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ABSTRACT:

We present an approach for automatic 3D reconstruction of outdoor scenes using computer vision techniques. Our system collects
video, GPS and INS data which are processed in real-time to produce geo-registered, detailed 3D models that represent the geometry
and appearance of the world. These models are generated without manual measurements or markers in the scene and can be used for
visualization from arbitrary viewpoints, documentation and archiving of large areas. Our system consists of a data acquisition system
and a processing system that generated 3D models from the video sequences off-line but in real-time. The GPS/INS measurements
allow us to geo-register the pose of the camera at the time each frame was captured. The following stages of the processing pipeline
perform dense reconstruction and generate the 3D models, which are in the form of a triangular mesh and a set of images that provide
texture. By leveraging the processing power of the GPU, we are able to achieve faster than real-time performance, while maintaining
an accuracy of a few cm.

1 INTRODUCTION

Detailed 3D models of cities were usually made from aerial data,
in the form of range or passive images combined with other modal-
ities, such as measurements from a Global Positioning System
(GPS). While these models can be useful for navigation, they
provide little additional information compared to maps in terms
of visualization. Buildings and other landmarks cannot be easily
recognized since the facades are poorly reconstructed from aerial
images due to highly oblique viewing angles. To achieve high-
quality ground-level visualization one needs to capture data from
the ground.

Recently, the acquisition of ground-level videos of urban envi-
ronments using cameras mounted on vehicles has been the focus
of research and commercial initiatives, such as Google Earth and
Microsoft Virtual Earth, that aim at generