. The next section shows measurements of the robustness

in dependence on the noise in the camera orientation and the noise of the correspondences used

to compute the homographies.

4.1.4 Evaluation for rotating cameras

The robustness of the proposed calibration in presence of noise in the data will be shown by the

measurements in this section. To measure the noise robustness of the calibration of a rotating

camera with fully varying internal parameters the above linear approach will be tested with

synthetic point data and a detailed analysis of the results will be given. Tests of the proposed

technique with real data will be shown in section 5.1.

A camera rotating about its optical center at the origin of the coordinate system is simulated

for the test with synthetic point data. The camera rotates about x-axis and y-axis up to six

degrees. Rotation about the optical axis was not simulated since it does not provide any

information for the estimation of the focal length and the aspect ratio of the camera. For

the simulation a uniformly distributed point cloud of 100 points in front of the camera was

projected into the image plane of the rotating camera. Figure 4.1 shows a sketch of the setup.

For all computations six different views with different internal camera parameters are used.

The 3D scene points X̄ are uniformly distributed in a cube and projected into image points x̄

in the camera images of size 512x512 pixel.

Figure 4.1: Synthetic scene for measuring the noise robustness of the linear calibration

The locations x̄ of the projected points are disturbed by Gaussian noise with a maximum

standard deviation σpixel of up to one pixel. The noise level was chosen because the often used
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corner detectors [HS88, Smi92, Smi96] or feature tracker [LK81] reach that precision [SM95].

Additionally the known orientation of the camera is also disturbed by Gaussian angular noise

with a standard deviation σangular of up to one degree for each axis of the coordinate system,

which is approximately the range of angular noise of consumer rotation sensors like the Inter-

Sense InertiaCube2 and the XSense MTB 9. For higher noise levels the calibration was tested

in [FK03c, FK03b]. The estimation was repeated 1000 times for each noise level in order to

estimate the standard deviation and the mean value of the intrinsic parameters.

During the measurements the standard deviation σpixel of the pixel noise and standard devi-

ation σangular of the rotational noise were both varied. The homographies H̃∞
1,i with i = 2, . . . , 6

between the first camera and all other cameras are estimated from point correspondences by

least squares estimation using the linear estimation algorithms of section 2.5.1. To achieve a

better condition number3 of the resulting linear equation system and reliable calibrations a

normalization as proposed in [Har95] was employed. Applying this normalization to the data

reduced the condition number of the system matrix in (B.2), for example in this setup the

condition number was reduced by four orders of magnitude.

The measurements of relative errors and the standard deviations of these relative errors for

the first camera with the camera calibration matrix K1 set as

K1 =

 415 166 240.64

0 456.5 245.76

0 0 1


are shown in figure 4.2 to figure 4.6. The measured errors and standard deviations of the other

cameras are comparable to these results.
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Figure 4.2: Noise robustness measurements with Gaussian angular noise of a standard deviation
of up to 1 degree and Gaussian pixel noise with a standard deviation of up to one pixel of the
corresponding points: (a) relative error of the mean of the estimated focal length f1 = 415, (b)
standard deviation of the relative error of the estimated focal length f1.

From figure 4.2 (a) it can be seen that the mean relative error of the estimated focal length is

robust against noise in the data for the tested range of Gaussian noise with standard deviations

of σpixel ∈ [0, 1] and σangular ∈ [0◦, 1◦]. The relative error is always smaller than 2.8%. A slight

3The condition number is the ratio of the largest singular value of a matrix to its smallest. Large condition
numbers indicate a nearly singular matrix that causes numerical problems for the inversion of the matrix.
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systematic decrease of the error (bias4) of the estimated focal length can be observed. It is a

result of the angular noise of the rotation about the optical axis. A discussion of the bias will

be given in section 4.1.5. In figure 4.2 (b) it can be seen that the standard deviation of the

relative error increases mainly depending on the standard deviation σangular of the angular noise.

The influence of the noise of the location of the corresponding pixels is much smaller because

the homographies H̃∞
1,i with i = 2, . . . , 6 can still be estimated very precisely.
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Figure 4.3: Noise robustness measurements with Gaussian angular noise of a standard deviation
of up to 1 degree and Gaussian pixel noise with a standard deviation of up to one pixel of the
corresponding points: (a) relative error of the mean of the estimated aspect ratio a1 = 1.1, (b)
standard deviation of the relative error of the estimated aspect ratio a1.

In figure 4.3 (a) the mean relative error of the aspect ratio is shown. It can be seen that

the estimation is rather stable for a standard deviation of the pixel noise σpixel ∈ [0, 1] and a

standard deviation of the angular noise of approximately σangular ∈ [0, 0.5◦]. Then the relative

error of the mean estimated aspect ratio is always lower than 2.3%. According to the higher

sensitivity to angular noise the estimation of the aspect ratio requires a higher accuracy of

the orientation sensor than the focal length estimation. The requirement of higher accuracies

results from the dependence of the error of the aspect ratio a on the error of the focal length

f and on the product of the focal length and the aspect ratio af . The consumer orientation

sensors like InterSense InertiaCube2 or XSense MTB 9 provide the mandatory precisions for

differential measurements of less than half a degree. Similar to the focal length the mean

value of the aspect ratio shows a bias, which leads to an underestimation of the aspect ratio

(see figure 4.3 (a)). The reason for this bias is the same as for the focal length, namely the

angular noise of the rotation about the optical axis. The standard deviation of the relative

error slightly increases with the angular noise similar to the focal length. Again due to the

precise homography estimation the relative error depends mainly on the angular noise.

The mean relative error of the skew of the camera in figure 4.4 shows similar tendencies as

the mean relative error of the estimated aspect ratio and focal length. For angular noise with

a standard deviation σangular ∈ [0, 0.5◦] the mean relative error is less than 2.7%. For larger

standard deviations of up to 1◦ of the angular noise the error increases up to 8.7%. Similar

4A bias is a false association that results from the failure to account for some skewing or influencing factor, or
a tendency for the observed results to deviate from the ground truth results. Bias distorts results in a particular
direction.
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Figure 4.4: Noise robustness measurements with Gaussian angular noise of a standard deviation
of up to 1 degree and Gaussian pixel noise with a standard deviation of up to one pixel of the
corresponding points: (a) relative error of the mean of the estimated skew s1 = 166, (b)
standard deviation of the relative error of the estimated skew s1.

to focal length and aspect ratio the mean estimated value shows a bias caused by the angular

noise of the rotation about the optical axis. As a result of the poorly conditioned estimation

problem of the skew and the principal point, the standard deviation of the estimated skew s

increases more than the standard deviation of the focal length in figure 4.2.
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Figure 4.5: Noise robustness measurements with Gaussian angular noise of a standard deviation
of up to 1 degree and Gaussian pixel noise with a standard deviation of up to one pixel of the
corresponding points: (a) relative error of the mean of the estimated x-component of the
principal point u1 = 240.64, (b) standard deviation of the relative error of the estimated x-
component of the principal point u1.

The results for the estimation of the principal point (u1, v1) are shown in figure 4.5 and

figure 4.6. It can be seen that the estimation for both components is rather stable for a

standard deviation of the angular noise of σangular ∈ [0, 0.5◦]. The mean relative error for these

measurements is always less than 5.5% for u1 and less than 0.5% for v1. The measurement for

the y-component is even more stable for larger standard deviations of the angular noise. For

the x-component again the bias caused by the angular noise of the rotation about the optical

axis is observable. The higher sensitivity to noise of the x-component is caused from the joint

estimation of this parameter with the skew which can be deduced from the self-calibration

equations (B.1).
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Figure 4.6: Noise robustness measurements with Gaussian angular noise of a standard deviation
of up to 1 degree and Gaussian pixel noise with a standard deviation of up to one pixel of the
corresponding points: (a) relative error of the mean of the estimated y-component of the
principal point v1 = 245.76, (b) standard deviation of the relative error of the estimated y-
component of the principal point v1.

So far it was seen from the measurements that the influence of the orientation noise is

much larger than the error caused from noisy correspondences, since the absolute rotation an-

gle between the cameras is in the range of the noise (six degree camera rotation with standard

deviation of up to one degree for the noise) and the homographies still are estimated pre-

cisely. The error of orientation sensors like the InertiaCube2 from InterSense and the MTB 9

from XSense is normally in the range below half a degree for differential rotations. Hence a

reliable calibration can be computed from these measured orientations using the proposed self-

calibration approach. In most situations the homography estimation provides mapping errors

of less than one pixel. Accordingly the proposed calibration with (4.4) is robust.

As seen in the measurements for the focal length, the aspect ratio, and the skew the above

estimation is biased. The next section will deduce the source of this bias.

4.1.5 Error in rotations about the coordinate axes

The above shown (figure 4.2 to 4.6) robustness measurements had a bias for most of the intrinsic

parameters. It can be seen that the standard deviation σangular of the angular noise has the major

impact on the bias. Accordingly this impact will be analyzed in this section.

In the following the influence of the noise of the rotations about the axes x, y and z of the

coordinate system will be investigated for each axis separately. The first step of the analysis

will be performed for two cameras of the above mentioned synthetic setup. These two cameras

have a general relative rotation (about x-axis and y-axis) between each other and observe a

point cloud of 100 points in front of both cameras. In contrast to the above tests all camera

parameters except those of the focal lengths were assumed to be known during the computation.

The homography between both images was again estimated from point correspondences using

least squares. During the tests the known camera orientation was only disturbed in one direction

at a time by Gaussian noise with standard deviation σangular of up to 3◦. For each noise level

one thousand tests were made and the mean estimated focal length of each noise level was
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computed. The computed mean focal lengths of the cameras are plotted against the standard

deviation of the angular noise in figure 4.7 (a) to (c).

It can be seen that the angular noise of a rotation about the x-axis doesn’t influence the

mean value of the estimated focal length. An error of a rotation about the y-axis only slightly

influences the estimated focal length. The major source of error seems to be the error of the

rotation about the z-axis (optical axis of the camera). It will be analyzed in detail in the

following.
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Figure 4.7: Relative error in the focal length depending on the standard deviation σx, σy and
σz of the angular noise in degree of the given rotation. (a) angular noise for the rotation about
the x-axis, (b) angular noise for the rotation about the y-axis, (c) angular noise for the rotation
about the z-axis.

To deduce the noise sensitivity the estimated focal length from two views of a purely rotating

camera is investigated. To show the influence of angular noise of the rotation about the optical

axis on the focal length estimation all intrinsic parameters of the cameras are assumed to be

zero except those of the focal length and the aspect ratio of one (square pixels). Accordingly

the calibration can be computed from an image pair with known orientation. The true focal

lengths fj and fi of the two cameras provide the calibration matrices of the two views

Kj =

 fj 0 0

0 fj 0

0 0 1

 and Ki =

 fi 0 0

0 fi 0

0 0 1

 .

Exploiting the structure (2.16) of the infinite homography H∞
1,2 between both camera image

planes gives

H∞
j,i = KiRzK

−1
j =


fi

fj
cos Θ − fi

fj
sin Θ 0

fi

fj
sin Θ fi

fj
cos Θ 0

0 0 1

 , (4.12)

where Rz is the rotation matrix of a rotation about the optical axis with an angle Θ. In the

following it is assumed that there is no rotation about the x-axis and the y-axis.

The above described self-calibration approach (4.3) computes the intrinsic parameters con-
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tained in the estimated calibration matrices K̂j and K̂i

K̂j =

 f̂j 0 0

0 f̂j 0

0 0 1

 and K̂i =

 f̂i 0 0

0 f̂i 0

0 0 1

 .

In presence of noise rotation matrix R̂1,2 of the disturbed rotation is given by

R̂1,2 =

 cos(Θ + ∆Θ) − sin(Θ + ∆Θ) 0

sin(Θ + ∆Θ) cos(Θ + ∆Θ) 0

0 0 1

 ,

where ∆Θ is the angular noise added to the true rotation angle Θ of the rotation about the

optical axis of the camera. The linear equation system (B.2) for the computation of the intrinsic

camera calibration leads to the following estimation problem
(H∞

j,i)1,1 − cos(Θ + ∆Θ)

(H∞
j,i)2,2 − cos(Θ + ∆Θ)

(H∞
j,i)1,2 − sin(Θ + ∆Θ)

(H∞
j,i)2,1 sin(Θ + ∆Θ)


(

f̂j

f̂i

)
=


fi

fj
cos Θ − cos(Θ + ∆Θ)

fi

fj
cos Θ − cos(Θ + ∆Θ)

fi

fj
sin Θ − sin(Θ + ∆Θ)

− fi

fj
sin Θ sin(Θ + ∆Θ)


︸ ︷︷ ︸

A

(
f̂j

f̂i

)
= 0. (4.13)

It is an overdetermined estimation problem which can be solved using least squares. The least

squares solution of (4.13) is according to [GL89] the minimum of(
f̂j

f̂i

)T

AT A

(
f̂j

f̂i

)
= ε

f̂2
j

(
fi

fj

)2

− 2f̂j f̂i

(
fi

fj

)
cos(−∆Θ) + f̂2

i = ε. (4.14)

The derivations according to f̂j respectively to f̂i are leading to

f̂j = f̂i

(
fj

fi

)
cos(−∆Θ) = fj

(
f̂i cos(−∆Θ)

fi

)

f̂i = f̂j

(
fi

fj

)
cos(−∆Θ) = fi

(
f̂j cos(−∆Θ)

fj

)
(4.15)

as the minimum of (4.14) for f̂j respectively f̂i. Consequently the mean value f̄j respectively

f̄i of several estimations of f̂j respectively f̂i using a rotation about the optical axis that is

disturbed by Gaussian noise is given as

f̄j =
fj f̂i

|M |fi

∑
m∈M

cos(−∆Θm)

f̄i =
fif̂j

|M |fj

∑
m∈M

cos(−∆Θm), (4.16)
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where M is the set of measurements, |M | delivers the number of elements of M and ∆Θm is the

angular disturbance of the m-th measurement. It can be seen from (4.16) that the mean value

f̄j contains a systematic error factor εbias =
∑

m∈M f̂i cos(−∆Θm). In absence of noise the

factor εbias is equal to one and has no influence. If noise is present it is always less than one due

to the symmetry of the cosine even if the distribution of the angular error ∆Θ has zero mean.

Hence the mean value f̄j respectively f̄i of the focal length is systematically underestimated in

the presence of angular noise for the rotation about the optical axis. Further it can be seen that

the bias in (4.16) depends on the error in the rotation angle Θ itself and not on the absolute

value of the rotation. Hence the influence of the error does not depend on the signal to noise

ratio. For an estimation of all camera intrinsics concurrently a similar analysis can be done,

that shows that the aspect ratio of the camera is also biased by angular noise of the rotation

about the optical axis.

From equation (4.16) it can be seen that a unique solution for f̂j and f̂i is not possible for

a pure rotation about the optical axis. Accordingly this is a critical rotation for the proposed

self-calibration method. A detailed investigation of critical rotations for the proposed method

will be given in section 4.3. The above analysis showed the bias introduced by an error of

the rotation measurement about the optical axis. To compute a unique solution for the self-

calibration an additional general rotation is needed. In general a rotation about the x-axis or

the y-axis won’t compensate the error introduced by the measurement error in the rotation

about the optical axis.

The test with synthetic point data from the previous section 4.1.4 was repeated to validate

the results of the above analysis for the mean value of the estimated parameters, where the

angular noise for the rotation about the optical axis was set to zero. The results for the

robustness measurements are shown in the figures 4.8 to 4.12.
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Figure 4.8: Noise robustness measurements with Gaussian distributed angular noise for rotation
about the x-axis and y-axis of a standard deviation of up to 1 degree and Gaussian distributed
pixel noise of the corresponding points of a standard deviation of up to one pixel: (a) relative
error of the mean of the estimated focal length f1 = 415, (b) standard deviation of the relative
error of the estimated focal length f1.

It can be seen from figure 4.8 that the mean relative error of the focal length is strongly

reduced compared to the measurement with angular noise for the rotation about the optical

axis shown in figure 4.2. The axes have the same scale as in the original measurement 4.2.
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According to the elimination of the bias the mean relative error of the focal length was reduced

from 2.8% to 1%. As expected the variance of the results is also slightly reduced because the

general noise level is lower according to only two noisy rotation angles instead of three.
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Figure 4.9: Noise robustness measurements with Gaussian distributed angular noise for rotation
about the x-axis and y-axis of a standard deviation of up to 1 degree and Gaussian distributed
pixel noise of the corresponding points of a standard deviation of up to one pixel: (a) relative
error of the mean of the estimated aspect ratio a1 = 1.1, (b) standard deviation of the relative
error of the estimated aspect ratio a1.

The results for the estimation of the aspect ratio a are shown in figure 4.9. It can be

seen that the mean relative error of the estimated aspect ratio is also reduced as result of the

eliminated angular noise of the rotation about the optical axis. The maximal relative error is

reduced from 2.3% to 0.6%.
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Figure 4.10: Noise robustness measurements with Gaussian distributed angular noise for ro-
tation about the x-axis and y-axis of a standard deviation of up to 1 degree and Gaussian
distributed pixel noise of the corresponding points of a standard deviation of up to one pixel:
(a) relative error of the mean of the estimated skew s1 = 166, (b) standard deviation of the
relative error of the estimated skew s1.

The computation of the skew of the camera is also improved in absence of angular noise for

the rotation about the optical axis as shown in figure 4.10. The highest mean relative error is

reduced from 8.7% with angular noise to 2% without angular noise in z.

The measurements for the principal point are given in figure 4.11 and figure 4.12. The

previously mainly disturbed x-component of the principal point u1 is well estimated without
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Figure 4.11: Noise robustness measurements with Gaussian distributed angular noise for ro-
tation about the x-axis and y-axis of a standard deviation of up to 1 degree and Gaussian
distributed pixel noise of the corresponding points of a standard deviation of up to one pixel:
(a) relative error of the mean of the estimated x-component of the principal point u1 = 240.64,
(b) standard deviation of the relative error of the estimated x-component of the principal point
u1.
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Figure 4.12: Noise robustness measurements with Gaussian distributed angular noise for ro-
tation about the x-axis and y-axis of a standard deviation of up to 1 degree and Gaussian
distributed pixel noise of the corresponding points of a standard deviation of up to one pixel:
(a) relative error of the mean of the estimated y-component of the principal point v1 = 245.76,
(b) standard deviation of the relative error of the estimated y-component of the principal point
v1.
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angular noise. The maximal error is reduced to 1.3% compared to 3% for angular noise with

a standard deviation of up to σz ∈ [0, 0.5◦]. The mean relative error for the y-component is

reduced from 0.5% with angular noise in z to 0.1 % without angular noise.

So far it was shown that the uncertainty for the rotation angle about the optical axis

influences the quality of the estimated camera calibration. The analytical deduction was proved

with experiments on synthetic point data that showed that the angular noise introduced a bias

into the estimated intrinsic camera parameters.

4.1.6 Influence of errors in rotation

As seen in the evaluation of the previous section the source of error with the biggest influence

on the error of the estimated intrinsics is the still the rotation error even without noise in the

rotation about the optical axis. Consequently further investigation on this error source will be

done in this section. The remaining sources of rotation errors are the rotations about the x-axis

and the y-axis. In the following the rotation Ri,j between both cameras is set as a rotation

about the x-axis and the y-axis for the following analysis

Rj,i = RxRy with Rx(φ) =

 1 0 0

0 cos φ − sin φ

0 sin φ cos φ

 , Ry(Φ) =

 cos Φ 0 sin Φ

0 1 0

− sin Φ 0 cos Φ

 . (4.17)

The angle φ is the rotation angle of the rotation about the x-axis and the angle Φ is the rotation

angle of the rotation about the y-axis. For simplification again a camera with constant and

known parameters except from the focal length is assumed. Accordingly the focal length can be

estimated from a single camera pair. Without loss of generality the camera calibration matrices

Kj and Ki are given by

Kj =

 fj 0 0

0 fj 0

0 0 1

 , Ki =

 fi 0 0

0 fi 0

0 0 1

 . (4.18)

The homography H∞
j,i between the two cameras j and i can be computed with (2.16) exploiting

the camera calibration matrices Kj and Ki from (4.18) and the rotation Rj,i from (4.17) by

H∞
j,i = KiRj,iK

−1
j . (4.19)

This homography H∞
j,i is error free and has scale ρj,i equal to one. The measured rotation

angles φ̂ and Φ̂ have a disturbance by angular errors ∆φ respectively ∆Φ. Hence the disturbed

rotation matrix R̂j,i used for self-calibration is given by

R̂j,i = Rx(φ + ∆φ)Ry(Φ + ∆Φ), (4.20)

with Rx(·) and Ry(·) from equation (4.17). Consequently the self-calibration equations (4.3)

are equal to

K̂iR̂j,i −Hj,iK̂j = 03×3, (4.21)
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In equation (4.21) the matrices K̂j and K̂i are the estimated calibration matrices given by

K̂j =

 f̂j 0 0

0 f̂j 0

0 0 1

 , K̂i =

 f̂i 0 0

0 f̂i 0

0 0 1

 , (4.22)

with f̂j and f̂i denoting the estimated focal lengths. From the calibration equation (4.21) a

linear equation system

AH [f̂j , f̂i] = bH (4.23)

is deduced similar to appendix B.1. Afterwards an analytical solution of the equation system

was calculated in order to analyze the resulting error. The details of the achieved solution are

explained in appendix D.1.

In figure 4.13 the resulting relative error is plotted for two different angular disturbances ∆φ

respectively ∆Φ. For the chart a usual range of rotations in image sequences of perspective cam-

eras of φ ∈ [0.5◦, 20◦] and Φ ∈ [0.5◦, 20◦] was chosen. For greater rotations the correspondence

problem becomes more difficult to solve.

(a) (b)

Figure 4.13: Relative error of the estimated focal length f̂j in dependence on the rotation angles
about x-axis and y-axis. (a) Results for an angular disturbance of half a degree, (b) error for
angular disturbance of one degree.

Figure 4.13 shows the relative error of the estimated focal length for an angle disturbance

∆φ = ∆Φ ∈ {0.5◦, 1◦} in dependence on the angle of the absolute camera rotation. It can

be seen from the plotted errors in figure 4.13 that for small rotations the error caused by a

disturbance is larger than for large absolute rotations. This was expected beforehand because

for larger absolute rotations the absolute rotation disturbance of 0.5◦ respectively 1◦ becomes

less important. The value of the calibration error increases with the absolute value of the

disturbance.

This result leads to the observation that a minimum absolute rotation is required in or-

der to get small errors in the estimated intrinsic parameters. The needed minimum absolute

rotation for a desired error level depends mainly on the present disturbance of the rotation
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measurements. Furthermore it can be deduced that the sign of the calibration error depends

mainly on the sign of the measurement error (see appendix D.1). Accordingly the required

minimum absolute rotation can be reduced, if multiple estimations of the intrinsic parameters

with rotation measurements are performed and the rotation error distribution has a mean value

of zero. Multiple measurements can be computed for image sequences by varying the neighbors

used for calibration.

So far the new proposed self-calibration approach was introduced and evaluated in terms

of noise robustness. It was shown that the proposed approach is robust against noise during

the homography estimation and robust against noise in the measured rotation if the absolute

rotation is large enough. The next section will show the relation of the new approach to the

previous work in self-calibration of purely rotating cameras.

4.1.7 Comparison to previous approaches

The relations of the proposed approach to the previously introduced approaches will be dis-

cussed in this section. The properties of the techniques of Stein, Basu, Du and Brady already

explained in section 3.1.3 will be compared to the proposed self-calibration approach. All

these approaches only cover the special case of constant intrinsic parameters from section 4.1.2.

Furthermore the proposed novel self-calibration approach will be compared to the methods of

Hartley and Agapito discussed in section 3.1. The important difference is that the new method

requires the knowledge of the camera orientation. As mentioned before for many applications

this is not a strong requirement because this information is often available. Therefore the new

approach is also compared to these approaches but note that the approaches of the sections

3.1.1 and 3.1.2 can be applied to a more general field of applications.

Comparison to Du and Brady In contrast to the approach of Du and Brady in [DB93]

the novel approach neither requires that the camera calibration is constant nor that the skew

of the camera is zero. The equations developed by Du and Brady based on points are nonlinear

in the focal length, the aspect ratio and the principal point. The proposed approach leads to

linear calibration equations in all five degrees of freedom of the intrinsic camera parameters.

The measurements of Du and Brady showed that the feature positions have to be estimated

with a precision of about 0.2 pixel in order to compute a reliable self-calibration. As seen in

section 4.1.4, where the proposed approach was evaluated, larger errors in the feature positions

can be accepted in order to compute a reliable self-calibration.

The proposed approach needs at least four correspondences for self-calibration because these

are needed to compute the homographies. The technique of Du and Brady required only two

correspondences in order to calibrate the camera. Finally the approach of Du and Brady can’t

be applied to arbitrary rotating cameras because it explicitly exploits rotations about one axis

at a time.

Comparison to Basu The novel proposed approach of this thesis does not apply any con-

straint on the camera intrinsics. Basu in [BR97] assumed a constant intrinsic calibration of the

camera and a zero skew of the camera. Furthermore the approach of Basu relies on rotations
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about one axis at a time. Hence it can’t be applied for arbitrarily rotating camera like the

novel approach.

The approach of Basu estimates the focal length and the aspect ratio from small rotations.

The proposed approach becomes unstable for rotations with very small angles off less than

0.5◦. This can be seen from the proofs of the linear independency of the provided equation in

appendix B.1 and the analysis of the influence of the errors in the measured rotation.

Comparison to Stein Stein assumed in [Ste95] constant intrinsic parameters of the camera.

From the known orientation and the mapping between the images in Euclidian space Stein

deduced a nonlinear cost function for the self-calibration. The proposed approach (4.3) used

the projective space to linearize the mapping between the image planes. Consequently a set of

linear self-calibration equations was deduced instead of nonlinear [Ste95].

The presented measurements of Stein showed a high precision and reliability given high

accuracies in the orientation measurements. With the setup described earlier in section 4.1.4

similar conditions were simulated for the new approach (4.3). The orientation error of all three

axes was set to ±1.22
60

◦
and the pixel noise was chosen as about one pixel. The achieved results

are compared in table 4.1 to Steins results. It can be seen that the new approach shows better

or at least comparable results. Later during the evaluation of the proposed approach in chapter

5, all shown measurements use larger errors in orientation due to the fact that only consumer

sensors are used.

parameter standard deviation Stein standard deviation new
focal length 0.08%-0.17% 0.01%
aspect ratio 0.05%-0.11% 0.02%

principal point 1.4%-1.8% 0.01%-1.8%

Table 4.1: Standard deviation of the estimated parameters using the method [Ste95] proposed
by Stein. For these results a rotation with an error of less than ±1.22

60

◦
is measured. The third

column shows the standard deviation on synthetic data with comparable values of angular noise
and pixel noise.

Comparison to Agapito and Hartley In table 4.2 the new approaches from section 4.1.1

and section 4.1.2 are compared with the existing approaches of Agapito [dAHR01] and Hart-

ley [Har94b]. It can be seen from table 4.2 that the proposed self-calibration approach always

needs a lower number of images to compute a camera calibration than the previously proposed

approaches of Hartley [Har94b] and Agapito et al. [dAHR01]. Additionally this is a linear

solution instead of a nonlinear. Accordingly the camera can be calibrated faster and if more

frames are available the additional equations can be used to get a least squares solution which is

expected to be better due to the higher redundancy in the measurements. For constant intrin-

sic parameters Hartley proved in [Har94b] that three views are always needed to self-calibrate

the camera. In table 4.2 it is shown that the known orientation provides a unique solution

even for two views. In the proof in [Har94b] Hartley used the QR-decomposition [GL89] to

compute a decomposition of the first three rows and columns of the projection matrix. The
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resulting decomposition is ambiguous as shown in [Har94b]. It follows that two cameras are

not sufficient to compute a unique solution of the self-calibration problem. If the orientation

is known it can be used to compute the calibration by multiplication with the inverse rotation

matrix. A decomposition by the inverse of the known rotation was also used by Zomet et al.

in [ZWS01] to avoid the nonlinear QR-decomposition. In that case it also leads to a linear

calibration technique yet for a freely moving camera.

Another major advantage is that the computation of the calibration is independent of the

positive definiteness of the dual image of the absolute conic. Consequently a lower influence of

noisy data is provided by the novel approach in contrast to the existing approaches, which are

not able to calibrate the camera, if the dual image of the absolute conic is not estimated to be

positive definite (see section 3.1.1). Avoiding the rotation invariant dual image of the absolute

conic leads together with the known rotation to a unique intrinsic calibration.

The new approach further does not demand that the number of varying internal camera pa-

rameters hold any requirement like (3.3) for the approach of Agapito et al. [dAHR01]. In [HÅ98]

Heyden and Åström proved that all self-calibration approaches with unknown intrinsic and ex-

trinsic camera parameters need at least one known intrinsic parameter. Later they relaxed this

to one fixed but unknown parameter in [HÅ99]. Even if all internal parameters are allowed

to vary the new approach is able to calibrate the cameras in contrast to all existing previous

approaches as advantage of the known extrinsics.

Constraints number of views
unknown rotation known rotation

all parameters vary - 3

skew zero 6 2
principal point known 4 2
skew known, and aspect ratio known 3 2

constant intrinsics 3 2

Table 4.2: The number of views required under various constraints on the intrinsic camera
parameters in order to self-calibrate a purely rotating camera linearly. For unknown rota-
tions the number of views is given as required by the technique of Agapito et al. from section
3.1.2. If the camera parameters are constant the number of views needed by the approach of
Hartley [Har94b] is also three. For known rotation the number of views needed by the novel
approach from section 4.1.1 is denoted.

Summary: This section proposed a new linear self-calibration technique for a purely rotating

camera. It exploited the fact that the images of a rotating camera are correlated by a homog-

raphy. The structure of this homography was used to deduce the novel linear self-calibration

equations. Further this approach was compared to the existing approaches, displaying the

advantages of the new approach. However the second interesting type of camera motion in

which the camera moves and rotates can’t be handled by this approach. In the next section

the self-calibration of a moving and rotating camera will be introduced.



72 CHAPTER 4. SELF-CALIBRATION WITH KNOWN ROTATION

4.2 Self-Calibration of a freely moving camera with known

rotation

In this section the self-calibration of a moving and rotating camera with known rotation will

be introduced. Knowledge about the translation of the camera will be not required for the

proposed self-calibration. The novel approach will utilize the rotation data to achieve a linear

self-calibration which requires a lower number of images than in the general case. The image

relation between two frames of a freely moving camera is described by the Fundamental matrix

as shown in section 2.5.2. It maps a point in one image to a line in the other image. The

novel approach will exploit the structure of the Fundamental matrix for self-calibration and

its invariance under projective skew (see section 2.5.2). The next section will introduce the

new approach. The following section 4.2.3 will evaluate the proposed approach with synthetic

point data. Section 4.2.4 will analyze the influence of errors in the measured rotation on the

computed calibration. Finally the novel approach will be compared to the previously discussed

approaches from section 3.2.

4.2.1 Linear self-calibration of a freely moving camera with known
rotation and fully varying intrinsic parameters

The general structure of the fundamental matrix from equation (2.20) is now exploited to derive

a set of self-calibration equations for a freely moving camera. According to theorem 5 from

section 2.5.2 the general decomposition of a Fundamental matrix Fj,i is given by

Fj,i =
1

ρj,i
[ei]×Hπ

j,i,

where ρj,i is the unknown scale of the Fundamental matrix which can be estimated from the

images themselves. The homography Hπ
j,i can be any member of a three parameter family

described in theorem 5

Hπ
j,i = H∞

j,i − eiv
T with v ∈ IR3,

where H∞
j,i is the infinite homography that maps over the plane at infinity, ei is the epipole

in camera i and v is a vector of the IR3 that encodes the normal of the mapping plane π.

Consequently the decomposition of the Fundamental matrix Fj,i is ambiguous in the mapping

plane π. Due to the invariance of the Fundamental matrix under projective skew (as explained

in section 2.5.2) without loss of generality in the following v = [0, 0, 0]T will be used. It is

equivalent to simply use Hπ
j,i = H∞

j,i as the homography induced by the plane at infinity. With

(2.16) and (2.20) it follows that

Fj,i =
1

ρj,i
[ei]×KiRj,iK

−1
j (4.24)

is a valid decomposition of the Fundamental matrix Fj,i. Moreover it can be reordered to

1

ρj,i
[ei]×KiRj,i = Fj,iKj . (4.25)
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Given the relative rotation Rj,i between camera j and camera i, knowing the Fundamental

matrix Fj,i and its scale 1
ρj,i

, equation (4.25) is linear in the intrinsics of camera i and the

intrinsics of camera j. Usually the scale 1
ρj,i

of the estimated Fundamental matrix is unknown

(see section 2.5.2). Applying the scaled intrinsics K̃i of camera i as defined in (4.2) leads to

the following calibration equations

[ei]×K̃iRj,i = Fj,iKj , (4.26)

which are linear in the scaled intrinsics of camera i and the intrinsics of camera j for a known

rotation Rj,i and an estimated Fundamental matrix Fj,i. Please note the relationship to equa-

tion (4.3). One can see that (4.26) is an extension of (4.3) which contains the unknown camera

translation t in the epipole ei. According to the rank two of the Fundamental matrix and the

cross product matrix [·]×, the matrices [ei]×K̃iRj,i and Fj,iKj have also rank two. For this

reason (4.26) provides only six linearly independent equations for the scale 1
ρj,i

and the intrin-

sics of the cameras contained in Kj , Ki given a known general rotation. The self-calibration

equations (C.1) resulting from equation (4.26) are given in appendix C.1. A proof of the linear

independency of the equations is given in appendix C.1. Furthermore it can be seen that similar

to the Kruppa equations from section 2.8.1, the position of the plane at infinity is not contained

in (4.26). Consequently it shares the advantage of only requiring the pairwise Fundamental

matrices with the Kruppa equations (3.19).

To calibrate the cameras i and j for each camera five intrinsic parameters and one scale

for the estimated Fundamental matrix Fj,i have to be determined. From a counting argument

it follows that the solution for a single camera pair is not unique if less than five constraints

for the scale 1
ρj,i

and the intrinsics of the cameras j and i are available, since only six linear

independent equations are provided for the eleven unknowns of the first camera pair. Employing

an additional camera k introduces five additional intrinsic camera parameters contained in Kk

and one additional unknown scale 1
ρj,k

. So any additional camera provides the same number

of constraints as unknown parameters. For this reason it is not possible to reach a unique

solution for the calibration equation (4.26) without at least five additional constraints on the

intrinsics or the scale. In order to reach a unique self-calibration sets of known parameters will

be discussed in the next section.

4.2.2 Constraints needed to reach a linear calibration

The sets of constraints for achieving a unique solution for the self-calibration problem of a

freely moving camera are investigated now. A constraint for a parameter has one of two types:

the value of the parameter is known for each camera or it’s known that the parameter is fixed

for all cameras yet its value is unknown. Each parameter known for all n cameras gives n

constraints for the self-calibration. A parameter known as fixed provides one constraint less

than the number of cameras thus for n cameras n− 1 constraints. For a unique solution of the

self-calibration problem therefore the following constraint has to hold

f(n− 1) + kn ≥ 6n− 1,
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where f is the number of unknown but fixed parameters and k is the number of known param-

eters.

Known principal point For a known principal point, or even for only one known component

of the principal point a unique solution of the self-calibration problem can be found. Applying

the known principal point to the calibration equation (4.26) delivers

[e]×
(
K̃i + C̃u,v

i

)
Rj,i = Fj,i

(
Kj + Cu,v

j

)
with Cu,v =

 0 0 −u

0 0 −v

0 0 0

 , (4.27)

where C̃ is the constraint matrix scaled by 1
ρj,i

. As in equation (4.26) the calibration is linear in

the three unknown intrinsics focal length, aspect ratio and skew of camera j and the intrinsics

scaled by 1
ρj,i

of camera i and the scale 1
ρj,i

. The constrained self-calibration problem (4.27)

also provides six linear independent equations for each camera pair. Again from a counting

argument it follows that a unique solution of the constrained self-calibration problem can be

computed from an image triplet, because there are three unknowns left for the first camera and

each additional image pair introduces four new unknowns, namely the scale, the focal length,the

aspect ratio, and the skew of the additional camera.

Known skew and principal point The latter paragraph showed that for the first camera

pair seven unknowns remain but (4.26) provides only six linear independent equations. To

reach a calibration from a camera pair only one additional constraint is needed. The most

common constraint for CCD-Cameras is the zero skew. Then the focal length and aspect ratio

can be estimated directly from a single camera pair exploiting the knowledge of the orientation

of the cameras.

Known skew, known aspect ratio and known principal point As mentioned above

with known principal point and known or zero skew the cameras can be calibrated using a

single camera pair. Sometimes only the focal length of the camera is of interest; then the

aspect ratio is also known like for video cameras (PAL5 a = 1.067, NTSC a = 1.09). For

this special set of constraints the introduced approach as well as the general approach without

known rotation deliver a linear solution of the self-calibration problem [HZ03].

So far the self-calibration technique for freely moving cameras with known orientation was

introduced. In the next section the noise robustness of the proposed approach will be measured

using synthetic data.

4.2.3 Evaluation for freely moving cameras

To measure the noise robustness of the proposed linear calibration technique for freely moving

cameras synthetic point data with known noise and ground truth information will be used in

5Short for Phase Alternating Line, the dominant television standard in Europe. The United States uses a
different standard, NTSC short for National Television System Committee. Details can be found in [ITUb, ?,
ITUa].
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this section. Six cameras were positioned on a sphere observing a uniformly distributed 3D

point cloud of 100 points inside the sphere (see fig 4.14). The 3D points were projected into

the camera images of size 512x512 pixel. Afterwards the image points were disturbed with

Gaussian pixel noise of a standard deviation σpixel of up to 1 pixel in each coordinate and zero

mean. For numerical reasons the image points were normalized as proposed in [Har95] during

the computation of the Fundamental matrices Fj,i. The Fundamental matrices were estimated

by computing a least squares solution of (2.26). The Fundamental matrices Fj,i were used for

the self-calibration in order to measure the robustness against noise in the the pixel position of

the features. The known orientation of the cameras was also disturbed by Gaussian distributed

angular noise with a standard deviation σangular of up to one degree and zero mean. The results

for the linear calibration of the first camera with camera calibration matrix K1 set as

K1 =

 415 41.5 0

0 456.5 0

0 0 1


applying the constraint of a known principal point [u, v] = [0, 0] are shown in figures 4.14 to

4.17. The achieved results for the remaining five cameras are comparable to the shown results

for the first camera.

Figure 4.14: Synthetic scene for measuring the noise robustness of the linear calibration of a
freely moving camera.

In figure 4.15 (a) the relative error of the mean estimated focal length is shown. It can

be seen that the mean focal length is estimated very accurately in the tested range of noise

for pixel position and for angular noise. The maximal measured error is 1.5% of the ground

truth focal length. The maximal standard deviation of the estimated focal length is about
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Figure 4.15: Noise robustness measurements with Gaussian angular noise for rotation about
the x-axis and y-axis with a standard deviation of up to 1 degree and Gaussian pixel noise of
the corresponding points with a standard deviation of up to one pixel: (a) relative error of the
mean of the estimated focal length f = 415, (b) standard deviation of the relative error of the
estimated focal length.

5.7% for the achieved calibrations as shown in figure 4.15 (b). Hence the estimation of the

focal length is rather stable in the chosen range of noise that is typical for consumer rotation

sensors. The achieved mean value and standard deviation of the focal length are slightly better

than for a calibration of a purely rotating camera. At a first glance this is surprising. It can be

explained by the applied known principal point which does not introduce additional numerical

instabilities as in the case of a purely rotating camera.
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Figure 4.16: Noise robustness measurements with Gaussian angular noise for rotation about
the x-axis and y-axis with a standard deviation of up to 1 degree and Gaussian pixel noise of
the corresponding points with a standard deviation of up to one pixel: (a) relative error of the
mean of the estimated aspect ratio a = 1.1, (b) standard deviation of the relative error of the
estimated aspect ratio a.

The estimated relative error of the mean aspect ratio is shown in figure 4.16 (a). It can

be seen that the estimation of the aspect ratio is rather stable in the tested noise range for

angular noise and pixel noise. The maximal relative error is about 8% of the original aspect

ratio. The standard deviation of the relative error is with up to 9% slightly higher than for

the focal length. Thus like for the calibration of a purely rotating camera the estimation of the

aspect ratio gives reasonable results but is not as robust as the estimation of the focal length.
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So the cumulated errors of the focal length f and the product of focal length and aspect ratio

af also cause a higher sensitivity to noise for the aspect ratio. Similar to the measurements of

the focal length the estimated aspect ratio is slightly better than for a purely rotating camera.

Again the applied constraint of known principal point improves the estimation.
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Figure 4.17: Noise robustness measurements with Gaussian angular noise for rotation about
the x-axis and y-axis with a standard deviation of up to 1 degree and Gaussian pixel noise
of the corresponding points with a standard deviation of up to one pixel: (a) relative error of
the mean of the estimated skew s = 41.5, (b) standard deviation of the relative error of the
estimated skew s.

The measurements for the estimated skew of the camera are shown in figure 4.17. It can

be seen that the estimation of the skew is rather stable for an angular noise of σangular less

than half a degree and a pixel noise of σpixel less than half a pixel. In this range of noise the

relative error is less than 5% and the standard deviation is less than 30%. These estimation

results are not as stable as the estimation of the focal length due to the small skew of a tenth

of the focal length of the synthetic camera.

So far it was seen that the angular error has the major impact on the standard deviation of

the estimated intrinsics. Consequently the next section will analyze the sensitivity of the focal

length on errors in the rotation data in more detail.

4.2.4 Influence of errors in rotation

As seen in the evaluation of the previous section the source of error with the biggest impact is

the error in the measured rotation and this will be analyzed in this section. To investigate the

influence of rotation errors the achieved calibration of a single camera pair is used. The most

important intrinsic parameter for self-calibration is the focal length of the camera. Accordingly

the following analysis will focus on the focal length, all other camera parameters will be set as

known and fixed. Then it is possible to compute a unique solution for the focal lengths from

a single camera pair and without loss of generality the camera calibration matrices Kj and Ki

are given by

Kj =

 fj 0 0

0 fj 0

0 0 1

 , Ki =

 fi 0 0

0 fi 0

0 0 1

 . (4.28)
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In the following it is assumed that the rotation Ri,j between both cameras is a rotation about

the x-axis and the y-axis given by

Rj,i = RxRy with Rx(φ) =

 1 0 0

0 cos φ − sin φ

0 sin φ cos φ

 , Ry(Φ) =

 cos Φ 0 sin Φ

0 1 0

− sin Φ 0 cos Φ

 , (4.29)

where φ is the rotation angle about the x-axis and Φ is the rotation angle of the rotation about

the y-axis. The rotation about the optical axis is set to be zero due to the fact that it does

not provide linear constraints on the focal lengths (explained in more detail in section 4.3.5).

The analysis uses a general epipole ei = [e1, e2, e2]. Hence the Fundamental matrix between

the two cameras j and i can be computed with (2.23) and (4.28) as

Fj,i = [ei]×KiRj,iK
−1
j . (4.30)

For this Fundamental matrix the scale ρj,i is equal to one. Please note, the Fundamental matrix

Fj,i is an exact transformation without any error. The measured rotation angles φ̃ and Φ̃ are

assumed to be disturbed by an angular error ∆φ respectively ∆Φ. Consequently the disturbed

rotation matrix R̂j,i is given by

R̂j,i = Rx(φ + ∆φ)Ry(Φ + ∆Φ), (4.31)

with Rx(·) and Ry(·) from equation (4.29). Hence the self-calibration equations (4.26) are equal

to

[ei]×K̂iR̂j,i − Fj,iK̂j = 03×3, (4.32)

with the estimated calibration matrices K̂j and K̂i given by

K̂j =

 f̂j 0 0

0 f̂j 0

0 0 1

 , K̂i =

 f̂i 0 0

0 f̂i 0

0 0 1

 , (4.33)

where f̂j and f̂i denote the estimated focal lengths. Together with equation (C.2) the linear

equation system AF [f̂j , f̂i]
T = bF can be deduced in the entries of Fj,i, ei and the disturbed

rotation R̂j,i. To analyze the error in the focal length estimation that results from ∆φ respec-

tively ∆Φ the solution of AT
F AF [f̂j , f̂i]

T = AT
F bF was computed analytically. This solution for

the unknown focal lengths f̂j and f̂i is now given in the rotation angles φ̃ and Φ̃, the angular

errors ∆φ respectively ∆Φ, the epipole ei and the components of the Fundamental matrix Fj,i.

Due to the high complexity of the analytic solution it can be found in appendix D.2. To show

the effects of angular error in figure 4.18 the relative error of the estimated focal length f̂j is

plotted for two different angular disturbances in dependence on the rotation angles φ and Φ

with an epipole ei = [1, 1, 1]T . The analysis showed that the epipole does not influence the

general properties of the error (see appendix D.2).

In figure 4.18 the relative error of the estimated focal length fj is plotted depending on the

true rotation angles φ ∈ [0.5◦, 20◦] and Φ ∈ [0.5◦, 20◦]. The range was chosen as a typical range
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(a) (b)

Figure 4.18: Relative error of the estimated focal length f̂j in dependence on the rotation angles
about x-axis and y-axis. (a) Results for an angular disturbance of half a degree, (b) error for
angular disturbance of one degree.

of rotations possible in image sequences of perspective cameras. Please, note that the error

functions of the self-calibration for a purely rotating camera from section 4.1.6 look similar to the

shown errors of the freely moving camera. As seen the during the deduction of the calibration

equations (4.26) of a freely moving camera it is also similar to the calibration equations (4.3)

of the purely rotating camera. Accordingly it is not surprising that the errors are similar.

From figure 4.18 it can be seen that for small rotations the error caused by a disturbance

is larger than for large rotations. This is plausible because for larger absolute rotations the

absolute rotation disturbance of 0.5◦ respectively 1◦ becomes less important. Furthermore it can

be seen that the larger the rotation disturbances ∆φ and ∆Φ are, the larger is the calibration

error.

From the analysis it follows that in dependence on the present rotation measurement error

small rotations between the cameras of a sequence will lead to larger calibration errors than

larger rotations. Hence in applications it is helpful to use absolute rotations that are as large

as possible. The minimal required rotation depends on the present rotation measurement error

and the desired precision of the self-calibration. Furthermore the analysis discussed in section

D.2 showed that the mean value is not disturbed by the angular error. The insensitivity of

the mean value of multiple estimates was also observed in the experiments of the previous

section. Therefore multiple estimation from independent measurements will reduce the error of

the calibration. For images it is usually possible to calculate multiple measurements by varying

the reference frame and the neighbors used for calibration.

So far the performance of the proposed approach and the influence of noise to results of the

novel linear self-calibration approach were evaluated. The next sections will show the relations

to the previously proposed approaches.
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4.2.5 Relation of self-calibration of freely moving cameras to the
Kruppa equations

The linear calibration for freely moving cameras showed that the calibration is possible without

computing the camera motion, except from the known camera orientation. The derived self-

calibration equations (4.26) do not require a consistent frame for all cameras. I.e. it is not

needed to find the same position of the plane at infinity in the Fundamental matrices since this

plane is not contained in the equations as result of the invariance against projective skew of

the Fundamental matrix.

The advantage of only employing the pairwise Fundamental matrices without requiring any

global consistent frame is shared with the Kruppa equations from section 2.8.1. In contrast to

the Kruppa equations (2.46) the new approach is more robust against noise, and the second

major advantage is that it is a linear approach. The advantages of the new approach result

from avoiding to switch to a rotation invariant formulation. In the following it will be shown

that the novel approach can be transformed into the Kruppa equations.

The Kruppa equations also exploited the epipolar geometry to deduce constraints on the

camera calibration through the dual image of the absolute conic. They were introduced for

cameras with constant intrinsic parameters. Hence in the following a constant intrinsic camera

calibration is used. Equation (4.26) provides the equality of [ei]xK̃iRj,i and Fj,iKj . Multiplying

each side in (4.26) by its transposed implies the following equation

[ei]xK̃iRj,iR
T
j,iK̃

T
i [ei]

T
x = Fj,iKjK

T
j F T

j,i.

Eliminating the scale ρj,i contained in K̃i then provides

⇔ [ei]x KiK
T
i︸ ︷︷ ︸

ω∗i

[ei]
T
x = Fj,i KjK

T
j︸ ︷︷ ︸

ω∗j

F T
j,i, (4.34)

which are exactly the Kruppa equations (2.46) introduced in section 2.8.1 for a camera with

constant intrinsic parameters. So the Kruppa equations can be seen as a quadratic formulation

of the novel approach (4.26). Accordingly it is plausible that the Kruppa equations provide

quadric constraints in the unknowns of the dual image of the absolute conic in contrast to the

linear constraints of the proposed approach (4.26).

The next subsection will show the relation between the novel approach and the general

self-calibration equation derived from the dual image of the absolute conic.

4.2.6 Relation of the linear self-calibration to the general self-cali-
bration

In the previous sections 4.2.1 and 4.2.5 the self-calibration approach only applied constraints to

the image pair relation and not to the position of the plane at infinity π∞. Using the structure of

the Fundamental matrix to self-calibrate the cameras had the advantage of not requiring a global

consistent frame for all computations which is required for most self-calibration techniques as

explained in section 2.7. In this section it will be shown how to use the position of the plane at
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infinity as a common entity without any 3D scene. This will provide a nonlinear self-calibration

approach for freely moving cameras with known orientation.

Employing the general self-calibration given by the absolute conic as described in section

2.8 constraints can be applied to the DIAC ω∗ and the plane at infinity π∞. The estimated

projective skew matrix H4×4 contains the calibration of the first camera and the normal vector of

the plane at infinity π∞. Once determined the calibration of all cameras can be computed from

the projectively skewed projection matrices using matrix multiplication. The self-calibration

equation (2.41)

KiR
T
i
∼= (Mi − eiv

T )Kj

uses the projectively skewed camera matrix. In order to compute the camera projection matrices

of a camera pair j and i from the Fundamental matrix Fj,i it is assumed that camera j is

identical with the world coordinate system. Then for a given Fundamental matrix Fj,i the

projectively skewed projection matrices P p
j and P p

i for the corresponding cameras j and j are

given by [HZ03]

P p
j = [I3×3|0] and P p

i =
[
[ei]×Fj,i + eia

T
i |λei

]
with ai ∈ IR3, (4.35)

where the vector ai determines the mapping plane of the homography. Exploiting the structure

of the projection matrix from equation (4.35) equation (2.41) can be written as

KiR
T
i =

1

ρj,i

(
([ei]×Fj,i + eia

T
i )− eiv

T
)

Kj ,

where [vT , 1] ∈ IP3 encodes the plane at infinity. This is similar to equation (3.16) Hartley used

for self-calibration with QR-decomposition in [Har94a]. Equation (2.41) can be reordered to(
([ei]×Fj,iKj + eia

T
i Kj)− eiṽ

T
)

Ri
∼= K̃i with ṽ = KT

j v. (4.36)

It can be seen that the known entries with value zero of the Ki with i = 2, . . . , n provide three

constraints for the eight unknowns of Kj , ṽ and the three unknowns in ai. It is not mandatory

to estimate the scale 1
ρj,i

because it doesn’t affect the constraints provided by the zero entries.

Due to the fact that each image provides three constraints and introduces three unknowns in

ai a self-calibration can not be reached. Using techniques like the threading of Fundamental

matrices proposed from Avidan and Shashua in [AS01] helps to overcome this problem of three

new parameters for each image. The proposed technique uses the trifocal tensor to ensure a

consistent mapping plane for all cameras. Then the three parameters in ai are determined.

Another way to determine ai in advance is the employment of a projective reconstruction of

the scene. The reconstructed projective scene can be exploited to fix the position of the plane

at infinity for all cameras and the mapping plane encoded by ai of the cameras.

For a fixed mapping plane of the homographies of all cameras each camera provides three

constraints in the eight unknowns of Kj and ṽ in (4.36). Using these constraints four cameras

are needed to calibrate the first camera and to compute the normal vector of the plane at

infinity using ṽ. The number of cameras needed to calibrate has to fulfill the relation

f(n− 1) + (k + 3)n ≥ 8.
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The number of cameras needed to calibrate for different sets of constraints is given in table

4.3 also for a fixed mapping plane of the homography ensured by a threading of Fundamental

matrices or by a projective reconstruction. If the consistent mapping plane for the homographies

can’t be ensured at least one constraint for the intrinsic camera calibration is needed.

It can be seen that the approach with the consistent mapping plane needs a smaller number

of images to calibrate the cameras. Further it also computes the full projective skew matrix

H4×4 as introduced in section 2.7 without requiring any 3D information of the scene if the

mapping plane is constructed by the threading of Fundamental matrices from [AS01].

Constraints number of views
known rotation

absolute quadric (4.26) (4.36)
all parameters vary - - 4

skew known and not zero, all other parameter
vary

- 5 3

principal point known, all other parameters
vary

4∗, 5 3 3

principal point known, skew zero
3 2 2

principal point known, skew known, and aspect
ratio known

2 2 2

Table 4.3: The number of views required under various conditions in order to self-calibrate
linearly. There may be multiple solutions for the cases marked with an asterisk. Second column
denotes the number of images for the self-calibration using the structure of the Fundamental
matrix from section 4.2.1. In the third column the number of images for the self-calibration
approach (4.36) using the approach of this section are denoted.

A comparison in terms of the number of views needed for self-calibration between the

approaches from section 3.2.2 and the new approach from section 4.2.1 which uses the structure

of the Fundamental matrix is shown in table 4.3. It can be seen that the number of views

required for the new linear self-calibration with known rotation (4.26) is lower than the number

of views required for the self-calibration using the dual of the absolute quadric.

The previously introduced approach in (4.36) is similar to the calibration introduced by

Zomet et al. in [ZWS01] discussed in section 3.2.3. The self-calibration equations (4.36) can be

written as matrix equation

[[ei]×F |ei]︸ ︷︷ ︸
Pi

[
Kj

ṽT

]
︸ ︷︷ ︸

H4×3

Ri = K̃i, (4.37)

which is equivalent to equation (3.23) proposed by Zomet et al. to compute the calibration of the

cameras of a multi-camera system in [ZWS01]. Hartley suggested equation (3.16) in [Har94a] as
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self-calibration equation which is also equivalent to equation (4.37). The difference is that (4.37)

explicitly incorporates the pairwise Fundamental matrices for the self-calibration. Moreover

Zomet et al. used a general 4× 3 matrix in [ZWS01] that does not utilize the knowledge of the

possible projective skew. Implicitly the knowledge is enforced in their approach by employing

the first camera P1 = [I3×3|0] as constraint; so (4.37) becomes

Kj =
1

ρj
Kj .

However due to the suggested least squares solution for noisy data the solution will not hold

these constraints. Enforcing this constraint requires the structure of H4×3 as denoted in (4.37).

Consequently the problem as formulated by Zomet is over parameterized with four additional

parameters.

So far two new self-calibration methods were proposed for cameras with known orientation.

The major error sources of this approaches were identified and analyzed analytically. The next

section will discuss the critical camera rotations for the proposed approaches.

4.3 Critical camera motions for calibration with known

rotation

In section 2.10 the critical motion sequences for self-calibration were discussed. The CMS classes

for the estimation of a metric reconstruction also apply for the new introduced approach. Hence

this section will focus on the degenerate cases when not only the projective reconstruction is

ambiguous but also the intrinsic camera parameters can’t be estimated uniquely. These classes

of rotation can be found by analyzing the properties of the rotation matrix. For each class the

special constraints on the intrinsic camera parameters using equations (B.1) respectively (C.1)

can be deduced from the properties of the rotation matrix. The results for both calibration

techniques are equivalent in terms of the critical rotations; therefore the deduced results are

valid for both calibrations. A summary of the results of the next section 4.3.1 to 4.3.5 is shown

in table 4.4.

In the following sections the self-calibration of a single camera pair will be investigated in

order to deduce the provided constraints. According to the block structure of the equations

systems (B.1) and (C.1) the analysis applies also for each additional camera pair.

4.3.1 No rotation at all or rotations about 180◦

It is clear that the first class of critical rotations of the camera consists of the rotations about

any axis of 180◦ and no rotation of the camera at all. In this case the resulting camera rotation

is similar to an identity matrix with respect to the number of non-zero elements. Hence the

calibration equations (B.1) respectively (C.1) do not provide a sufficient number of constraints

to compute a unique self-calibration. This class of rotations is contained in the CMS-classes

1.2 and CMS-classes 1.3 introduced by Sturm in [Stu96] and was already explained in section

2.10.



84 CHAPTER 4. SELF-CALIBRATION WITH KNOWN ROTATION

Applying an identity matrix in the equations (B.1) and (C.1) leads to a set of six linear

independent equations in the resulting equation system (E.2). These equations deliver con-

straints on the principal point v in y direction for cameras with varying intrinsics and non-zero

skew. Moreover constraints on the ratio of focal lengths, the aspect ratios, the skews and the

principal points in x direction of the involved cameras are provided. The focal lengths as well as

the aspect ratios can’t be determined at all. Consequently it follows for this class of rotations

for a zooming camera that does not rotate or rotates about 180◦ about any axis, it is only

possible to estimate the principal point in y. For a freely moving camera a similar set of five

linear independent constraints can be deduced.

The estimation of the principal point is poorly conditioned and the most cameras have skew

zero. Accordingly it is not expected that the estimations exploiting the proposed approaches

for self-calibration of cameras with known orientations are practically feasible. A more detailed

deduction for results mentioned above is given in appendix E.1.

type of rotation f s u af v
no rotation - - - - x

x-axis rotation - x x x x
y-axis rotation x - x - x
z-axis rotation - x x - x

Table 4.4: Critical rotations for self-calibration of cameras with known orientation. The first
column describes the type of degenerate rotation. The following columns denote for each
intrinsic camera parameter whether it can be estimated ”x” or not ”-”.

4.3.2 Rotation about one axis

The class of rotations about one axis is the CMS-class 1.1 from section 2.10. Sturm found that

in this case several conics on the plane at infinity exist that have an invariant projection into

the images. Accordingly the achieved self-calibration of the camera is ambiguous. A rotation

about an axis in general position is not critical for the proposed approach since it still provides

enough constraints for the self-calibration. The only exception are rotations about the axes of

the camera coordinate system. The following paragraphs will discuss these rotations about the

different axes of the coordinate system.

4.3.3 Rotation about the x-axis

Self-calibration of a camera that rotates about the x-axis of the camera coordinate system is

only able to estimate the product af of aspect ratio a and focal length f as well as the principal

point[u, v] and the skew s of the cameras. A rotation matrix Rx for a rotation about the x-axis

with angle φ has the following structure

Rx(φ) =

 1 0 0

0 cos φ − sin φ

0 sin φ cos φ

 .
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Exploiting the rotation Rx for self-calibration in the equations (B.1) respectively (C.1) delivers

self-calibration equations that only constrain the principal point[u, v] and the product of aspect

ratio a and focal length f an the skew s of the cameras. Furthermore a constraint on the ratio

of the focal lengths of the cameras is provided. A detailed deduction is given in appendix

E.2. The resulting linear equation system for two purely rotating cameras has seven linear

independent equations. For a freely moving camera similar constraints can be deduced from

(4.26), where five of them are linear independent. Consequently a unique self-calibration can’t

be computed from a single camera pair for the remaining parameters which are the focal length

in y direction af , the principal point [u, v] and the skew s without any additional constraints

on these parameters.

However such a critical rotation can be detected from the structure of a given rotation

matrix automatically. Hence the computation of the self-calibration can take into account that

only constraints for the focal length in y direction af and the principal point [u, v] and the

skew s are available.

4.3.4 Rotation about the y-axis

Similarly to a rotation about the x-axis a rotation about the y-axis with angle Φ

Ry(Φ) =

 cos Φ 0 sin Φ

0 1 0

− sin Φ 0 cos Φ

 ,

only provides constraints on the focal length f and the principal point [u, v]. More details

about the deduction of these results can be found in appendix E.3. Two additional linear

constrains are provided, one for the ratio of the focal lengths in y-direction and one for the

ratio of the skews of the involved cameras. Furthermore it can be seen that a rotation about

the y-axis still provides nine linear independent equations for the self-calibration of a single

camera image pair. It seems to be surprising that a rotation about the y-axis provides more

linear independent equations than a rotation about the x-axis. It is a result of the modeling of

the skew in the camera calibration matrix that is biased to the x-direction. The skew provides

two linear independent constraints for the calibration equations (B.1).

However, again it is possible to identify the new set of the constraints from the rotation

matrix itself. Thus a self-calibration technique can be adapted to only estimate the focal length

f and the principal point [u, v]. Then a unique self-calibration for the remaining parameters of

the camera can be estimated from a single camera pair. For cameras with zero skew a camera

triplet is needed for a unique solution.

An analogous analysis can be done for a freely moving camera that rotates about the y-axis.

It delivers six linear independent constraints on the focal length f , the principal point [u, v],

the ratio of the focal lengths in y-direction af of the cameras and the ratio of the skews of

the cameras. Hence it is possible to estimate the focal lengths and the principal points of the

involved cameras from a camera triplet for a freely moving camera.
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4.3.5 Rotation about the z-axis

For a camera that purely rotates about its optical axis the rotation matrix is given by

Rz(Θ) =

 cos Θ − sin Θ 0

sin Θ cos Θ 0

0 0 1


for a rotation angle of Θ. Employing the rotation Rz in the self-calibration equations (B.1)

respectively (C.1) provides seven linear independent equations. These equations model con-

straints on the principal point and the skew of the camera. Hence these parameters can be

computed after an automatic detection of this type of rotation using the structure of the rota-

tion matrix. The resulting set of equations provides a sufficient number of constrains to achieve

a unique solution of the self-calibration for a purely rotating camera.

For a freely moving camera a comparable set of constraints on the the principal point and

the skew of the camera can be deduced from the self-calibration equations (C.1). Six of these

constraints are linear independent. Accordingly a unique solution for the remaining parameters

of a camera triplet is possible.

So far it was shown that the only critical rotations for the calibration of the camera are

rotations about 180◦ about any axis, no rotations at all and the rotation about one of the

axis of the coordinate system. Rotations about only one constant general axis are not critical.

As seen in the proofs for the linear independency of the self-calibration equations provided by

(4.4) and (4.26) the sinus of the rotation angle numerically influences the linear independency

of the equations. Hence the self-calibration becomes ambiguous with small angle rotations due

to numerical problems.

Summary: This chapter proposed two new self-calibration algorithms for cameras with

known orientation. The first self-calibration approach was developed to calibrate purely rotating

cameras with known orientations. The robustness of the approach was measured with synthetic

point data. These measurements showed that the algorithm gave reliable calibrations for pixel

noise with a standard deviation of up to one pixel and angular noise with a standard deviation

of up to one degree. Furthermore the error of the measured rotations was identified as major

source of error. Accordingly it was analyzed in detail. As results of the analyzes it could be

seen that it is helpful to use large rotations between the images and multiple estimations of

the intrinsic parameters. The proposed approach was compared to the previously proposed

self-calibration techniques for the self-calibration of rotating cameras. It shows that one of

the major advantages of the novel approach is the lower number of images required for self-

calibration. Another advantage that the proposed technique overcomes the limitation on the

number of varying intrinsics.

The second proposed self-calibration approach can be applied to calibrate freely moving

cameras with known orientation. The noise robustness of this approach was measured with

synthetic point data by varying the pixel noise of the image features with pixel noise of a

standard deviation of up to one pixel and angular noise with a standard deviation of up to

one degree. It was seen that the calibration technique gave reasonable results in the tested

range of noise. According to the achieved results the major source of error was also the error
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in the measured rotation. Consequently the influence of it was analyzed analytically. Similar

to a rotating camera the analysis delivers that result that large absolute rotations and multiple

estimates of the intrinsics are helpful. Furthermore the novel approach was compared to the

existing approaches for the self-calibration of a freely moving camera. The comparison showed

as the major advantage of the novel approach that the number of images required for self-

calibration can be reduced. The next chapter will measure the performance of the proposed

self-calibration algorithms on image sequences of synthetic scenes and real scenes.
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Chapter 5

Experimental results

The proposed approaches from section 4.1.1 for self-calibration of a rotating camera with known

orientation and from section 4.2.1 for self-calibration of a freely moving camera with known

rotation will be evaluated in this chapter. First of all image sequences of synthetic scenes

will be employed to measure the noise robustness of the proposed techniques. Afterwards

both approaches will be tested on image sequences of real scenes. For the image sequences

of the real scenes the intrinsic parameters of the cameras are calibrated manually beforehand.

The next section will discuss the results for the calibration of a purely rotating camera with

known orientation. It will be followed by section 5.2 which measures the performance of the

self-calibration of freely moving cameras.

5.1 Results for a rotating camera

First of all an image sequence of a synthetic scene is exploited to evaluate the performance

of the new linear self-calibration method of a purely rotating camera with known orientation.

Afterwards the new technique is used to calibrate a camera that took an image sequence of a

real scene. The next section will describe in detail the algorithm exploited for self-calibration

from image sequences.

5.1.1 Algorithm for self-calibration with known orientation

For a self-calibration of an image sequence of a purely rotating camera incorporating the known

camera orientation the following steps are needed.

1. Correspondence estimation

2. Robust computation of the homographies

3. Estimation of the intrinsic camera parameters from the homographies together with the

known camera orientation.

4. Combination of multiple estimations of the same intrinsic parameter if necessary.

These steps are all performed for the self-calibrations shown in the following sections. The next

paragraphs will discuss the details of each step performed.

89



90 CHAPTER 5. EXPERIMENTAL RESULTS

Correspondence estimation The correspondences were generated with the KLT-tracker

[LK81, BM04]. It uses the image brightness and the image gradient to find the feature position

in image i given the position of the feature in image j. As result a position of the feature

in image i with sub-pixel accuracy was provided. For the experiments the implementation of

Birchfield was used.

Robust computation of the homographies The correspondences generated with the

KLT-tracker [LK81] also contain mismatches, i.e. correspondences that do not describe the

position of the projection of the same scene point in image j and image i. To estimate a

homography these wrong correspondences should not be included. Therefore RANSAC1 is

used to determine the right correspondences [FB81]. A least squares estimation for the ho-

mography on the correct correspondences was calculated. Afterwards a nonlinear optimization

with Levenberg-Marquardt for the homography and the feature positions was performed. The

minimized cost function measures the mapping error of the features and the difference of the

estimated and the detected feature position as proposed by Torr [Tor98].

Estimation of intrinsics The estimated homographies were employed together with the

known relative rotations to estimate the intrinsic parameters of the cameras. The self-calibration

was performed with the novel approach from section 4.1.

Combination of multiple estimates The homography for an image pair can be computed

between each pair of cameras as long as correspondences between the images were known.

Accordingly often several calibrations for a single camera are available. Consequently the more

stable mean value of all these estimations is computed.

So far, the used self-calibration algorithm for an image sequence was introduced. The next

section will discuss the achieved results for an image sequence of a synthetic scene.

5.1.2 Synthetic scene

In order to have exact ground truth data for the evaluation of the proposed approach the

synthetic scene shown in figure 5.1 (a) is used to generate an image sequence of a purely

rotating and zooming camera.

The sequence used for evaluation simulates a camera that rotates about its optical center

with a pan of 0.5◦ and a tilt of 0.2◦ between two consecutive images of the generated image

sequence. The camera center was chosen to be in front of the scene and the camera calibration

matrices Ki with i = 1, . . . , 46 of the cameras were

Ki =

 fi 0 320

0 1 · fi 240

0 0 1

 , (5.1)

where the focal length varies as shown in figure 5.1 (b). It simulates a panning and tilting

camera which zooms out of the scene to get a better overview. The image size for the image

1Random Sampling Consensus
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Figure 5.1: (a) Overview of the synthetic scene used to generate the image sequences for
evaluation of the proposed approach. (b) Focal length of the cameras used for the image
sequence of a synthetic scene in order to measure the performance of the proposed approach.

sequence is 640× 480 pixel and the principal point is at the image center [320, 240]. The skew

was chosen as zero in order to simulate a typical digital camera that naturally fulfills the zero

skew constraint. In figure 5.2 two images of the image sequences are shown to illustrate the

view of the camera and the used zoom. In the following the mean relative error is the error of

the mean value of the multiple estimates of one intrinsic parameter averaged over all frames

with respect to the ground truth value. The shown standard deviations give are the standard

deviations of the multiple estimations. Accordingly the standard deviation can become larger

than the maximal relative error.

Figure 5.2: First image of the image sequence of the synthetic scene on the left and the last
image of the sequence on the right.

The resulting image sequence of the synthetic scene is processed using the algorithm ex-

plained in section 5.1.1. The following calibration incorporates the known rotation of the above

described cameras. According to the skew which is equal to zero it is possible to estimate

the remaining intrinsics: the focal lengths, the aspect ratios and the principal points from a

single image pair with known relative orientation. Hence for each camera several calibrations

to different neighbors were computed. The mean value and the standard deviations of these
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multiple calibrations are shown in the figures 5.3 to 5.5 and summarized in table 5.1.
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Figure 5.3: (a) Estimated focal length (solid line) of a rotating camera for an image sequence
of the synthetic scene. The ground truth focal length is shown as dotted line. (b) Standard
deviation of the estimated focal length.

In figure 5.3 the estimated mean focal length for the image sequence of the synthetic scene is

presented. It can be seen that the estimation is very accurate. The mean relative error compared

to the ground truth focal length is less than 0.5% and the maximal relative error is about 0.6%.

Furthermore the standard deviation of the relative errors of the multiple estimates of the focal

lengths from the different homographies are less than 1.2%. These measurements show that

the proposed approach is robust against noise in the pixel positions of the corresponding points

since the estimated point correspondences of the KLT-tracking are naturally disturbed.

10 20 30 40

0.96

0.98

1

1.02

1.04

1.06

#image

m
ea

n 
as

pe
ct

 ra
tio

 a

10 20 30 40
2

4

6

8

10

12

14
x 10−3

#image

st
an

da
rd

 d
ev

ia
tio

n 
a

(a) (b)

Figure 5.4: (a) Estimated aspect ratio (solid line) of a rotating camera for an image sequence
of the synthetic scene. The ground truth aspect ratio is plotted as dotted line. (b) Standard
deviation of the estimated aspect ratio.

In figure 5.4 the estimated aspect ratio is shown as well as the standard deviation of the

estimated aspect ratios of the different images of the sequence. It can be seen that the aspect
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ratio is estimated with a maximal relative error of less than 2.4% compared to the real aspect

ratio. The mean relative error is about 1%. The standard deviation of the estimation is

less than 1.4% and the mean standard deviation is 0.8%. These results show again that the

proposed self-calibration method for cameras with known orientation is robust against error in

the positions of the features.
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Figure 5.5: (a) Estimated principal point in x-direction (solid line) of a rotating camera for
an image sequence of the synthetic scene. The ground truth principal point in x-direction is
plotted as dotted line. (b) Standard deviation of the estimated principal point in x-direction.
(c) Estimated principal point in y-direction (solid line) of a rotating camera for an image
sequence of the synthetic scene. The ground truth principal point in y-direction is plotted as
dotted line. (d) Standard deviation of the estimated principal point in y-direction.

In figure 5.5 the mean estimated principal point is shown and the standard deviations for

each component are also shown. It can be seen that the principal point is also well estimated.

The relative error for the x-component of the principal point is always less than 1.5% and the

relative error for the y-component is less than 0.5%. The standard deviations for the relative

error of the x-component are lower than 3.8% and for the relative error of the y-component

the standard deviations are smaller than 1.6%. These results show that for noise in the feature

positions the principal point is estimated robustly.

To summarize the experiments for self-calibration of an image sequence of a synthetic scene
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with the proposed linear approach, it was shown that it is robust against noise in the positions

of the corresponding features.

Additionally the robustness against errors in the measured rotation was evaluated. For these

measurements the ground truth rotation data where disturbed with Gaussian angular noise of

the rotation about the x-axis and the y-axis. The angular noise had standard deviation σangular

of up to half a degree. The measurements were performed with the same setup as above were

done. The figures 5.6 to 5.8 show the estimated intrinsic parameters in dependence on the

angular noise σangular.

10
20

30
40 0

0.2

0.4

380

400

420

440

σ
angular#image

m
ea

n 
fo

ca
l l

en
gt

h 
f i

10
20

30
40 0

0.2

0.4

10

20

30

40

σ
angular#image

st
d 

fo
ca

l l
en

gt
h 

f i

(a) (b)

Figure 5.6: (a) Estimated focal length of a rotating camera for an image sequence of the
synthetic scene in dependence on angular noise. (b) Standard deviation of the estimated focal
length in dependence on angular noise.

The estimated mean focal length is shown in figure 5.6. It can be seen that the estimation

is still very accurate even in the presence of angular noise. The mean relative error of the focal

length is unchanged about 0.5%. The maximal relative error is in the presence of angular noise

increased to 2% from 0.6% in absence of angular noise. The presence of noise can be seen in the

increasing standard deviation of the estimated focal length. The standard deviation of 9.4%

is approximately eight times higher than before. After the analysis in section 4.1.6 where the

influence of rotation errors was analyzed this higher standard deviation was expected because

the analysis leads to the result that the mean value is not disturbed and the standard deviation

of the error will increase.

In figure 5.7 the estimated aspect ratio is shown as well as the standard deviation of the

estimated aspect ratios. It can be seen that the mean relative error of the aspect ratio is nearly

unchanged (0.8% compared to 1.0%), the standard deviation is increased in presence of noise

from a mean standard deviation of 0.8% to a standard deviation of 8% of the ground truth

aspect ratio.

The measurements of the principal point are plotted in figure 5.8. These measurements show

the same tendencies as the measurements for the focal length and the aspect ratio. The mean

relative error is only slightly changed and the standard deviation is increased in the presence

of noise. A summary of these measurements is given in table 5.1.

These measurements of the robustness of the proposed approach against errors in the mea-
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Figure 5.7: (a) Estimated aspect ratio of a rotating camera for an image sequence of the
synthetic scene in dependence on angular noise. (b) Standard deviation of the estimated aspect
ratio in dependence on angular noise.

pixel noise pixel & angular noise
parameter relative error standard deviation relative error standard deviation

f 0.5% 1.2% 0.5% 9.4%
a 1.0% 0.8% 0.8% 8.0%
u 1.5% 3.8% 1.5% 6.5%
v 0.5% 1.6% 0.4% 3.0%

Table 5.1: Measured relative errors for the calibration of an image sequence of a synthetic
scene captured by a purely rotating camera. The results of the second and third column were
computed with undisturbed rotations. The last two columns contain the measurements for
present noise in the rotation.
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Figure 5.8: (a) Estimated principal point in x-direction of a rotating camera for an image
sequence of the synthetic scene in dependence on angular noise. (b) Standard deviation of
the estimated principal point in x-direction in dependence on angular noise. (c) Estimated
principal point in y-direction of a rotating camera for an image sequence of the synthetic scene
in dependence on angular noise. (d) Standard deviation of the estimated principal point in
y-direction in dependence on angular noise.

sured rotation show that the mean value of multiple estimations of the intrinsic parameters

is robust. Accordingly the above measurements verify the results of the sensitivity analysis

of section 4.1.6. After this evaluation of the proposed approach on synthetic data the next

sections will measure the robustness of the new self-calibration technique for purely rotating

cameras with known orientation on a real image sequence.

5.1.3 Real image sequence with constant camera parameters

The next evaluation was done with a sequence taken by a consumer video conferencing pan-

tilt-zoom camera (Sony EVI D-31). The camera is panning and tilting during the sequence

consisting of 22 frames. Two frames of the sequence are shown in figure 5.9.
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Figure 5.9: Two example images from the sequence of a panning and tilting video-conferencing
camera.

The intrinsic parameters of the camera were measured beforehand using the calibration of

Zhang [Zha99, Zha00]. It provides an approximate ground truth information for the camera.

The manual calibration itself contains measurement errors therefore it is not ”real” ground

truth but it is useful for the evaluation of the achieved results. The calibration of Zhang

requires several images of a planar calibration object in order to compute the intrinsic camera

parameters and the radial distortion of the camera. The camera calibration matrix delivered

by the manual calibration was given by

Ki =

 940 0 384

0 940 288

0 0 1

 , (5.2)

for the used zoom of the camera. The fact that the intrinsic parameters of the camera are

constant was not exploited during the self-calibration process, i.e. the general self-calibration

equations (B.1) were employed.

The camera rotation was taken from the camera motor data, which means the angles of

the camera were computed from the position of the step motor. Therefore the rotation error

depends on the positioning accuracy of the pan-tilt head which is in the range of less than 0.5◦

for each axis.

The radial distortion of the camera can be compensated beforehand by applying image based

techniques like proposed in [Kan00, TM00] without any knowledge of the intrinsic calibration

of the cameras. Furthermore the following self-calibrations assumed a skew equal to zero in

order to calculate calibrations from a single image pair. The computed intrinsic parameters

are shown in figure 5.10 to 5.12. For each image the homographies to five other images with

a minimum pan angle of 1◦ and a minimum tilt angle of 1◦ were computed. Hence for each

image 5 to 10 calibrations can be computed using the proposed self-calibration (4.3). The

charts for the calibration results show the mean for all calibrations of the estimated intrinsics

and the standard deviations of these multiple estimations for each intrinsic camera parameter.

A summary of the achieved precisions is given in table 5.2.

In figure 5.10 the results for the focal length estimations are shown. They have a maximal

relative error of 5% compared to the manual calibrated focal length and the mean relative
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Figure 5.10: (a) Mean focal lengths computed with the self-calibration approach for a rotating
camera from section 4.1.1. (b) Standard deviations of the estimated focal lengths.

error is about 1%. The mean standard deviation of all measurements is 2.9%. The maximal

standard deviation of about 10.6% is caused by one bad estimation for image 18. Accordingly

the results for the estimation of the focal length show that the proposed technique is robust

against noise of the rotation and robust in terms of errors that are naturally contained in the

estimated homographies.
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Figure 5.11: (a) Mean aspect ratios computed with the self-calibration approach for a rotating
camera from section 4.1.1. (b) Standard deviations of the estimated ratios.

In figure 5.11 the estimated aspect ratio of the cameras is presented. It can be seen that

the estimation of the aspect ratio is robust against noise in the rotation of up to 0.5◦ in each

axis and the position error of the features employed for homography estimation. The maximal

relative error of the aspect ratio is 8% with respect to the manually calibrated aspect ratio.

With 3.7% the mean relative error is slightly higher than the error for the focal length of the

camera. The mean standard deviation of the aspect ratio is about 4%. These measurements

show that the new linear approach estimates the aspect ratio accurately.

Figure 5.12 shows the results of the self-calibration for the principal point [u, v]. As before

the x-component is estimated slightly worse than the y-component. The maximal relative error
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Figure 5.12: (a) Mean principal point in x-direction computed with the self-calibration approach
for a rotating camera from section 4.1.1. (b) Standard deviation of the estimated principal
point in x-direction. (c) Mean principal point in y-direction computed with the self-calibration
approach for a rotating camera from section 4.1.1. (d) Standard deviation of the estimated
principal point in y-direction.

for the x-component is 5.5% and for the y-component of the principal point the maximal error

is 2.2%. The mean relative error for the x-component is 2% and for the y-component is 1%. A

summary of the measurements is given in table 5.2.

Summarizing these measurements on a real scene show that with the new technique reliable

calibrations of the cameras can be computed. The error is in a range that is sufficient for the

most applications of self-calibration. In the next section the performance of the new method

for a camera with varying focal length will be shown.

5.1.4 Real image sequence with varying parameters

In this section the proposed approach will be evaluated with a sequence of a rotating and

zooming camera. It was the same pan-tilt-zoom camera used in the previous section. For

the used zoom steps the focal length were again calibrated beforehand using the technique of

Zhang [Zha99, Zha00] and the radial distortions of the images were compensated beforehand.
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parameter relative error standard deviation

f 1.0% 2.9%
a 3.7% 4.0%
u 2.0% 1.9%
v 1.0% 0.8%

Table 5.2: Measured relative errors for the calibration of an image sequence of a real scene
captured by a purely rotating camera.

Example images of the sequence are shown in figure 5.13.

Figure 5.13: Two example images from the sequence of a panning, tilting and zooming video-
conferencing camera.

The manual calibration provided camera calibration matrices Ki

Ki =

 fi 0 384

0 fi 288

0 0 1

 , (5.3)

with fi ∈ [1206, 1085] pixel. The ground truth information for the focal length is shown in

figure 5.14. The homographies used for calibration were computed between each image and all

other images with a difference of at least 1.5◦ in the pan angle and a difference of at least 1.5◦

in tilt angle. According to these constraints up to twelve homographies for each image could be

estimated. The mean values of the different calibrations from these homographies are shown in

the figures 5.14 to 5.16 as well as the standard deviations of the multiple estimations. Table 5.3

summarizes the measurements of the relative errors and the corresponding standard deviations

of the intrinsic parameters.

In figure 5.14 the estimated focal lengths are shown together with the corresponding stan-

dard deviations. The mean relative error of the focal length is about 4% compared to the

manual calibration. The mean standard deviation is about 10.0% of the ”true” focal length.

These results show again that the mean value of multiple estimations is robust against noise.

The reached precision shows that the new technique can be used in a wide range of applications.

Figure 5.15 shows the computed aspect ratio for the image sequence. The mean relative

error in aspect ratio is about 7.8% with respect to the manual calibrated aspect ratio. The
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Figure 5.14: (a) Mean estimated focal lengths (solid line) compared to the manually calibrated
focal length (dotted line). (b) Standard deviation of the estimated focal length.
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Figure 5.15: (a) Mean estimated aspect ratios (solid line) compared to the manually calibrated
aspect ratios (dotted line). (b) Standard deviation of the estimated aspect ratios.

standard deviation of the computed aspect ratio is 14%. These measurements show a reasonable

quality of the mean value of the multiple estimations of the aspect ratio.

The estimations for the principal point of the cameras are shown in figure 5.16. It can be

seen that the estimated principal point is estimated with a mean relative error of 4.8% in both

directions. The mean standard deviations of the estimated principal points are about 8% of

the ground truth value. This shows that the new technique delivers a reliable estimation of the

principal point. The higher level of the errors compared to the previous section is mainly a

result of the homography estimation which had larger reprojection errors than in the previous

section.

So far, the calibration of a purely rotating camera was evaluated. It showed that the pro-

posed self-calibration is robust against noise in a range that is reasonable for most applications.

The next section will evaluate the calibration of a freely moving camera with known orientation.
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Figure 5.16: (a) Mean estimated principal point in x-direction (solid line) compared to the
manually calibrated principal point in x-direction (dotted line). (b) Standard deviation of the
estimated principal point in x-direction. (c) Mean estimated principal point in y-direction
(solid line) compared to the manually calibrated principal point in y-direction (dotted line).
(d) Standard deviation of the estimated principal point in y-direction.

5.2 Experimental results for a freely moving camera

In this section the self-calibration of a freely moving camera with known orientation from section

4.2.1 will be evaluated. First of all an image sequence of a synthetic scene is used to measure

the performance of the proposed approach. Afterwards an image sequence of a real scene is

used to investigate the performance of the novel technique. The next section will introduce the

algorithm applied for self-calibration of a freely moving camera.

5.2.1 Algorithm for self-calibration of a freely moving camera

For a self-calibration of all cameras of an image sequence exploiting the known camera orien-

tation the following steps are required.

1. Correspondence estimation

2. Robust computation of the Fundamental matrix
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parameter relative error standard deviation

f 4.0% 10.0%
a 7.8% 14.0%
u 4.8% 8.0%
v 4.8% 8.0%

Table 5.3: Measured relative errors for the calibration of an image sequence of a real scene
captured by a purely rotating and zooming camera.

3. Estimation of the intrinsic camera parameters by exploitation of the estimated Funda-

mental matrices and the known camera orientation.

4. Combination of multiple estimations if necessary.

These steps were done for the self-calibrations as shown in the following paragraphs. In the

next paragraphs the details of each performed step will be discussed.

Correspondence estimation Similar to the algorithm from section 5.1.1 for a rotating

camera the correspondences were generated with the KLT-tracker [LK81, BM04].

Robust computation of the Fundamental matrices In order to avoid an adaption to

wrong correspondences of the estimated Fundamental matrix a RANSAC approach is applied.

It estimates the Fundamental matrices followed by a nonlinear optimization of the Fundamental

matrix. More details about the robust estimation of a Fundamental matrix can be found

in [TM97, TZ98].

Estimation of intrinsics The estimated Fundamental matrices were exploited to compute

the intrinsic parameters of the cameras. The self-calibration is done with the novel approach

from section 4.1 incorporating the known orientation of the camera.

Combination of multiple estimates The epipolar geometry between the different image

pairs is estimated with a sufficient number of correspondences for each pair of cameras. There-

fore several calibrations are estimated for each camera. According to the more stable mean

value of the estimations as seen in section 4.2.3 it is used as the estimated intrinsic param-

eter. Furthermore this provides measurements for the standard deviation of the estimated

parameters. These standard deviations will also be shown during the evaluations.

In the following sections the introduced algorithm is applied for self-calibration of all cameras

of the image sequences. The next section will evaluate the performance of the proposed self-

calibration method with an image sequence of a synthetic scene.

5.2.2 Synthetic scene

For evaluation the same synthetic scene was used as for the evaluations in section 5.1.2. An

image of the scene is shown in figure 5.17. The calibration of the camera varied throughout the



104 CHAPTER 5. EXPERIMENTAL RESULTS

image sequence. The camera calibration matrices of the cameras were given by

Ki =

 fi 0 320

0 1 · fi 240

0 0 1

 , (5.4)

with fi ∈ [396, 436] as shown in figure 5.17 (b).

20 40 60 80
390

400

410

420

430

440

#image

fo
ca

l l
en

gt
h 

f i

(a) (b)

Figure 5.17: (a) Overview of the synthetic scene used to generate the image sequences for
evaluation of the proposed approach. (b) Focal length of the cameras used for the image
sequence of a freely moving camera of a synthetic scene used to measure the performance of
the proposed approach.

The self-calibrations of the cameras of the image-sequence were performed using the al-

gorithm introduced in section 5.2.1. The skew of the camera was chosen to be zero and the

principal point was given as the image center in order to estimate the focal length and the

aspect ratio of the camera from a single image pair. The results of the self-calibration are

shown in figures 5.18 and 5.19. Furthermore the results are summarized in table 5.4.

In figure 5.18(a) the mean estimated focal length of the self-calibration is shown and in

figure 5.18(b) the corresponding standard deviation of the multiple measurements are shown.

The maximal relative error of the estimated focal length is about 3.5% of the true focal length

and the mean relative error is about 2%. The corresponding standard deviation has a maximum

of 5.0% and a mean value of less than 0.6%. These estimations of the camera calibrations show

that the proposed approach is robust against noise in the correspondences since the achieved

errors in the estimated mean focal length are small.

Figure 5.19 (a) shows the estimated aspect ratio for the cameras of the image sequence

of the synthetic scene. The estimated aspect ratio has a maximal error of about 9.5% and

a mean relative error of 5%. It can be seen that the aspect ratio is for most of the cameras

slightly overestimated. The standard deviations of the estimated aspect ratio are shown in

figure 5.19 (b). The maximal standard deviation of the aspect ratio is 3.6% and the mean

standard deviation of the estimated aspect ratio is 0.6%. These measurements show that the

estimation of the focal length and the aspect ratio with the proposed approach for a freely

moving camera are robust against noise in the correspondences.
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Figure 5.18: (a) Estimated focal length (solid line) of a freely moving camera for an image
sequence of the synthetic scene. The ground truth focal length is shown as dotted line. (b)
Standard deviation of the estimated focal length.
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Figure 5.19: (a) Estimated aspect ratio (solid line) of a freely moving camera for an image
sequence of the synthetic scene. The ground truth aspect ratio is plotted as dotted line. (b)
Standard deviation of the estimated aspect ratio.
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To measure the robustness against errors in the measured rotation, angular noise was added

to the ground truth rotation. The angular noise had a Gaussian distribution with a variance

σangular of up to one degree. With these noisy rotation data the above measurements were

repeated for different standard deviations σangular. The results of these measurements are shown

in figure 5.20 and figure 5.21. A summary of the achieved results is given in table 5.4.
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Figure 5.20: (a) Estimated focal length (solid line) of a freely moving camera for an image
sequence of the synthetic scene in dependence on the angular noise of the measured rotation.
(b) Standard deviation of the estimated focal length in dependence on the angular noise of the
measured rotation.

The achieved results for the mean estimated focal lengths are shown in figure 5.20(a) and

the correlated standard deviation of the focal length is plotted in figure 5.20(b). It can be seen

that the mean value of the estimated focal lengths is robust against the angular noise in the

rotation as previously deduced in section 4.2.4. The maximal relative error of the estimated

focal length is about 4.3% of the true focal length. This is only slightly higher than for the

above measurements with a noise free rotation where the maximal mean relative error was

about 3.5%. The mean relative error is nearly unchanged with 2.2% compared with 2% for the

measurements with noise free rotation data.

The influence of the noisy rotation is visible in the standard deviation of the estimated

focal lengths. The standard deviation is increasing with an increasing noise level of the angular

noise. The mean standard deviation of the focal length is now approximately 2.5% compared

to 0.6% for the measurements with perfect rotation data.

Figure 5.21 (a) shows the measurements for the mean aspect ratio depending on the angular

noise. Similar to the focal length it can be seen for the aspect ratio that the mean estimated

value is nearly unchanged by the angular noise. The maximal relative error of the estimated

aspect ratio is with 8.3% slightly lower than before. A slightly lower mean relative error of 4.1%

was measured. Effects of the angular noise can be seen in the measured standard deviations

of the multiple estimates. The maximal standard deviation is increased from 3.6% to 9.8%.

Similar the mean standard deviation is increased from 0.06% to 2.9%.

From these measurements it follows that the proposed approach is also robust against errors

in the rotations if it is possible to get multiple measurements of each intrinsic parameter.
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Figure 5.21: (a) Estimated aspect ratio (solid line) of a freely moving camera for an image
sequence of the synthetic scene in dependence on the angular noise of the measured rotation.
(b) Standard deviation of the estimated aspect ratio in dependence on the angular noise of the
measured rotation.

pixel noise pixel & angular noise
parameter relative error standard deviation relative error standard deviation

f 2.0% 0.6% 2.2% 2.5%
a 5.0% 0.6% 4.1% 2.9%

Table 5.4: Measured relative errors for the calibration of an image sequence of a synthetic scene
with a freely moving and zooming camera. The results of the second and third column were
computed with undisturbed rotations. The last two columns contain the measurements for
present noise in the rotation.
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Then the mean value of the multiple measurements can be used as a robust estimation of the

parameter value. This was deduced earlier in section 4.2.4 where the influence of the rotation

error was analyzed. After this detailed evaluation on image sequences of synthetic scenes in

the next section the approach will be tested on an image sequence of a real scene.

5.2.3 Real image sequence

The results of the evaluation of the proposed self-calibration for a sequence of a real scene will

be discussed in this section. The pan-tilt-zoom camera Sony EVI D-31 described in section

5.1.3 was used to capture the sequence consisting of 35 images. It was moved and rotated

during the sequence. The orientation of the camera was measured using the motor information

of the pan-tilt-zoom unit. As approximation of ground truth camera parameters the manual

calibration by Zhang [Zha00] was used. The intrinsic parameters of the the camera remain

constant during the sequence and the camera calibration matrix K was given by

Ki =

 940 0 384

0 940 288

0 0 1

 .

The additional constraints from the constant intrinsic parameters were not used for the cali-

bration process. In order to get a unique self-calibration a known principal point at the image

center was used as previous knowledge. Two images of the sequence are shown in figure 5.22.

The achieved calibrations with the corresponding standard deviations are sketched in figure

5.23 and 5.24. Table 5.5 shows a summary of the the achieved calibration results.

Figure 5.22: Example images of the sequence of a real scene used to calibrate the cameras that
captured the sequence.

Figure 5.23 (a) shows the computed mean focal length for the cameras of the image sequence.

The mean absolute relative error of the calibration is 3.5% with respect to the approximate

ground truth from the manual calibration. The maximal absolute relative error is about 7.9%

of the true value. From the standard deviation in figure 5.23 (b) of the multiple estimates of

the focal length it can be seen that the estimation is reliable with a maximal standard deviation

of 3.3% of the ground truth focal length of 940 pixel and a mean standard deviation of 1.6%.
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Figure 5.23: (a) Linear self-calibration of the focal length for a sequence of a real scene. (b)
Standard deviation of the multiple estimates of the focal length for each frame.
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Figure 5.24: (a) Linear self-calibration of the aspect ratio for a sequence of a real scene. (b)
Standard deviation of the multiple estimates of the aspect ratio for each frame.

The achieved self-calibrations for the mean aspect ratio are shown in figure 5.24 (a). The

mean relative error of the estimated aspect ratio is 3% with respect to the ground truth aspect

ratio of 1. The maximal relative error of the computed aspect ratio is 10.7%. The corresponding

standard deviations of the multiple estimates of the aspect ratio are plotted in figure 5.24 (b).

The maximal standard deviation of the estimated aspect ratio is 8.5% and the mean standard

deviation is 3.1%. These self-calibrations showing that the proposed approach provides reliable

estimates of the intrinsic parameters of a freely moving camera.

parameter relative error standard deviation

f 3.5% 1.6%
a 3.0% 3.1%

Table 5.5: Measured relative errors for the calibration of an image sequence of a real scene
captured by a freely moving camera.
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This chapter evaluated the achieved self-calibration results of arbitrary moving cameras

with known orientation. At first the self-calibration of purely rotating camera with known

orientation was investigated with image sequences of a synthetic scene with known ground truth

information. The analysis showed that the proposed approach is robust against errors caused

by the correspondence and the homography estimation. Afterwards the proposed approach

was used to compute the self-calibration of two image sequences of real scenes. For these

sequences a reference calibration was measured manually using the approach of Zhang[Zha00].

The evaluation showed that the calibration error of the new approach is small for example the

mean absolute error of the focal length was about 4%.

The second proposed approach for the self-calibration of freely moving cameras with known

orientation was also tested on sequences of synthetic scenes with known ground truth informa-

tion and on an image sequence of a real scene. The evaluation on the synthetic scene showed

that the proposed method is robust in terms of errors caused by the correspondence generation

and the estimation of the Fundamental matrix. The evaluation on an image sequence of a real

scene showed that also errors in the measurement of the rotation can be compensated by the

proposed technique. The mean absolute error of the estimated focal length was about 3.5%.

These evaluations show that the proposed approach computes reliable self-calibrations for

freely moving cameras and for purely rotating cameras. The achieved accuracy of the calibration

depends mainly on measurement errors of the camera orientations as deduced in sections 4.1.6

and 4.2.4. Furthermore it could be seen that the measurement errors of common techniques for

correspondence estimation are sufficient for accurate self-calibrations. Additional examples for

the evaluation of the proposed approach with other sequences can be found in [FK03c, FK03b].
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Conclusions

This dissertation focused on the self-calibration of cameras needed for example in uncalibrated

structure from motion in order to compute meaningful metric reconstructions. The need for the

reconstructions has increased over the last years with the fast development in computer graphics

hardware. The proposed approaches improve this model generation process by providing precise

camera calibrations.

First of all the existing approaches for camera self-calibration were analyzed. From this

analysis it was seen that the existing approaches do not incorporate additional information and

therefore suffer under noisy data. This sometimes leads to the disadvantage that the calibration

can’t be computed at all. Since in many future applications more information about the camera

motion is at hand, it should be used to improve the self-calibration of the camera.

In this contribution two novel self-calibration approaches were proposed that exploit knowl-

edge of external rotation information in conjunction with image-based estimation of homo-

graphies and Fundamental matrices. These approaches solve the self-calibration linearly by

utilizing the known orientation of the camera which improves the self-calibration performance.

Furthermore it was explained that this method in contrast to previous approaches is always

able to compute a solution even for noisy data.

The first proposed approach for the self-calibration of purely rotating cameras overcomes

the given limitations of previous approaches in the number of varying intrinsic parameters. This

was achieved by avoiding rotation invariant calibration objects like the absolute conic or the

absolute quadric in order to exploit the known orientation of the camera. It was shown that the

novel approach can be transferred into the previous approaches by loosing available information

due to the transformation. The robustness in terms of noise of the available camera orientation

and the estimated homographies was measured using synthetic point data. These measurements

showed that the self-calibration is rather stable in a range of noise that is provided by existing

techniques for correspondence generation and current consumer rotation sensors. Afterwards

synthetic and real image sequences with ground truth data are used to evaluate the performance

of the proposed approach. Experiments on this also showed that the new technique delivers

good calibration results with measurement errors of less than 4% of the focal length.

For a freely moving camera a second self-calibration approach was proposed that utilizes the

known orientation of the camera and the image-based estimated Fundamental matrix. This ap-

proach computes the intrinsic camera parameters exploiting the structure of the Fundamental
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matrix under the assumption of one available constraint on the intrinsic parameters. Experi-

ments showed that the new technique delivers good calibration results with measurement errors

of less than 3.5% of the focal length. The advantage of the new technique is that no global

consistent frame is needed in order to calibrate the cameras. Furthermore it was explained how

an available consistent frame can be exploited to overcome the limitation of one known intrinsic

parameter of the proposed approach.

The proposed approach was embedded in the context of the previously introduced ap-

proaches for self-calibration of a freely moving camera. It was deduced that the proposed

approach can be transformed into the same equations as previous proposed approaches used

by loosing constraints on the rotation of the camera. Synthetic point data was used to mea-

sure the robustness of the proposed approach. It showed that the estimated self-calibration

is rather stable according to the accuracies provided by existing estimation techniques of the

Fundamental matrix and consumer orientation sensors. Finally the performance of the pro-

posed self-calibration was evaluated using synthetic and real image sequences with ground

truth information. This evaluation showed that the new technique provided good results for

the calibration of freely moving cameras.

Future work The proposed techniques use the homography respectively the Fundamental

matrix in order to calibrate the intrinsic camera parameters. Nowadays there are a variety of

techniques available that estimate the relations between two consecutive frames of an image

sequence in real time. According to the low computational complexity of the proposed approach

it is possible to provide real-time camera calibration using the novel approaches. This real-time

self-calibration will be a major step into the direction of uncalibrated real-time structure from

motion.

It seems natural for a freely moving camera for example in cars or mounted on robots also

to incorporate the available approximate translation. Using this translation or maybe only the

direction of the motion promises to overcome the left limitation of one known parameter in the

proposed self-calibration of freely moving cameras.



Appendix A

Projective geometry and camera model

This appendix introduces the camera model used as well as the geometric spaces exploited

to model the camera imaging process. First of all the pinhole camera model is introduced in

section A.1 which models the imaging process. The pinhole camera model for the projection

of 3D scenes onto the image plane is used in the thesis to describe the camera transformation.

Afterwards the projective geometry will be introduced in section A.2 to linearize the camera

projection model. Further in section A.2.9 additional nonlinear effects are introduced that are

caused by the lenses of real cameras and can’t be modeled with the linear pinhole camera model

in projective space.

A.1 Camera model

This section introduces the camera model for a perspective camera that is used throughout

the thesis. In general the camera can be seen as a device that projects the 3D world onto a

two dimensional plane (camera image plane). This image plane can be for example a film in

a camera or in case of a digital camera a CCD-sensor1. A model for the transformation from

the three dimensional world into the two dimensional image is the pinhole camera model2. It

will be described in section A.1.1. The pinhole camera model will be extended in section A.2.7

to model the properties of the imaging process for digital images since then a pixel coordinate

system will be needed for computations.

In general a camera is described by two different sets of parameters. The first set consists of

the extrinsic parameters. They are the position of the camera in the world and the orientation

of the camera according to the world coordinate system. The other set of parameters is the

intrinsic parameters. These parameters model the lens and the digitalization properties like

zoom and pixel size.
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Figure A.1: (a) pinhole camera model for the projection of an object onto the camera image
plane, (b) pinhole camera with the image plane in front of the pinhole to avoid mirroring of
the objects image.

A.1.1 Pinhole camera model

The pinhole camera is made of an infinitely small hole and an image plane placed behind the

hole as shown in figure A.1(a). Accordingly the image of a pinhole camera is produced from

a light ray (projection ray) that passes through the pinhole of the camera and intersects the

camera image plane. The point of intersection of the projection ray and the camera image

plane is the image point of the corresponding 3D scene (object) point.

The pinhole of the camera will further be denoted as the optical center of the camera. The

axis perpendicular to the camera image plane that passes through the pinhole is called the

optical axis of the camera. The direction of the optical axis is the viewing direction of the

camera. The intersection point of the optical axis and the camera image plane is called the

principal point of the camera. The distance f between the pinhole and the camera image plane

is called the focal length of the camera. The focal length determines the image size of the

object. The larger the focal length the larger the image of an object. It can be seen in figure

A.1(a) that the object image is mirrored on the image plane. To avoid this the camera image

plane is often placed in front of the optical center of the pinhole camera as shown in figure

A.1(b). Geometrically there is no difference between both models. In the following it will not

be distinguished between them.

Canonical camera In order to model the imaging process of a camera different right-handed

coordinate systems are needed

• World coordinate system or scene coordinate system is the coordinate system that is

used for the scene description or measurements in the scene. It is a coordinate system for

a three dimensional space. Usually it is the coordinate system of the real world.

1CCD is a abbreviation for charge-coupled device. It is an integrated circuit containing an array of linked,
or coupled, capacitors that integrates the photons of the light. The value of each array element is related to the
gray value of the image.

2The pinhole camera is also known as ”camera obscura”.
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• Camera coordinate system is the three dimensional coordinate system that is aligned

to the location and orientation of the camera. This coordinate system is used to describe

the scene in dependence on the camera position and orientation.

• Camera image plane coordinate system is a two dimensional coordinate system in

the image plane. This coordinate system is used to describe the coordinates of the image

points.

At first the relations between these three coordinate systems are described shortly. The camera

is placed at an arbitrary position in the world coordinate system usually also with an arbitrary

orientation. This means that the axes of the camera coordinate system are rotated with respect

to the axes of the world coordinate system. The camera image plane coordinate systems position

and orientation is usually described according to the camera coordinate system. The position

of the image plane mainly depends on the focal length of the camera.

The canonical camera simplifies the relations between the three different coordinate systems.

Definition 1 (Canonical camera) For a canonical camera the world coordinate system is

chosen to be identical with the camera coordinate system. Furthermore the axes of the camera

image plane coordinate system are identical with the x-axis and y-axis of the camera coordinate

system. The image plane is placed at position z = 1. The camera image plane coordinate

system is chosen in a way that the focal length f is equal to one.

The projection of a 3D scene point X̄ = [X, Y, Z]T that is in front of the camera (Z > 1) is

given for a canonical camera by

x̄ =

[
x

y

]
=

[ X
Z
Y
Z

]
, (A.1)

where x̄ = [x, y]T is the image point in the camera image plane coordinate system. The image

projection for a canonical camera is illustrated in figure A.2. This projection onto the image

plane is called central projection. The central projection introduces perspective shortening in

dependence on the depth Z of the scene point X̄. That means that objects near to the pinhole

have larger projections than objects of the same size further away from the image plane. The

perspective shortening results from the normalization by the depth Z of the scene point X̄ in

(A.1).

For a camera with a focal length f that is different from one (a not canonical camera), the

image point is given as

x = f
X

Z
, y = f

Y

Z
. (A.2)

Until now the imaging process of the camera was modeled for a camera at the origin of the

world coordinate system. Usually the camera is moved around while taking an image sequence.

In that case the image projection has to take the camera position and orientation into account.

The image projection for a camera in general position is introduced in the next paragraph.
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Figure A.2: Projection of the 3D scene point X̄ into the image plane of a canonical camera.

Camera in arbitrary pose For a camera in an arbitrary pose the world coordinate system

and the camera coordinate system are not identical. Figure A.3 illustrates this situation.

The camera is located in the world coordinate system at position C̄ ∈ IR3. The camera

coordinate system is the rotated world coordinate system by rotation R ∈ IR3×3. Then the

camera coordinate system can be transformed into the world coordinate system with a similarity

transformation. The similarity transformation inverts the rotation R and the translation C̄ of

the camera. According to the ortho-normality of the rotation R the inverse transformation R−1

is the transposed rotation matrix RT . Using the above mentioned similarity transformation

with

R =

 r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 and C̄ =

 Cx

Cy

Cz


the projection equations (A.2) are

x = f
r1,1 (X − Cx) + r2,1 (Y − Cy) + r3,1 (Z − Cz)

r1,3 (X − Cx) + r2,3 (Y − Cy) + r3,3 (Z − Cz)

y = f
r1,2 (X − Cx) + r2,2 (Y − Cy) + r3,2 (Z − Cz)

r1,3 (X − Cx) + r2,3 (Y − Cy) + r3,3 (Z − Cz)
(A.3)

for a camera at position C̄ with orientation R. The position C̄ and the orientation R of the

camera are called external camera parameters because they influence the camera transformation

outside the camera coordinate system.

This section introduced the pinhole camera model for the projection of a 3D scene onto the

camera image plane. The next section will introduce the projective geometry. The projective

geometry will be exploited in section A.2.8 to linearize the camera projection model.

A.2 Projective geometry

This section will introduce the basic geometric primitives used to model the projection of the

camera. A camera taking an image of a 3D scene measures the light rays of the scene which



A.2. PROJECTIVE GEOMETRY 117

camera coordinate system
x

z

y
R, C

x

z

y
world coordinate system

_

Figure A.3: Camera at position C̄ with orientation R

intersect the image plane as explained earlier. A geometric description that models this imaging

process is introduced in the next two sections.

A.2.1 Projective space

Each point x̄ can be described by its coordinates x̄ = [x, y]T ∈ IR2 in the image plane. Further

the point x̄ is also described by the ray r and the plane itself namely as the intersection point

X̄r of the ray r and the image plane. The ray r can be seen as a line in IR3. A line in IR3 is

described by a line equation

X̄r × D̄ − N̄ = 0 (A.4)

where D̄ denotes the direction of the line, X̄r is a point on the line and N is perpendicular to

D̄ and X̄l. This representation of a line is called Plücker-coordinates. The ray r consequently

has six degrees of freedom, namely the point X̄r on the line and the direction of the line D̄.

The line equation (A.4) is valid for each point X̄ on the ray r. Moreover the ray r is a one

dimensional subspace of the three dimensional space IR3. The line equation (A.4) also holds

for a point x = [x, y, 1] ∈ IR3 which is the pendant of the 2D point x̄ on the camera image

plane of a canonical camera as explained in section A.1.1. The point x = [x, y, 1] can further be

interpreted as point in the projective space IP2. Points with the last component one are called

homogenized points in projective space. In the thesis the projection ray r will be denoted as

a line in IR3. The description given above shows that the projective two dimensional space IP2

can be described by the projection rays of a camera. This gives an interpretation of the two

dimensional projective space IP2 as the set of lines passing through the origin. In the following

an exact definition of the general projective space will be given.

A more formal definition of the projective space is given as:

Definition 2 (Projective space) The projective space IP is the set of hyperplanes3 of the

3Suppose V is a vector space and suppose that L is a non-empty subset of V . If there exists a v ∈ V such
that L+v = {v+ l | l ∈ L} is a vector subspace of V , then L is a linear manifold of V . The dimension of L is the
dimension of L + v and write dim L = dim(L + v). If dim L = dim V − 1, then L is called a hyperplane [Pea83].
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vector space V where the vector space V is defined over the commutative body K. The dimension

of IP is then given as

dim(IP) = dim(V )− 1.

The elements of x ∈ IP are called projective points. The point x = 0dim(V )×1 is not contained

in the projective space IP. Each point x is represented through its spanning vector.

Due to the fact that the point x = 0dim(V )×1 is not an element of the projective space IPn,

it is not a vector space. In the following IR will be used as commutative body. According to

definition 2 two points x ∈ IP and y ∈ IP are equal if and only if

x = ρy with ρ ∈ IR\{0}. (A.5)

This results from the representation by the spanning vector for a point from the projective

space IP . This is often called equality up to scale and is denoted by ∼= in this thesis.

The mapping between the Euclidian space IRn of dimension n and the projective space IPn

of dimension n is given by two mapping functions. The injective function

IRn → IPn : [x1, . . . , xn]T 7→ [x1, . . . , xn, 1]T (A.6)

maps a point from the Euclidian space IRn into the projective space IPn. It can be seen that

the mapping gives exactly the homogenized point in the projective space because the last

component is equal to one. Accordingly it is still in the Euclidian space IRn. The backward

mapping from projective space IPn into the Euclidian space IRn is given by

IPn → IRn : [x1, . . . , xn, ρ]T 7→ 1

ρ
[x1, . . . , xn]T ∀ρ ∈ IR\{0}. (A.7)

This transformation maps the points from the line, described by the projective equality and the

point in projective space IPn, into the intersection point of this line and the Euclidian space IRn.

The backward mapping can’t be applied for points with ρ = 0 in (A.7) therefore the mapping

is not surjective. These points have no representation in the Euclidian space IRn.

In general the projective space IPn of dimension n is an extension of the Euclidian space

IRn. The IRn is extended by the points on the hyperplane at infinity

π∞ = {[x1, . . . , xn, 0] | x1, . . . , xn ∈ IR with ∃xi 6= 0 i ∈ {1, . . . , n}} . (A.8)

The elements of the hyperplane at infinity π∞ are called ideal points. These ideal points are

not contained in the Euclidian space IRn. For the two dimensional projective space IP2 this

hyperplane for example is the line at infinity l∞.

The earlier explanations showed that the projection ray r can be described by the three

degrees of freedom of a line in IR3. Furthermore the intersection point of the image plane

and the ray r gives an image point. This point is described by its coordinates on the image

plane. The image point itself together with the camera center C̄ can be used to compute

the projection ray r. Hence both entities can be used to describe the same properties of the

projective two dimensional space. They are called dual descriptions. In a projective space this

can be generalized and leads to an important principle in projective spaces:
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Theorem 7 (Duality of points and hyperplanes) To any theorem in a projective space

IP that includes points and hyperplanes exists a dual theorem. The dual theorem is deduced by

interchanging the role of points and hyperplanes in the original theorem.

Please see [Fau93] for details about the duality of points and hyperplanes. The duality provides

the advantage that for each theorem in the projective space the dual theorem is proved through

theorem 7. Generally both proofs are dual proofs by interchanging the role of points and lines.

After having defined the projective space, the transformations in this space will be intro-

duced in the next section.

A.2.2 Transformations in projective space

There are two types of transformations in a projective space IPn. The first type is the class

of affine transformations. It is characterized by the property that it leaves the position of

hyperplane at infinity unchanged. I. e. all points on the hyperplane at infinity stay on the

hyperplane at infinity under affine transformations. The second type of transformation is the

projective transformation in IPn. This class of transformation also changes the position of the

hyperplane at infinity.

Affine transformations In general an affine transformation is an invertable linear trans-

formation An×n from the Euclidian space IRn into the same space followed by a translation

tn×1 in IRn. For points of the projective space IPn this can be written in matrix form as

x2 =

[
An,n tn×1

01×n 1

]
︸ ︷︷ ︸

TA

x1 with x1,x2 ∈ IPn, (A.9)

where the point x1 is mapped to the point x2 by the affine transformation TA. It is easy to see

that this class of transformation TA transforms the points on the hyperplane at infinity into

points on the hyperplane at infinity because the scalar product of a point x1 = [x1, . . . , xn, 0]

on the hyperplane at infinity and the last row of TA is always zero. Consequently the last

component of x2 is also zero and x2 lies on the hyperplane at infinity.

A subgroup of the affine transformation in the projective space IPn is the similarity trans-

formation. It contains all transformations that have a isotropically scaled orthogonal linear

transformation An,n in (A.9). The properties of the affine transformations will be discussed

later in detail for the projective spaces IP2 and IP3 in section A.2.3 and section A.2.5.

Projective transformations The projective transformation Tp in a projective space IPn is a

non-singular matrix of size (n+1)×(n+1). It is a generalization of the affine transformation in

IPn. This transformation moves points from the hyperplane at infinity into the Euclidian space

IRn, i.e. the last component of ideal points can become different to zero under a projective

transformation.

The transformation Tp can be scaled by an arbitrary scale ρ 6= 0 without changing the

transformation. That means a projective transformation is scale invariant in contrast to an
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affine transformation. The affine transformation is not scale invariant because after scaling the

component (A)n+1,n+1 becomes different from one.

A.2.3 Two dimensional projective space IP2

Each point x in the two dimensional projective space IP2 is given as a vector x = [x, y, w]T ∈
IR3\{03×1}. In the previous section the two dimensional projective space IP2 was introduced

as the set of lines in IR3 that go through the origin. Each of these lines can also be described

by a point in the IR2 because a point describes a line together with the origin.

For the two dimensional projective space IP2 equality up to scale means that a point x =

[x, y, 1]T on the plane is equal to all points y = ρ[x, y, 1]T on the line that is defined by the

origin and the point itself namely the projection ray. All points y on the line as well as x hold

the line equation (A.4). In projective space this relation can be expressed by

[a, b, c]x = 0 ⇔ [a, b, c]y = ρ[a, b, c]x = 0 with x ∼= y, (A.10)

where [a, b, c] contains the two degrees of freedom of the projection ray. These degrees of

freedom are the two independent ratios {a : b : c}. They are uniquely determined by the

x-component and the y-component of the homogenous point in the image plane. It can be seen

that the equality up to scale ∼= defines a one dimensional subspace in IP2. For example a line

can be parameterized as the intersection point [xint, 0]T of the line with the x-axis and the

slope sl of the line l.

For the two dimensional projective space IP2 the hyperplanes are equal to lines in IR3.

According to theorem 7 for each theorem for points and lines in IP2 a dual theorem exists that

interchanges their roles.

A line in the two dimensional space IP2 is uniquely defined by any two non identical points

in IP2. Both points x1 and x2 have to fulfill the line equation

0 = ax + by + cw = [a, b, c]xT with x ∈ {x1,x2}. (A.11)

Accordingly the line l in the two dimensional projective space IP2 can be described by the vector

l = [a, b, c]T . Like every entity in projective space the equality of lines is defined as equality

up to scale. Therefore the lines l1 = [a, b, c]T and l2 = ρ[a, b, c]T are equal in projective space.

Please note that the lines described here are not only the set of projection rays like before.

Here the lines include arbitrary lines in any subspace of IP2.

Computation of lines from points As explained before a line through the origin has two

degrees of freedom namely the two independent ratios. Using equation (A.11) a point provides

one constraint on the degrees of freedom of the line. Hence two points uniquely define a line.

This is the common principle for defining lines in IR2. From two points x1 and x2 of the

projective space IP2 the line l is computed as the solution of[
xT

1

xT
2

]
︸ ︷︷ ︸

Al

l = 0. (A.12)
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This solution can be computed as the nullspace4 of the matrix Al. This concept for the com-

putation of geometric entities like points and planes as the nullspace of a matrix will be used

frequently.

The basic properties of two lines like intersection and parallelism will now be introduced for

the projective space.

Theorem 8 (Intersection of lines) The intersection point x of two lines l1 and l2 is simply

given as the crossproduct or vector product of the lines

x = l1 × l2. (A.13)

Proof: The intersection point x has to lie on both lines l1 and l2. This can be deduced by using

the scalar product of x from (A.13) with the lines

(l1 × l2)l
T
1 = (l1 × l2)l

T
2 = 0,

because each line is perpendicular to the cross product of both lines by definition of the cross

product.2

The parallelism of two lines in IP2 can be decided using the result of theorem 8. In Euclidian

space parallel lines do not intersect. In the projective space IP2 from theorem 8 on the other

hand one is always able to get an intersection point even for parallel lines. It can now be used

to define parallelism.

Theorem 9 (Parallelism of lines) Two lines l1 and l2 in the projective space IP2 are parallel

if their intersection point x is on the line at infinity l∞, i.e.

l∞xT = l∞(l1 × l2)
T = 0.

Proof: Two parallel lines can be represented by the vectors l1 = [a, b, c1] and l2 = [a, b, c2]

because they have the same slope but different intersections with the y-axis. Therefore the

first two components of the vector describing a line can be written using the same first two

entries for both lines. With theorem 8 the intersection point p of the lines can be computed as

p = (c1 − c2)(b,−a, 0). The scale (c1 − c2) can be ignored due to the projective equality up to

scale. According to (A.8) it can be seen that this point is on the line at infinity l∞. 2

Affine transformations in IP2 Affine transformations are given by a 2× 2 invertible trans-

formation A2×2 from IR2 into IR2 and an afterwards applied translation t2×1 ∈ IR2. According

to (A.9) this can be written as

x2 =

[
A2,2 t2×1

01×2 1

]
︸ ︷︷ ︸

TA

x1 with x1,x2 ∈ IP2. (A.14)

This affine transformation TA maps points on the line at infinity l∞ to points on the same line

as shown in section A.2.2. Further properties of the affine transformations in IP2 are

4The is nullspace spanned by the eigenvectors that corresponds to the eigenvalue zero.
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1. Preserved parallelism Two parallel lines are mapped into two parallel lines. This can

be seen looking at the intersection point of the parallel lines in projective space IP2. Hence

with theorem 9 it follows that the intersection point of these parallel lines is on the line at

infinity l∞. The affine transformation maps the intersection point of the parallel lines to

another point that also lies on the line at infinity l∞. Consequently the lines still intersect

in a point at the line at infinity; therefore with theorem 9 the lines stay parallel.

2. Invariant ratio of lengths of parallel line segments The ratio of the lengths of

two parallel line segments is constant under affine transformation of the line segments.

The affine transformation contains the invertible transformation A2,2 and afterwards a

translation is applied. Obviously the translation does not change the ratio of the line

segments. The transformation A2,2 is able to scale the line segments anisotropically5

but this scale only depends on the direction of the line segments. Hence for parallel

line segments the scale is the same and the ratio of the lengths is invariant against the

anisotropic scale.

3. Invariant ratio of areas The ratio of two areas is invariant under affine transformations.

It can be seen that each area is scaled by the determinant of the regular matrix A2,2 from

(A.14) [HZ03]. Therefore the ratio of these areas is constant.

The subgroup of the similarity functions that contains an isotropically scaled orthogonal ma-

trix A2,2 in (A.14) scales areas isotropically under the transformation. Furthermore the angle

between two lines remains constant.

The projective transformations have one major invariant. The class of projective transfor-

mations leaves the cross ratio of four line segments of one line invariant. The cross ratio is the

ratio of the ratios between the line segments. E.g. for four line segments l1, l2, l3 and l4 on line

l the cross ratio is
l1
l2
l3
l4

=

lp1
lp2
lp3
lp4

,

where lp1, lp2, lp3 and lp4 are the projectively transformed line segments. Each projective trans-

formation from IP2 into IP2 is a three by three matrix. According to the scale independency of

projective transformations it has 8 degrees of freedom.

In the projective two dimensional space the points and lines are dual entities. If a point x1

is transformed by a projective point transformation H then the transformed point is given as

x2 = Hx1. The dual transformation for a line is developed as follows. The original point x1

lies on the line l1 according to (A.11) the scalar product lT1 x1 of the line and the point is zero.

Analogous the scalar product lT2 x2 is zero for the transformed point and the transformed line.

This leads to

lT1 x1 = lT2 x2 ⇔ lT1 x1 = lT2 Hx1.

Reordering and transposition of the equation leads to

l2 = H−T l1. (A.15)

5Anisotropic scaling is a directionally dependent scaling.
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Consequently the line is tranformed by the inverse transposed projective point transformation

H−T . After introducing the basic entities, point and lines, of the projective space IP2 the next

section will introduce conics. Conics are often used for self-calibration and therefore important

here.

A.2.4 Conics

In the two dimensional Euclidian space IR2 conics appear in three different representations:

hyperbola, ellipse and parabola. In the Euclidian IR2 space conics are non-degenerate6 curves

generated by the intersections of a plane with one or two nappes of a cone. This section will

describe how these conics are represented in the projective space. A conic C is described by a

polynomial of degree two in the two coordinates of IR2

ax2 + bxy + cy2 + dx + ey + f = 0 ∀[x, y]T ∈ C. (A.16)

Hence the conic has five degrees of freedom, namely the five independent ratios {a : b : c : d :

e : f}. Applying the mapping function (A.7) from projective space IP2 to Euclidian space IR2

to a point x = [x, y, w]T ∈ IP2 yields the point x̄ = [ x
w , y

w ]T ∈ IR2. Using this point in (A.16)

leads to

ax2 + bxy + cy2 + dxw + eyw + fw2 = 0 ∀[ x
w

,
y

w
]T ∈ C. (A.17)

It can be written as a matrix equation

[x, y, w]C[x, y, w]T = [x, y, w]

 a b
2

d
2

b
2 c e

2
d
2

e
2 f

 [x, y, w]T ∀[x, y, w]T ∈ C, (A.18)

with the symmetric matrix C representing the conic. Please note that in the following it will

not be distinguished between the conic C and the matrix C representing the conic. This conic

is called a point conic because its defined by (A.18) incorporating points. A conic C that

does not have full rank is called degenerate. Degenerate conics represent two lines (rank 2) or

a repeated line (rank 1). The matrix C in general has 6 degrees of freedom in contrast to the

conic C in Euclidian space that only has five degrees of freedom. Since the multiplication of

the conic C with a non-zero scalar has no effect on the conic itself because equation (A.18) still

describes the same conic. Five degrees of freedom remain for a conic in IP2.

The theorem 7 about the duality of points and lines gives us the equations for a dual (line)

conic C∗. Using lines to describe the conic C in (A.18) leads to the matrix C∗ for the dual

(line) conic

lT C∗l = 0, (A.19)

for lines that are tangent to the conic C. Please note that C and C∗ characterize the same

conic but C defines the conic by point mappings and C∗ defines the conic with the mapping of

lines. In order to prove that the dual conic is a conic in IR2 an additional theorem is needed.

6I. e. a hyperbola that does not collapses into two lines crossing at a point, through a family of hyperbola
having those lines as common asymptotes, a parabola that is not a line and an ellipse that is not collapsed into
a point.
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Theorem 10 (Tangent lines to a conic) The tangent line l to a conic at a point x on the

conic in matrix form C is given as

l = Cx.

Proof: First it will be shown that the point x is on the line l = Cx. Using (A.10) the scalar

product of the point and the line has to be zero:

lTx = (Cx)Tx = xT CTx = 0.

Due to the symmetry of the matrix C representing a non-degenerate conic this is equal to

(A.18) and therefore valid for all points x on the conic. Furthermore it has to be proven that

the line intersects the conic only in the point x. The line l can be written as l = x+λd where d

is the direction of the line. Suppose the line intersects the conic in a second point. Then there

exists a λ 6= 0 that fulfills the conic equation (A.18). The conic equation for all points on the

line is

(x + λd)T C(x + λd) = xCTx︸ ︷︷ ︸
=0

+2λxT Cd + λ2dT Cd = 0.

This is only valid if the conic is equal to the line l because xT Cd and dT Cd are only in this

case equal to zero otherwise is not. 2

With this result equation (A.19) can be proved. Each line l tangent to the conic C intersects

it according to theorem (10) at the point x = C−1l. Equation (A.18) is then equal to

0 = xT Cx = (C−1l)T C(C−1l) = lT C−T CC−1︸ ︷︷ ︸
I3×3

l = lT C−1l.

With the symmetric conic matrix C∗ = C−T = C−1 this is equal to (A.19) for an invertible

conic C. Moreover this proof gives an explicit connection between the conic and the dual conic

as the adjoint matrix of the conic matrix C.

Computation of the conic The computation of a conic can be done for points or lines as

follows. Equation (A.18) provides for each point one constraint on the conic C. As seen before

the conic has five degrees of freedom therefore five points are sufficient to uniquely determine

the conic. The computation of the conic can be done writing (A.17) as a scalar product of a

vector c = [a, b, c, d, e, f ]T that contains the coefficients of the conic from (A.17) and the vector

~x = [x2, xy, y2, xw, yw,w2] that contains the data of the projective point x = [x, y, w],

~xc = 0. (A.20)

From a set of five points {x1, . . . ,x5} the conic can then be computed through
~x1

~x2

~x3

~x4

~x5


︸ ︷︷ ︸

Ac

c = 05×1 (A.21)
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as the nullspace of the 5×6 matrix Ac. Similarly the dual conic can be computed using equation

(A.19) and lines instead of points.

In the following the transformation rule for a conic under a projective point transformation

will be deduced. The projective point transformation H maps the point x1 to a point x2 = Hx1.

For each point x1 on the conic C1 with equation (A.18) follows xT
1 C1x1 = 0. The equation

xT
2 C2x2 = 0 holds then for the mapped point x2 on the mapped conic C2. The equality of both

conic equations leads to

xT
2 C2x2 = xT

1 C1x1 ⇔ xT
1 HT C2Hx1 = xT

1 C1x1.

Accordingly the transformation of a conic is given by

C2 = H−T C1H
−1. (A.22)

The next section will introduce the three dimensional projective space IP3. Many of the prop-

erties of the projective three dimensional space are straight forward extensions of the properties

of the projective two dimensional space transferred to a space with one more dimension.

A.2.5 Three dimensional projective space IP3

The three dimensional projective space IP3 is the extension of the three dimensional Euclidian

space IR3 by the plane at infinity π∞. The hyperplanes of the IP3 are two dimensional planes

in contrast to lines in the previous section as hyperplanes of IP2. The duality in the IP3 is

therefore defined between points and planes. The extension to the third dimension adds some

new properties to this space compared to the IP2 but most of the properties of the IP2 can be

extended to IP3.

The hyperplane in IP3 is a plane as mentioned before. At first the properties of a plane and

the representation of the plane in IP3 will be introduced. For each point X̄ = [X,Y, Z] on a

plane π in the Euclidian space IR3 the following equation holds

π1X + π2Y + π3Z + π4 = 0. (A.23)

Comparable to the line equation (A.11) this contains the three independent ratios ({π1 : π2 :

π3 : π4}) and is scale invariant. Hence the plane has three degrees of freedom in IR3. The

plane equation for a point X = [X,Y, Z, W ]T ∈ IP3 can be deduced from (A.23) by using the

transfer function (A.7) from the projective space IP3 into the Euclidian space IR3. Then the

point X̄ ∈ IR3 is given as X̄ = [X/W, Y/W, Z/W ]T . Using this in (A.23) results in the following

equation for a plane in projective space

π1X + π2Y + π3Z + π4W = 0 ⇔ [π1, π2, π3, π4]︸ ︷︷ ︸
π

X = 0, (A.24)

which holds for all points X ∈ P 3 on the plane. Reordering yields the Hesse normal form of a

plane

[π1, π2, π3]︸ ︷︷ ︸
nπ

X̄ + π4 = 0 ∀X ∈ IP3 (A.25)
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if X is on the plane. Accordingly nπ is the normal vector of the plane and dπ = π4

‖nπ‖2
is the

distance of the plane to the origin. The above deduction is not possible for ideal points because

the fourth coordinate W of an ideal point is zero. The plane at infinity has the following

plane vector π∞ = [0, 0, 0, 1]T . One can easily verify that only ideal points can fulfill the plane

equation (A.24). Hence the normal vector is given by n∞ = [0, 0, 0]T and the distance d∞ to

the origin is infinity as expected.

Affine transformations in IP3 An affine transformation in IP3 is given by a regular trans-

formation A3×3 and a succeeding translation t3×1 in IR3. According to (A.9) this can be written

as

X2 =

[
A3,3 t3×1

01×3 1

]
︸ ︷︷ ︸

TA3,3

X1 with X1,X2 ∈ IP3. (A.26)

Again the plane at infinity π∞ is invariant under affine transformations. I.e. points on the

plane at infinity stay on the plane at infinity but the points can be moved on the plane.

Projective transformation in IP3 A projective transformation in the three dimensional

projective space IP3 is given by a regular 4 × 4 matrix. It can be seen in section 2.7 that a

projective transformation generally skews the projective space and changes the position of the

plane at infinity π∞.

Computation of a plane Each plane in IP3 has three degrees of freedom as seen earlier,

namely the three ratios. Each point provides one constraint to the plane using (A.24). Hence

to determine the plane π three points are needed. The plane π can be computed using (A.24)

and three points X1, X2 and X3 from the projected space IP3 on the plane as nullspace of XT
1

XT
2

XT
3


︸ ︷︷ ︸

Aπ

π = 03×1. (A.27)

The nullspace can be computed explicitly from the minors of the matrix Aπ [HZ03].

After introducing points and planes as the basic entities of the three dimensional projective

space IP3 the frequently used quadric will be explained, which provides an attractive concept

for the camera self-calibration.

A.2.6 Quadric

In general a quadric and respectively a quadric surface is any 3-dimensional surface represented

by a second-order equation in the coordinates of a point X̄ = [X, Y, Z] in the space IR3

aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z + gX + hY + iZ + k = 0, (A.28)
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which holds for all points on the quadric Q. The quadric equation for a point X from the

projective space IP3 can be deduced using the transformation (A.7) between IP3 and IR3 for

points that are not on the plane at infinity

aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z + gWX + hWY + iWZ + kW 2 = 0. (A.29)

It can be written in matrix form as

XT QX = XT


a d

2
e
2

g
2

d
2 b f

2
h
2

e
2

f
2 c i

2
g
2

h
2

i
2 k

X = 0 (A.30)

which is fulfilled for all points X ∈ IP3 on the quadric surface. The 4× 4 symmetric matrix Q

describes the surface of the quadric Q. Therefore the matrix Q and the quadric Q will not be

distinguished here. Further it can be seen that equation (A.30) can be scaled with ρ ∈ IR\{0}
without changing the quadric Q. Accordingly a quadric in IP3 has nine degrees of freedom.

The 10 degrees of the symmetric 4× 4 matrix minus one for the scale invariance.

Due to the duality theorem 7 the dual (plane) quadric Q∗ holds

πT Q∗π = 0 with π ∈ IP3 (A.31)

for all planes π that are tangent to the quadric Q. This can be proved analogous to the proof

for the dual conic in section A.2.4. The dual quadric describes also a quadric in IP3, and Q∗

is the adjoint matrix of Q [HZ03]. This is simply the inverse for a regular quadric Q; that

means Q has full rank. If Q has not full rank the quadric is called degenerate. The calculation

of the projection of the quadric into a camera is much easier for a dual quadric than for a

quadric. The intersection of a quadric with a plane leads to a conic in that plane. A quadric

Q1 transforms under the projective point transformation H with x2 = Hx1 as

Q2 = H−T Q1H
−1 (A.32)

where Q2 is the transformed quadric. This can be deduced similar to the transformation of the

conic in section A.2.4. The transformation rule for the dual quadric is

Q∗
2 = HQ∗

1H
T . (A.33)

Computation of a quadric from points The quadric has nine degrees of freedom due

to the overall scale ambiguity as explained before. Each point on the quadric surface pro-

vides one constraint (A.30) to the quadric Q. Thus nine points are sufficient to determine

the quadric uniquely up to scale. The quadric Q can be computed using nine points X1 =

[X1, Y1, Z1, W1]
T , . . . ,X9 = [X9, Y9, Z9, W9] ∈ IP3 as the solution of X2

1 Y 2
1 Z2

1 X1Y1 X1Z1 Y1Z1 W1X1 W1Y1 W1Z1 W 2
1

...
...

...
...

...
...

...
...

...
...

X2
9 Y 2

9 Z2
9 X9Y9 X9Z9 Y9Z9 W9X9 W9Y9 W9Z9 W 2

9

Qvec = 0, (A.34)
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where Qvec = [a, b, c, d, e, f, g, h, i, k]T is a vector that defines the the quadric matrix Q by

(A.30).

After introducing the geometric spaces for the imaging process of a camera and the proper-

ties of these spaces, the camera projection will be modeled using these spaces. This will linearize

the nonlinear projection (A.3) of the 3D scene point into the image point. The next section

will introduce the internal camera parameters that model the transformation of coordinates of

an image point on the camera image plane into the pixel coordinate system of a digital image.

A.2.7 From world to pixel coordinates

In section A.1.1 the image point on the camera image plane was given as the intersection point

of the projection ray and the camera image plane. This explanation neglected some parts of

the imaging process to get a digital image for computation. The imaging process for a digital

camera uses a digital sensor that is a grid of light sensitive cells. Each cell integrates the

photons of the light-rays that hit the cell. Usually each cell represents a pixel of the resulting

image. To get the coordinates of an image point the cell on the camera image plane has to

be determined to get the pixel coordinates of the image point. Obviously the topology of the

cells on the camera image plane is important for the mapping between the coordinates on the

camera image plane and the pixel coordinates of the image point. This transformation is an

affine transformation in the image plane.

At first the different parts of this transformation will be explained in detail.

• Pixel scale The pixel scale depends on the size of a cell of the imaging sensor. It scales

the coordinates of the intersection point of the light-ray and the image plane into the

pixel coordinate system. The scale factor is the number of pixels per unit of the camera

image plane coordinate system. This pixel scale is usually also denoted as focal length

f . For the remainder of the thesis it will be not distinguished between focal length and

pixel scale.

• Aspect ratio Only for quadratic pixels the focal length is the same for both coordinate

directions because the focal length depends on the number of pixels per unit in the

camera image plane coordinate system. The aspect ratio a is the ratio of the pixel size in

x-direction and y-direction. The focal length for the y-coordinate is the product of the

focal length f and the aspect ratio a.

• Principal point The principal point [u, v] is the position of the intersection point of the

camera image plane and the optical axis. It is given in pixel coordinates. The principal

point is the shift between the origin of the pixel coordinate system and the image plane

coordinate system.

• Skew Sometimes the rows and columns of the imaging sensor are not perpendicular to

each other. Hence the pixel coordinate system is skewed with respect to the image plane

coordinate system. The skew s models this effect and can be computed as the cosine of

the angle between rows and columns scaled with the focal length f .
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Accordingly the transformation between a homogenous point on the camera image plane in

camera image plane coordinates and pixel coordinates is given as the affine transformation K

in IP2

K =

 f s u

0 a · f v

0 0 1

 . (A.35)

The matrix K is called the calibration matrix of the camera. In the thesis it will not be distin-

guished between the camera calibration and the camera calibration matrix K. The parameters

focal length f , skew s, principal point [u, v] and aspect ratio a are also known as the intrinsic

camera parameters because they describe the transformation inside the camera. For digital

cameras usually the skew is zero due to the perpendicular rows and columns of cells on the

CCD-sensor. For the digitalization of an analog image this is not always fulfilled.

The goal of self-calibration is to recover the calibration matrix K from the images themselves

without using special calibration objects. If the camera calibration is known the coordinates of

a point on the image plane in the camera coordinate system can be computed. This is done by

applying the inverse calibration matrix K−1 to the point xp in pixel coordinates to get the point

x = K−1xp in the camera coordinate system. The point x is transformed into normalized

coordinates i.e. it does not depend on the properties of the imaging sensor.

The next section will introduce the camera transformation that models the camera projec-

tion of a homogenous 3D point X onto the camera image plane and the transformation into

the image point in the pixel coordinate system.

A.2.8 Projection matrix

For a 3D scene point it was deduced in section A.1.1 that the image point on the camera image

plane depends on the cameras position C̄ ∈ IR3 and the cameras orientation R. The affine

transformation used for the 3D scene point X̄ ∈ IR3 can be written as

X̄c = RT (X̄ − C̄), (A.36)

where X̄c ∈ IR3 is the 3D scene point given in the camera coordinate system. Using the

corresponding point X in projective space IP3 of the scene point equation (A.36) can be written

in matrix form as

Xc =

[
RT −RT C̄

03×1 1

]
X, (A.37)

where Xc ∈ IP3 is the homogenous point in the camera coordinate system corresponding to

the scene point X. Then the perspective projection Tper can be used to project Xc onto the

camera image plane. Here a projection into a canonical camera can be used because X is

already mapped into the camera coordinate system. The general central projection onto the
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image plane at [0, 0, f ] is given by

Tp =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


︸ ︷︷ ︸

Tpar


1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
f 1


︸ ︷︷ ︸

Tper

, (A.38)

where Tper is the perspective transformation and Tpar is the parallel projection onto the x-y-

plane. The perspective transformation skews the projective space so that all projection rays are

parallel. It moves the optical center of the camera from the origin of the coordinate system onto

the plane at infinity. This can be deduced from the fact that the optical center is the intersection

of all projection rays. According to theorem 9 if all rays are parallel, the intersection point has

to be on the plane at infinity. The parallel projection Tpar simply projects from IP3 into the

image plane of the camera. Then Tp applied to the point Xc in the camera coordinate system

yields the point on the camera image plane

Xi = Tp

[
RT −RT C̄

03×1 1

]
X. (A.39)

where Xi ∈ IP3 is the point on the camera image plane. For an image plane at the canonical

position z = 1 and neglection of the z-component of the projected point x equation (A.39) is

equal to

xi = [RT | −RT C̄]X (A.40)

where xi ∈ IP2 is a projective point on the camera image plane. Please note the projection in

(A.40) is described by the matrix product from (A.39) which is the 3× 4 matrix [RT | −RT C̄].

The transformation of this image point xi from image plane coordinates into pixel coordinates

is given by the camera calibration from (2.3). This leads to the camera transformation that

projects a 3D scene point X into an image point x in pixel coordinates on the camera image

plane

x = K[RT | −RT C̄]X. (A.41)

The matrix P = K[RT | −RT C̄] is called the camera projection matrix. It transfers a 3D scene

point into the image point for a camera with intrinsic calibration K at position C̄ and with

orientation R. Due to the equality up to scale in projective spaces the camera projection matrix

P is defined only up to scale. The next paragraph will show how the camera projection matrix

P can be estimated.

Estimation of the projection matrix The projection equation for the camera from (A.41)

provides two constraints on the camera projection matrix P for a 3D scene point X and the

corresponding image point x. In (A.41) are three equations contained but only two linear

independent due to the two degrees of freedom for a point x in IP2. A counting argument leads

to the fact that six correspondences (Xi,xi) of a 3D scene point and an image point are needed
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to compute the projection matrix linearly. For a given correspondence (Xi,xi) of a 3D scene

point Xi and an image point xi equation (A.41) is only defined for equality up to scale

xi ∼= K[RT | −RT C]Xi. (A.42)

Euclidian equality can be achieved by eliminating the projective scale. This can be done by

multiplying the right hand side in (A.42) with the last component of the image point xi and

the left hand side with the third component of the mapped 3D scene point PX. Reordering

leads to

−xi
3(P2,1X

i
1 + P2,2X

i
2 + P2,3X

i
3 + P2,4X

i
4) +

xi
2(P3,1X

i
1 + P3,2X

i
2 + P3,3X

i
3 + P3,4X

i
4) = 0

xi
3(P1,1X

i
1 + P1,2X

i
2 + P1,3X

i
3 + P1,4X

i
4) −

xi
1(P3,1X

i
1 + P3,2X

i
2 + P3,3X

i
3 + P3,4X

i
4) = 0

−xi
2(P1,1X

i
1 + P1,2X

i
2 + P1,3X

i
3 + P1,4X

i
4) +

xi
2(P2,1X

i
1 + P2,2X

i
2 + P2,3X

i
3 + P2,4X

i
4) = 0

this can be written in matrix form as 01×4 −xi
3(X

i)T xi
2(X

i)T

xi
3(X

i)T 01×4 −xi
1(X

i)T

−xi
2(X

i)T xi
1(X

i)T 01×4


︸ ︷︷ ︸

AP

 P1,1
...

P3,4

 = 03×1. (A.43)

for each correspondence (Xi,xi). The conditions for six correspondences then give a sufficient

number of constraints for the projection matrix which is the nullspace of the matrix AP in

(A.43).

For 3D scene points in general positions (A.43) computes the camera projection matrix.

For points on a plane the nullspace dimension is greater than one. Hence the solution for the

camera projection matrix is ambiguous. In this case another parameterization of the camera

projection matrix together with a nonlinear optimization has to be chosen in order to compute

a unique camera projection matrix P . More details about nonlinear estimation methods for

the camera projection matrix can be found in [HZ03].

A.2.9 Radial distortion

In the previous sections the imaging process was assumed to be linear. Hence the camera

projection could be modeled as a linear process in (A.43). Unfortunately for real lens systems

this assumption is violated especially for cheaper lens systems. This nonlinear effect is called

radial distortion. In figure A.4 the effect of radial distortion is illustrated. Radial distortion is

visible at straight lines that become curves.

The radial distortion is caused by the bending of the light rays in the lens system of the

camera. The correction of the radial distortion can be performed on the image plane. An



132 APPENDIX A. PROJECTIVE GEOMETRY AND CAMERA MODEL

(a) (b)

Figure A.4: (a) Camera image of a chess board with radial distortion. Please note the straight
lines of the chess board become curves. (b) Image from (a) with corrected radial distortion of
the lens.

example is shown in figure A.4. It can be seen that the radial distortion mainly depends on the

distance to the principal point. Albeit the real center of the radial distortion [ur, vr]
T is only

close to the principal point of the camera [Ste93], the principal point is often used as center

of the radial distortion [ur, vr]
T = [u, v]T . The radial distortion L(·) can be modeled for a

distorted point x̄d = [xd
1, x

d
2]

T as [
x1

x2

]
= L(rd(x̄))

[
xd

1

xd
2

]
, (A.44)

where x̄ = [x1, x2]
T is the not distorted image point of the linear model and rd(x̄) is the

Euclidian distance of the observed distorted point x̄ to the center of the radial distortion

[ur, vr]
T . Since it is not easy to exactly model all effects of the lens system an approximation

for the true function is used. The Taylor expansion for the radial distortion L(·) interpreted as

a general function

L(rd(x̄)) = 1 + κ1rd + κ2r
2
d + κ3r

3
d + . . .

is used as approximation to the true radial distortion function. The coefficients of the radial

distortion function L(·) and the center [ur, vr]
T of the radial distortion are part of the internal

camera parameters. Then the radial distortion model (A.44) can be written as

x = (1 + κ1rd + κ2r
2
d + κ3r

3
d + . . . )

[
xd

1

xd
2

]
. (A.45)

In order to compensate the radial distortion this function has to be inverted. In figure A.4

(b) the result of the radial distortion compensation is illustrated. Hence the imaging process

becomes linear by use of the radial distortion compensation. Often the Taylor approximation

is terminated after the linear term κ1. The effect of the radial distortion in dependence on the

sign of κ1 is illustrated in figure A.5.
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κ<0

imageinglinear

κ>0

imageinglinear

(a) (b)

Figure A.5: (a) Effect of radial distortion for κ1 with negative sign.(b) Effect of radial distortion
for κ1 with positive sign.

This appendix introduced the camera model used to describe the imaging process of a real

camera. Furthermore the projective space was introduced. It leads to a linear model for the

camera transformation in contrast to a nonlinear camera transformation in Euclidian space.
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Appendix B

Self-calibration of a purely rotating
camera with known orientation

In this chapter the calibration equations for a purely rotating camera with known orientation

will be introduced in detail. First of all the self-calibration equations for a camera with varying

intrinsic parameters are shown in section B.1. Due to the fact that digital cameras have a

zero skew the self-calibration equations for cameras with zero skew are introduced in section

B.2. The additional constraints provided by a camera with constant intrinsic parameters are

investigated in section B.3.

B.1 Self-calibration with varying intrinsics and known

orientation

In section 4.1 for a purely rotating camera with varying intrinsic parameters the self-calibration

problem is given in equation (4.3). The comparison of the entries of the matrices in (4.3)

135
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provides the following nine self-calibration equations

0 = fj

(
H∞

j,i

)
1,1
− fi

ρj,i
(Rj,i)1,1 −

ui

ρj,i
(Rj,i)3,1 −

si

ρj,i
(Rj,i)2,1

0 = ajfj

(
H∞

j,i

)
1,2
− fi

ρj,i
(Rj,i)1,2 −

ui

ρj,i
(Rj,i)3,2 − (Rj,i)2,2

si

ρj,i
+ sj

(
H∞

j,i

)
1,1

−
(
H∞

j,i

)
1,3

= uj

(
H∞

j,i

)
1,1

+ vj

(
H∞

j,i

)
1,2
− fi

ρj,i
(Rj,i)1,3 −

ui

ρj,i
(Rj,i)3,3 − (Rj,i)2,3

si

ρj,i

0 = fj

(
H∞

j,i

)
2,1
− aifi

ρj,i
(Rj,i)2,1 −

vi

ρj,i
(Rj,i)3,1

0 = ajfj

(
H∞

j,i

)
2,2
− aifi

ρj,i
(Rj,i)2,2 −

vi

ρj,i
(Rj,i)3,2 +

(
H∞

j,i

)
2,1

sj

−
(
H∞

j,i

)
2,3

= uj

(
H∞

j,i

)
2,1

+ vj

(
H∞

j,i

)
2,2
− ai

fi

ρj,i
(Rj,i)2,3 −

vi

ρj,i
(Rj,i)3,3

0 = fj

(
H∞

j,i

)
3,1
− (Rj,i)3,1

1

ρj,i

0 = ajfj

(
H∞

j,i

)
3,2

+
(
H∞

j,i

)
3,1

sj − (Rj,i)3,2

1

ρj,i

−
(
H∞

j,i

)
3,3

= uj

(
H∞

j,i

)
3,1

+ vj

(
H∞

j,i

)
3,2
− (Rj,i)3,3

1

ρj,i
(B.1)

in the entries of the calibration matrix Kj of camera j and the scaled calibration K̃i of camera i.

The homography H∞
j,i in (B.1) can be computed from the images themselves as seen in section

2.5.1. The rotation matrix Rj,i can be determined using the known orientation of the cameras.

Hence a linear equation system for the internal calibration of camera j and the scaled intrinsics

of camera i can be deduced from (B.1). To have a more compact notation the entry (m, n) of

the homography H∞
j,i is denoted with hm,n and similar the entry (m,n) of Rj,i is denoted as

rm,n. The equation system deduced from (B.1) is then given by

AH

[
fj sj uj ajfj vj

fi

ρj,i

si

ρj,i

ui

ρj,i

aifi

ρj,i

vi

ρj,i

1
ρj,i

]T
︸ ︷︷ ︸

K

= bH (B.2)

with

AH =



h1,1 0 0 0 0 −r1,1 −r2,1 −r3,1 0 0 0

0 h1,1 0 h1,2 0 −r1,2 −r2,2 −r3,2 0 0 0

0 0 h1,1 0 h1,2 −r1,3 −r2,3 −r3,3 0 0 0

h2,1 0 0 0 0 0 0 0 −r2,1 −r3,1 0

0 h2,1 0 h2,2 0 0 0 0 −r2,2 −r3,2 0

0 0 h2,1 0 h2,2 0 0 0 −r2,3 −r3,3 0

h3,1 0 0 0 0 0 0 0 0 0 −r3,1

0 h3,1 0 h3,2 0 0 0 0 0 0 −r3,2

0 0 h3,1 0 h3,2 0 0 0 0 0 −r3,3


,
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with the right hand side bH given by

bH =
[

0 0 −h1,3 0 0 −h2,3 0 0 −h3,3

]T
.

The rank of the system matrix A is at most 9, because the number of rows is 9. In the following

it will be proved that the rank for a general rotation is exactly nine. To prove this it is sufficient

to find a submatrix of A of size 9× 9 that has a non-zero determinant. Here the determinant

of the submatrix A1−9,3−11 is chosen which is given by

det (A1−9,3−11)

= ((r1,3r2,2 − r1,2r2,3)r3,1 + (r1,1r2,3 − r1,3r2,1)r3,2 + (r1,2r2,1 − r1,1r2,2)r3,3)

h3,2(h2,2h3,1 − h2,1h3,2)r3,1(r2,2r3,1 − r2,1r3,2). (B.3)

For the proposed self-calibration approach a rotation about the x-axis and the y-axis was

assumed (general rotation). This leads to a rotation matrix Ri,j with the structure

Rj,i =

 cos(αy) 0 sin(αy)

sin(αx) sin(αy) cos(αx) − cos(αy) sin(αx)

cos(αx) sin(αy) sin(αx) cos(αx) cos(αy)

 , (B.4)

where αx is the rotation angle of the rotation about the x-axis and αy is the rotation angle of

the rotation about the y-axis. Using this structure of the rotation matrix (B.3) is reduced to

det(A1−9,3−11) = h3,2(h2,1h3,2 − h2,2h3,1) cos(αx) sin2(αy). (B.5)

The terms cos(αx) and sin2(αy) are not zero for the assumed general rotation about the x-axis

and the y-axis. Exploiting the structure of the infinite homography (2.16) and applying the

rotation Rj,i from (B.4) leads to a determinant of

det(A1−9,3−11) =
a2f2

a2
1f

4
1

cos(αx)sin3(αy)(f1 sin(αx) + s1 cos(αx) sin(αy)). (B.6)

Hence the determinant (B.6) is different from zero for a general rotation Rj,i. This leads to the

fact that the matrix A in (B.2) has rank 9 because it exists a submatrix of A that has rank 9.

Accordingly A has nine linear independent rows.2

The angle of rotation about the y-axis influences the determinant in (B.6) with the third

power of the sinus. As a consequence the determinant is close to zero for very small rotations in

y direction which introduces numerical instabilities for the estimation process. I.e. the rotation

about the y-axis should be ensured to be not too small for a stable estimation, whereas the

rotation about the x-axis is not critical for the numerical stability of the estimation process.

B.2 Self-calibration equations for cameras with zero skew

To reach a linear calibration from a single pair of cameras in section 4.1.1 it was proposed to

use the zero skew constraint for CCD cameras. In that case the linear equations provided by
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(4.3) for the calibration become

0 = fj

(
H∞

j,i

)
1,1
− fi

ρj,i
(Rj,i)1,1 −

ui

ρj,i
(Rj,i)3,1

0 = ajfj

(
H∞

j,i

)
1,2
− fi

ρj,i
(Rj,i)1,2 −

ui

ρj,i
(Rj,i)3,2

−
(
H∞

j,i

)
1,3

= uj

(
H∞

j,i

)
1,1

+ vj

(
H∞

j,i

)
1,2
− fi

ρj,i
(Rj,i)1,3 −

ui

ρj,i
(Rj,i)3,3

0 = fj

(
H∞

j,i

)
2,1
− aifi

ρj,i
(Rj,i)2,1 −

vi

ρj,i
(Rj,i)3,1

0 = ajfj

(
H∞

j,i

)
2,2
− aifi

ρj,i
(Rj,i)2,2 −

vi

ρj,i
(Rj,i)3,2

−
(
H∞

j,i

)
2,3

= uj

(
H∞

j,i

)
2,1

+ vj

(
H∞

j,i

)
2,2
− aifi

ρj,i
(Rj,i)2,3 −

vi

ρj,i
(Rj,i)3,3

0 = fj

(
H∞

j,i

)
3,1
− (Rj,i)3,1

1

ρj,i

0 = ajfj

(
H∞

j,i

)
3,2
− (Rj,i)3,2

1

ρj,i

−
(
H∞

j,i

)
3,3

= uj

(
H∞

j,i

)
3,1

+ vj

(
H∞

j,i

)
3,2
− (Rj,i)3,3

1

ρj,i
. (B.7)

The linear equation system for cameras that have zero skew is given by

AS

[
fj uj ajfj vj

fi

ρj,i

ui

ρj,i

aifi

ρj,i

vi

ρj,i

1
ρj,i

]T
︸ ︷︷ ︸

K

= bS (B.8)

with the system matrix AS

AS =



h1,1 0 0 0 −r1,1 −r3,1 0 0 0

0 0 h1,2 0 −r1,2 −r3,2 0 0 0

0 h1,1 0 h1,2 −r1,3 −r3,3 0 0 0

h2,1 0 0 0 0 0 −r2,1 −r3,1 0

0 0 h2,2 0 0 0 −r2,2 −r3,2 0

0 h2,1 0 h2,2 0 0 −r2,3 −r3,3 0

h3,1 0 0 0 0 0 0 0 −r3,1

0 0 h3,2 0 0 0 0 0 −r3,2

0 h3,1 0 h3,2 0 0 0 0 −r3,3


,

with the right hand side bS given by

bH =
[

0 0 −h1,3 0 0 −h2,3 0 0 −h3,3

]T
.

It is clear that the system matrix AS has at most rank nine because it is a 9 × 9 matrix. In

order to prove that it has exactly rank nine it is sufficient to show that the determinant is not

zero. As in the previous section for the calibration a general rotation like in (B.4) is assumed.
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Exploiting the structure of the infinite homography (2.16) leads to the determinant det(AS) of

the system matrix AS

det(AS) =
a2f2

a2
1f

4
1

cos(αx)sin2(αx)sin2(αy)(u2 cos(αx) sin(αy)− f2 cos(αy)), (B.9)

which is not equal to zero for a general rotation between the cameras.2

Again it can be seen that for small rotations about the y-axis or the x-axis the determinant

is close to zero which implies that the estimation process becomes unstable due to numerical

problems.

B.3 Self-calibration equations for a purely rotating cam-

era with constant intrinsics

This sections introduces the self-calibration equations for two cameras with constant intrinsic

parameters. Then the self-calibration equation (4.3) simplifies to equation (4.8) as explained

in section B.3. The self-calibration equations provided by (4.8) are:

0 = f
(
(Rj,i)1,1 − (Hj,i)1,1

)
+ s (Rj,i)2,1 + u (Rj,i)3,1

0 = f (Rj,i)1,2 + s
(
(Rj,i)2,2 − (Hj,i)1,1

)
+ u (Rj,i)3,2 − af (Hj,i)1,2

(Hj,i)1,3 = f (Rj,i)1,3 + s (Rj,i)2,3 + u
(
(Rj,i)3,3 − (Hj,i)1,1

)
− v (Hj,i)1,2

0 = −f (Hj,i)2,1 + af (Rj,i)2,1 + v (Rj,i)3,1

0 = −s (Hj,i)2,1 + af
(
(Rj,i)2,2 − (Hj,i)2,2

)
v (Rj,i)3,2

(Hj,i)2,3 = −u (Hj,i)2,1 + af (Rj,i)2,3 + v
(
(Rj,i)3,3 − (Hj,i)2,2

)
− (Rj,i)3,1 = −f (Hj,i)3,1

− (Rj,i)3,2 = −s (Hj,i)3,1 − af (Hj,i)3,2

(Hj,i)3,3 − (Rj,i)3,3 = −u (Hj,i)3,1 − v (Hj,i)3,2 . (B.10)

These equations can be written as a linear equation system for the unknown calibration pa-

rameters Kc = [f, s, u, af, v]T

r1,1 − h1,1 r2,1 r3,1 0 0

r1,2 r2,2 − h1,1 r3,2 −h1,2 0

r1,3 r2,3 r3,3 − h1,1 0 −h1,2

−h2,1 0 0 r2,1 r3,1

0 −h2,1 0 r2,2 − h2,2 r3,2

0 0 −h2,1 r2,3 r3,3 − h2,2

−h3,1 0 0 0 0

0 −h3,1 0 −h3,2 0

0 0 −h3,1 0 −h3,2


︸ ︷︷ ︸

Ac

Kc =



0

0

h1,3

0

0

h2,3

−r3,1

−r3,2

h3,3 − r3,3


(B.11)



140 APPENDIX B. PURELY ROTATING CAMERA

In order to prove that the linear equation system (B.11) has five linear independent equations

it is sufficient to show that the system matrix has five linear independent rows. It is clear

that the matrix Ac has at most rank five because it has five columns. To show that Ac has

exactly rank five it is sufficient to show that a submatrix of size 5 × 5 of Ac exists that has

a determinant different from zero. Here the determinant of (Ac){1,4,7,8,9},· is calculated which

contains the first, fourth, seventh, eighth, and ninth row of the system matrix Ac. Using the

structure of a general rotation (B.4) and the structure of the infinite homography (2.16) for

constant camera calibration leads to the determinant

det
(
(Ac){1,4,7,8,9},·

)
=

cos3(αx) sin(αx) sin4(αy) (f sin αx + s cos(αx) sin(αx))

af4
, (B.12)

which is not zero for a general rotation. Hence the system matrix Ac has rank five.2

Further it can be seen in (B.12) that the determinant is close to zero for small rotations

about the x-axis and y-axis.



Appendix C

Self-calibration of a freely moving
camera with known orientation

This chapter investigates the properties of the self-calibration equations for a freely moving

camera in detail.

C.1 Freely moving camera with known orientation and

varying parameters

For a freely moving camera the Fundamental matrix Fj,i describes the mapping of a point

of camera j to a line in camera i. In section 4.2 from the Fundamental matrix the calibra-

tion equation (4.26) was deduced. Comparing the matrix coefficients provides nine calibration

equations

0 = −F3,1fj − e2r1,1
1

ρj,i
fi +

1

ρj,i
r2,1(e1aifi − e2si) +

1

ρj,i
r3,1(−e2ui + e1vi)

0 = −ajfjF3,2 − e2r1,2
1

ρj,i
fi +

1

ρj,i
r2,2(e1aifi − e2si) +

1

ρj,i
r3,2(−e2ui + e1vi)− F3,1sj

F3,3 = −e2r1,3
1

ρj,i
fi +

1

ρj,i
r2,3(e1aifi − e2si) +

1

ρj,i
r3,3(−e2ui + e1vi)− F3,1uj − F3,2vj

0 = −F2,1fj + e3r1,1
1

ρj,i
fi + e3r2,1

1

ρj,i
si +

1

ρj,i
r3,1(e3ui − e1)

0 = −ajfjF2,2 + e3r1,2
1

ρj,i
fi + e3r2,2

1

ρj,i
si − F2,1sj +

1

ρj,i
r3,2(e3ui − e1)

F2,3 = e3r1,3
1

ρj,i
fi + e3r2,3

1

ρj,i
si − F2,1uj − F2,2vj +

1

ρj,i
r3,3(e3ui − e1)

0 = −F1,1fj − e3r2,1
1

ρj,i
aifi +

1

ρj,i
r3,1(−e3vi + e2)

0 = −ajfjF1,2 − e3r2,2
1

ρj,i
aifi − F1,1sj +

1

ρj,i
r3,2(−e3vi + e2)

F1,3 = −e3r2,3
1

ρj,i
aifi − F1,1uj − F1,2vj +

1

ρj,i
r3,3(−e3vi + e2) (C.1)
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of a freely moving and rotating camera with known orientation. The equations (C.1) are linear

in the scaled intrinsics of camera j and the intrinsics of camera i. Due to the rank two of the

Fundamental matrix at most six of the equations (C.1) are linear independent. The equations

can be written as a linear equation system

AF

[
fj sj uj ajfj vj

fi

ρj,i

si

ρj,i

ui

ρj,i

aifi

ρj,i

vi

ρj,i

1
ρj,i

]T
︸ ︷︷ ︸

K

= bF (C.2)

with the system matrix AF for the self-calibration of a freely moving camera

AF =

−F3,1 0 0 0 0 −e2r1,1 −e2r2,1 −e2r3,1 e1r2,1 e1r3,1 0

0 −F3,1 0 −F3,2 0 −e2r1,2 −e2r2,2 −e2r3,2 e1r2,2 e1r3,2 0

0 0 −F3,1 0 −F3,2 −e2r1,3 −e2r2,3 −e2r3,3 e1r2,3 e1r3,3 0

−F2,1 0 0 0 0 e3r1,1 e3r2,1 e3r3,1 0 0 −e1r3,1

0 −F2,1 0 −F2,2 0 e3r1,2 e3r2,2 e3r3,2 0 0 −e1r3,2

0 0 −F2,1 0 −F2,2 e3r1,3 e3r2,3 e3r3,3 0 0 −e1r3,3

−F1,1 0 0 0 0 0 0 0 −e3r2,1 −e3r3,1 e2r3,1

0 −F1,1 0 −F1,2 0 0 0 0 −e3r2,2 −e3r3,2 e2r3,2

0 0 −F1,1 0 −F1,2 0 0 0 −e3r2,3 −e3r3,3 e2r3,3


.

The right hand side bF of the linear equation system (C.2) is

bF =
[

0 0 F3,3 0 0 F2,3 0 0 F1,3

]T
.

For a general rotation from (B.4) it will be proved in the following that the matrix A in (C.2)

has rank six.

Proof: The upper bound of at most six linear independent equations is given from the rank

two constraint of the Fundamental matrix because one row of the Fundamental matrix is a

linear combination of the other two rows. Hence three of the nine calibration equations can be

described as linear combinations of the other six equations. It will shown now that the columns

corresponding to the focal length, skew, and aspect ratio respectively the scaled ones of AF

in (C.2) are linear independent. Due to the fact that column rank is equal to the row rank

this is equivalent to show that six linear independent rows exist which represent our calibration

equations. This leads to the general result that the matrix has exactly rank six.

The columns of AF from (C.2) that correspond to to the focal length, skew, and aspect

ratio respectively the scaled focal length, aspect ratio and skew lead to a system matrix ÃF

ÃF =



−F3,1 0 0 −e2r1,1 −e2r2,1 e1r2,1

0 −F3,1 −F3,2 −e2r1,2 −e2r2,2 e1r2,2

0 0 0 −e2r1,3 −e2r2,3 e1r2,3

−F2,1 0 0 e3r1,1 e3r2,1 0

0 −F2,1 −F2,2 e3r1,2 e3r2,2 0

0 0 0 e3r1,3 e3r2,3 0

−F1,1 0 0 0 0 −e3r2,1

0 −F1,1 −F1,2 0 0 −e3r2,2

0 0 0 0 0 −e3r2,3


.
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Gaussian elimination of ÃF leads to a matrix ÃGaussian
F

ÃGaussian
F =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


in echelon form1 which has rank six and therefore ÃF has also rank six. 2

The above result shows that for a freely moving camera there is no unique solution for

the general self-calibration problem. From this proof it follows directly that the proposed

constraints in section 4.2.2 lead to unique solutions of the self-calibration. Since all sets of

constraints lead to a calibration that uses linear independent columns.

1An m× n matrix is in echelon form if

• All rows that consist entirely of zeros are grouped together at the bottom of the matrix;

• In every non-zero row, the first entry (left to right) is 1;

• If the (i + 1)st row contains non-zero entries, then the first non-zero entry is in a column to the right of
the first non-zero entry in the ith row.
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Appendix D

Sensitivity of the self-calibration with
known rotation

This appendix will discuss the sensitivity of the self-calibration to errors in the measured

rotation. The presented analysis will be done for a single camera pair with varying focal

length. All other intrinsic parameters are fixed and known. At first the influence of errors in

the rotation measurements for a purely rotating camera will be analyzed. In section D.2 the

influence for a freely moving camera will be discussed.

D.1 Sensitivity of the self-calibration of a purely rotat-

ing camera

The sensitivity of the achieved self-calibration for the focal lengths was the subject of section

4.1.6. This section will give the detailed solution for the estimated focal lengths f̂j and f̂i of

the equation system (4.23)

AH [f̂j , f̂i] = bH ,

with the system matrix AH similar to equation (B.2) where the columns for the known param-

eters skew, principal point and aspect ratio of both cameras where substituted. The resulting

linear equation system was solved analytically afterwards.

This analytical solution is of high complexity. In order to get a helpful form of the resulting

solution here the case for a rotation about the x-axis only and for a rotation about the y-axis

only will be presented separately. Since the aspect ratio is known both rotations provide a

solution of the focal lengths f̂j and f̂i. The solution for f̂j for a rotation about the x-axis is

given by

f̂j = −
4 sin (φ) sin (φ + ∆φ)

(
(cos (∆φ) + cos (2φ + ∆φ) + 2) f2

i + 4
)
fj

(s(φ, ∆φ) + 8 cos (2φ + ∆φ) + cos (2 (2φ + ∆φ))− 14) f2
i − 16 sin2 (φ)

(D.1)

where s(φ, ∆φ) is

s(φ, ∆φ) = −6 cos (2φ) + 8 cos (∆φ) + cos (2∆φ) + 2 cos (2 (φ + ∆φ)) . (D.2)
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For a pure rotation about the y-axis the following solution for f̂j can be computed from (4.23)

f̂j = −
4 sin (Φ) sin (Φ + ∆Φ)

(
(cos (∆Φ) + cos (2Φ + ∆Φ) + 2) f2

i + 4
)
fj

(s(Φ, ∆Φ) + 8 cos (2Φ + ∆Φ) + cos (2 (2Φ + ∆Φ))− 14) f2
i − 16 sin2 (Φ)

, (D.3)

with s(Φ, ∆Φ) from (D.2). These solutions (D.1) and (D.3) show that the estimated focal length

is disturbed with terms that depend on the cosine and the sine of the angular disturbances ∆φ

respectively ∆Φ. The resulting relative error of the estimated focal length f̂j is plotted for a

fixed absolute rotation with φ = 10◦ and Φ = 10◦ in dependence on the angular disturbance

∆φ in figure D.1 (a). Together with the observation that the error is nearly an odd function

for small disturbances of less than four degrees with a present absolute rotation of ten degrees.

For smaller absolute rotations the range of linearity is also smaller. The nearly odd function

delivers the result that the mean of multiple estimations of the self-calibration is not effected

by angular errors with distributions of zero mean.

Furthermore from (D.2) and (D.3) it can be seen that the error increases with increasing

values of the angular disturbances ∆φ and ∆Φ. The solution for the focal length f̂i of the

second camera leads to comparable properties which are not shown in detail here.

After this analysis of the self-calibration error of purely rotating cameras for a disturbed

measured rotation the next section will investigate the disturbance of the self-calibration for

freely moving cameras.

(a) (b)

Figure D.1: (a) Relative error for a purely rotating camera of the estimated focal length f̂j

in dependence on the disturbance of the rotation ∆φ in the rotation about the x-axis. (b)
Relative error for a freely rotating camera of the estimated focal length f̂j in dependence on
the disturbance of the rotation ∆φ in the rotation about the x-axis.
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D.2 Sensitivity of the self-calibration of a freely moving

camera

This section will show the results of the analysis done in section 4.2.4. The focal lengths f̂j

and f̂i were computed as the solution of the linear equation system

AF

[
f̂j

f̂i

]
= bF , (D.4)

where the system matrix AF and the right hand side bF have been deduced from equation (C.2)

with substituted known parameters skew, principal point and aspect ratio of both cameras.

Please note, that due to the known aspect ratio the focal length here can be estimated from a

rotation about the x-axis as well as from a rotation about the y-axis.

The analytical solution of the linear equation system (D.4) is of high complexity. In order to

obtain a helpful presentation here the case for a rotation about the x-axis and the solution for

a rotation about the y-axis will be given separately. The epipole e is given as e = [e1, e2, e3]
T .

The solution for the focal length f̂j with a rotation about the x-axis is given by

f̂j =
sφ

(
−e2(F )1,2 + e1(F )2,2 − ωφ

)
DF

(D.5)

with the following substitutions for DF , ωφ, Ωφ, sφ and cφ

DF = (F )21,1 + (F )21,2 + (F )22,1 + (F )22,2 + (F )23,1 + (F )23,2

ωφ =

(
e3

(
cφ(F )1,2 − (F )2,1

)
+ e2(F )3,1 − cφe1(F )3,2

)
Ωφ(

e2
1 + e2

2 + 2e2
3

)
DF −

(
e3

(
cφ(F )1,2 − (F )2,1

)
+ e2(F )3,1 − cφe1(F )3,2

)2
Ωφ = (e2(F )1,2 − e1(F )2,2)

(
e3

(
cφ(F )1,2 − (F )2,1

)
+ e2(F )3,1 − cφe1(F )3,2

)
−DF (e3(F )1,3 − e1(F )3,3)

sφ = sin (φ + ∆φ)

cφ = cos (φ + ∆φ) ,

where (F )r,c is the element of Fj,i in row r and column c. The solution for f̂j for a rotation

about the y-axis is given by

f̂j =
sΦ (e2(F )1,1 − e1(F )2,1 − ωΦ)

DF
(D.6)

where DF is defined as above and ωΦ, ΩΦ, sΦ and cΦ are

ωΦ =
(e3 ((F )1,2 − cΦ(F )2,1) + cΦe2(F )3,1 − e1(F )3,2) ΩΦ(

e2
1 + e2

2 + 2e2
3

)
DF − (e3 ((F )1,2 − cΦ(F )2,1) + cΦe2(F )3,1 − e1(F )3,2)

2

ΩΦ = (e2(F )1,1 − e1(F )2,1) (e3 ((F )1,2 − cΦ(F )2,1) + cΦe2(F )3,1 − e1(F )3,2)

−DF (e3(F )2,3 − e2(F )3,3)

sΦ = sin (Φ + ∆Φ)

cΦ = cos (Φ + ∆Φ) .
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From (D.5) and (D.6) it can be seen that the estimated focal length f̂j is influenced by the

cosine of the angular error as well as by the sine of the angular error. Furthermore it can be

seen that the sign of the error can be positive as well as negative. The error function is nearly

an odd function for disturbances ∆φ that are small (approximately less than four degrees with

ten degrees absolute rotation). This implies that the mean value of the estimated focal length

is not disturbed by the angular error in x-direction and y-direction as long as it has a zero

mean. The relative error of the estimated focal length is illustrated in figure D.1 (b) for an

absolute rotation of φ = 10◦ and Φ = 10◦ in dependence on the angular disturbance ∆φ. A

plot of the analytical solution for errors in x-direction and y-direction in dependence on the

absolute rotation is shown in figure 4.18 in section 4.2.4.

The camera motion influences the epipole as explained in section 2.5.2 and from (D.5) and

(D.6) it follows that it also influences the error of the focal lengths. At first a scale in the epipole

changes the scale of the error. This can be avoided by normalizing the epipole to Euclidian

norm one. The major influence comes from components of the epipole that are zero which

eliminate terms in the estimation equations (D.5) and (D.6). Investigating the error shows

that the error in case of zero epipole components also only depends on the rotation angles φ

respectively Φ and the angular disturbances ∆φ respectively ∆Φ. The results for the focal

length of the second image f̂i are comparable to the results for f̂j and will be therefore not

presented here.



Appendix E

Critical rotations for self-calibration
with known orientation

This appendix provides the details for the analysis of the critical rotations for the proposed

self-calibration approaches with known camera orientation. The detailed deduction for a rotat-

ing camera will be shown here. For a freely moving camera the analysis can be done similarly.

Hence for freely moving cameras the results will be discussed shortly after the detailed deduc-

tion for the purely rotating camera. These results for freely moving cameras are valid for all

translations because for each epipole even with zero components six linear independent equa-

tions are provided by (C.2). The analysis will be done for the equations provided by a single

camera pair. Due to the block structure of the resulting equation system for three or more

cameras each additional camera will provide the same number of linear independent equations

as well as the same types of constraints.

For the deductions in the following sections the structure of the homography H∞
j,i respec-

tively the structure of the Fundamental matrix Fj,i is used. In order to take the structure into

account the true camera calibrations Kj and Ki

Kj =

 fj sj uj

0 aj · fj vj

0 0 1

 , Ki =

 fi si ui

0 ai · fi vi

0 0 1


are used together with the rotation matrix to formulate the structure of each element. This

is needed for a detailed analysis of the effects of each intrinsic parameter. These explicit

forms of the matrix elements in the true camera intrinsics are used in the equation systems

(B.2) respectively (C.2). To distinguish between true and estimated parameters the estimated

parameters are denoted with a tilde in the following sections. For simplicity and without loss

of generality the scale of the homography and the Fundamental matrix is assumed to be one.

E.1 No rotation of the camera

To investigate the effect of no rotation for self-calibration using (4.3) the structure (2.16) of

the infinite homography will be used. Using an identity matrix as rotation matrix leads to the
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homography H∞
j,i

H∞
j,i = KiK

−1
j . (E.1)

This homography is applied together with the identity rotation to the linear equation system

(B.2) for the self-calibration. Using Gaussian elimination [GL89] gives an echelon form of the

equation system

1 0 0 0 0 −fj

fi
0 0 0 0 0

0 1 0 0 0 0 −fj

fi
0 fjsi−fisj

aif2
i

0 0

0 0 1 0 0 0 0 −fj

fi
0 fjsi−fisj

aif2
i

0

0 0 0 1 0 0 0 0 −ajfj

aifi
0 0

0 0 0 0 1 0 0 0 0 −ajfj

aifi
0

0 0 0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

AI

K = bI (E.2)

with the right hand side

bI =
[

0 0 aififiuj−aififjui−fisjvi+fjsivi

aif2
i

0 aifivj−ajfjvi

aifi
1
]T

and the vector K of the unknown intrinsic parameters

K =
[

f̃j s̃j ũj ãj f̃j ṽj ρ̃j,if̃i ρ̃j,is̃i ρ̃j,iũi ρ̃j,iãif̃i ρ̃j,iṽi ρ̃j,i

]T
It can be seen that the resulting equation system provides six linear independent equations

since (E.2) has six linear independent columns. For varying intrinsics of the camera and non-

zero skew the principal point in y can be estimated. From the equations (E.2) it can be seen

that the focal lengths, the aspect ratio, the skews and the principal point in x of the cameras

can’t be estimated uniquely since the columns corresponding to these parameters are linear

dependent. Furthermore it can be seen that the linear dependent columns provide constraints

on the ratios of the focal lengths, the aspect ratios, the skews and the principal points in x. The

constraint on the principal point in y is more of theoretical interest since the poorly conditioned

estimation of the principal point makes it numerically difficult to compute it here and most

cameras have skew zero. The six provided equations lead to a unique solution of the principal

point in y from a single camera pair.

For the self-calibration of a freely moving camera using (4.26) with a known camera orien-

tation and the Fundamental matrix Fj,i is

Fj,i = [ei]×KiK
−1
j (E.3)

leads to five linear independent constraints on the principal point in y. The constraints are

comparable to the previously described constraints for a rotating camera. The number of

provided constraints is sufficient to calibrate the remaining principal points in y of the cameras.

The next section will discuss the equations for a rotation about the x axis.



E.2. ROTATION ABOUT THE X-AXIS 151

E.2 Rotation about the x-axis

The next rotation that was identified as critical is the rotation about the x-axis of the coordinate

system. The rotation matrix for this type of rotation is given by

Rx(φ) =

 1 0 0

0 cos φ − sin φ

0 sin φ cos φ

 . (E.4)

Using the structure (2.16) of the infinite homography together with the rotation Rx(φ) in the

linear equation system (B.2) for the self-calibration provides the following equations in echelon

form after Gaussian elimination

AxK = bx (E.5)

where the system matrix Ax is given by

1 0 0 0 0 −fj

fi
0 0 0 0 0

0 1 0 0 0 0 −fj cos(φ)
fi

−fj sin(φ)
fi

0 0 −fisj+fjsi cos(φ)+fjui sin(φ)
fi

0 0 1 0 0 0 fj sin(φ)
fi

−fj cos(φ)
fi

0 0 cot(φ)(−fisj+fjsi cos(φ)+fjui sin(φ))
fi

0 0 0 1 0 0 0 0 0 0 −ajfj

0 0 0 0 1 0 0 0 0 0 −ajfj cot(φ)

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 − 1
sin(φ)(aifi cos(φ) + vi sin(φ))


︸ ︷︷ ︸

Ax

and the right hand side Bx becomes

bx =
[

0 0 bx
3 0 bx

5 aifi cos(φ)) −aifi cot(φ)
]

with

bx
3 =

1
sin(φ)(fjsi − fisj cos(φ) + fiuj sin(φ))

fi

bx
5 =

1

sin(φ)
(vj sin(φ)− ajfj).

From these equations which exploit the special structure of the homography and the rotation

from (E.4). It can be seen that the focal lengths of the cameras become ambiguous due to the

linear dependency of the corresponding columns of Ax in (E.5). This leads to a constraint only

on the ratio of the focal lengths of the cameras.

All other intrinsic parameters can still be estimated since the corresponding columns are

still linear independent. At a first glance it seems to be surprising that the principal point in

x still can be estimated. This can be explained by the motions of the features under rotation

about the x-axis. In this case the features are moving not on a column of the image, they move

on a sinus curve in the image. This slight side motion provides information about the principal

point in x direction and also the estimated skew s̃. It is also clear from the linear independent
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columns corresponding to the skew that it can be estimated from a pure rotation about the

x-axis. Moreover it can be seen that it is possible to compute the product ãf̃ of aspect ratio ã

and focal length f̃ .

It follows from (E.5) that the equation system provides seven linear independent equations

for estimating the product af of aspect ratio ã and focal length f̃ as well as for the principal

point [ũ, ṽ] and the skew s̃.

An analogous deduction for a freely moving camera using (4.26) and the rotation Rx(φ)

provides the same type of constraints. Five of these equations are linear independent. From

these five equations the product ãf̃ of focal length f̃ and aspect ratio ã as well as the skew

and principal point can’t be computed uniquely at all. In order to get a unique solution of the

self-calibration additional constraints on the intrinsic parameters are needed. The next section

will investigate the equations for a pure rotation about the y-axis.

E.3 Rotation about the y-axis

The pure rotation about the y-axis often occurs for surveillance cameras that use only a panning

motion to extend the field of view to the left and right. This section will show which of the

intrinsic parameters of the camera can be estimated under this camera motion. For a purely

panning camera the rotation is described by

Ry(Φ) =

 cos Φ 0 sin Φ

0 1 0

− sin Φ 0 cos Φ

 . (E.6)

This rotation Ry(Φ) was applied to (B.2), afterwards the homography resulting from (2.16) and

the special rotation matrix from (E.6) is applied to the linear equations in (B.2). The resulting

equation system was reduced to echelon form using Gaussian elimination this leads to

AyK = by (E.7)

where the system matrix Ay is given by

1 0 0 0 0 0 0 0 0 0 −fj

0 1 0 0 0 0 0 0 − sj

aifi
0 0

0 0 1 0 0 0 0 0 0 0 fj cot(Φ)

0 0 0 1 0 0 0 0 −ajfj

aifi
0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 − si

aifi
0 0

0 0 0 0 0 0 0 1 0 0 1
sin(Φ)(fi cos(Φ)− ui sin(Φ))

0 0 0 0 0 0 0 0 0 1 −vi


︸ ︷︷ ︸

y

with the right hand side By

by =
[

0 0 1
sin(Φ)(fj cos(Φ) + uj sin(Φ)) 0 vj fi 0 fi cot(Φ) 0

]
.
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The resulting equation system still provides nine linear independent constraints on the

intrinsic parameters of the cameras as in the case of a general rotation. This asymmetry to

a rotation about the x-axis results from the modeling of the skew in the camera calibration

matrix which is biased towards the x-direction. It can be seen from (E.7) that the principal

points and the focal lengths can be determined uniquely from the resulting equations since the

corresponding columns are linear independent. Furthermore it follows that the focal length in

y-direction ãf̃ and the skew can’t be determined. The equations (E.7) only provide constraints

about the ratio of the aspect ratios and the ratio of the skews. These ambiguities correspond to

the ambiguous estimation of the focal length given a rotation about the x-axis. The principal

point and the focal lengths of the cameras can be estimated uniquely using the equations

delivered by (E.7).

The same type of constraints can be deduced for a freely moving camera with rotation Ry(Φ).

Then the self-calibration equations (4.26) still provide six linear independent constraints for the

camera parameters. This means that the self-calibration of focal length f̃ and principal point

is now possible from six cameras. The only parameters that can’t be determined are then the

aspect ratio ã and the skew of the involved cameras. The next section will discuss the last

critical rotation of a camera the rotation about the z-axis.

E.4 Rotation about the z-axis

Similar to the previous cases of rotations about one coordinate axis at a time the special

structure of the rotation matrix of a camera that rotates about the z-axis

Rz(Θ) =

 cos Θ − sin Θ 0

sin Θ cos Θ 0

0 0 1

 (E.8)

can be used to deduce the structure of the corresponding homography. The rotation and the

homography are applied to the linear self-calibration equations (B.2). This provides again a

system

AzK = bz

in echelon form after a Gaussian elimination.

Az =



1 0 0 0 0 0 0 0 − fj

aifi
0 0

0 1 0 0 0 0 (Az)2,7 0 (Az)2,9 0 0

0 0 1 0 0 0 0 (Az)3,8 0 (Az)3,10 0

0 0 0 1 0 0 −ajfj tan(Θ)
fi

0 (Az)4,9 0 0

0 0 0 0 1 0 0 (Az)5,8 0 0 0

0 0 0 0 0 1 − tan(Θ) 0
1

cos(Θ)
(si sin(Θ)−fi cos(Θ))

aifi
0 0

0 0 0 0 0 0 0 0 0 0 1


(E.9)
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with

(Az)2,7 =

1
cos(Θ)(−fj cos(Θ)− sj sin(Θ))

fi

(Az)2,9 =

1
cos(Θ)(−fisj cos(Θ) + fjsi cos(Θ) + sjsi sin(Θ))

aififi

(Az)3,8 = −
1

cos2(Θ)(fj cos(Θ) + sj sin(Θ))

fi

(Az)3,10 =

1
cos2(Θ)(−fisj cos(Θ) + fjsi cos(Θ) + sjsi sin(Θ))

aififi

(Az)4,9 = −
ajfj

cos(Θ)(fi cos(Θ)− si sin(Θ))

aififi

(Az)5,8 = −
ajfj sin(Θ)

cos2(Θ)fi

bz =



0

0
1

cos2(Θ)
(aif

2
i (uj+1) cos(2z)uj−2fi(aifjui cos(Θ)−sjvi cos(Θ)−aisjui sin(Θ))+2vi(fjsi cos(Θ)+sjsi sin(Θ))

2aififi

0

−
ajfj

cos2(Θ)
(fi cos(Θ)−si sin(Θ))

aififi

0

1


.

The resulting equation system has seven linear independent equations that provide a unique

solution for the principal point and the skew of the camera. The focal length and the aspect

ratio of the camera can’t be determined linearly since the corresponding columns are linear

dependent. The equations only deliver constraints on the ratio of the focal lengths and the

ratio of the focal length in y-direction ãf̃ . After an automatic detection of this type of critical

rotation the provided set of equations is sufficient to compute a unique self-calibration of the

remaining parameters principal point and skew.

For a freely moving camera the equations (4.26) deliver six linear independent constraints

on the principal point of the camera and the skew. Furthermore also constraints on the ration

of the focal lengths of the cameras and on the ratio of the focal length in y-direction ãf̃ are

submitted. Hence the remaining parameters can be estimated uniquely from a camera triplet.
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[HÅ99] A. Heyden and K. Åström. Flexible calibration: Minimal cases for auto-calibration.

In Proceedings IEEE International Conference Computer Vision, pages 350–355,

1999.

[Har92] Richard Hartley. Estimation of relative camera positions from uncalibrated cam-

eras. In Proceedings European Conference on Computer Vision, pages 579–587,

1992.

[Har94a] Richard Hartley. Euclidean reconstruction from uncalibrated views. In J.L. Mundy,

A. Zisserman, and D. Forsyth, editors, Applications of Invariance in Computer

Vision, volume 825, pages 237–256. Springer-Verlag, 1994.

[Har94b] Richard Hartley. Self-calibration from multiple views with a rotating camera.

In Proceedings European Conference Computer Vision, volume 1, pages 471–478,

1994.

[Har95] Richard Hartley. In defence of the 8-Point-Algorithm. In Proceedings International

Conference Computer Vision. IEEE Press, Cambridge, MA, USA, 1995.



158 BIBLIOGRAPHY

[Har97a] Richard Hartley. Kruppas equations derived from the Fundamental matrix. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19(2):580–593, Octo-

ber 1997.

[Har97b] Richard Hartley. Self-calibration of stationary cameras. International Journal of

Computer Vision, 22(1):5–23, February 1997.

[Har98] Richard I. Hartley. Chirality. International Journal of Computer Vision, 26(1):41–

61, 1998.

[HD95] Radu Horaud and Fadi Dornaika. Hand-eye Calibration. The International Journal

of Robotics Research, 14(3):195–210, June 1995.

[HHdAR99] Richard Hartley, E. Hayman, L. de Agapito, and Ian Reid. Camera calibration and

the search for infinity. In Proceedings 7th International Conference of Computer

Vision, Keerkyra, Greece, pages 510–517, 1999.

[Hil84] E. C. Hildreth. The measurement of visual motion. Cambridge, MA: MIT Press,

1984.

[Hil87] E. C. Hildreth. The analysis of visual motion: from computational theory to neural

mechanisms. Annual Review of Neuro-science, 10, 477-533, 1987.

[HS88] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings

Alvey Vision Conference, Univ. Manchester, pages 147–151, 1988.

[HT99] J. Hornegger and C. Tomasi. Representation issues in the ML estimation of camera

motion. In Proceedings International Conference Computer Vision, pages 640–647,

1999.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2003.

[ITUa] ITU-R Recommendation BT.1358: Studio parameters of 625 and 525 line progres-

sive scan television systems.

[ITUb] ITU-R Recommendation BT.601-5: Studio encoding parameters of digital televi-

sion for standard 4:3 and wide-screen 16:9 aspect ratios.

[Kah99] F. Kahl. Critical motions and ambiguous Euclidian reconstructions in auto-

calibration. In Proceedings International Conference Computer Vision, pages 469–

475, 1999.

[Kan00] Sing Bing Kang. Radial distortion snakes. In IAPR Workshop on Machine Vision

Applications (MVA2000), Tokyo, Japan, pages 603–606, November 2000.

[Kru13] E. Kruppa. Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer

Orientierung. Sitz.-Ber. Akad. Wiss., Wien, math. naturw. Kl., Abt. IIa., 122:1939-

1948, 1913.



BIBLIOGRAPHY 159
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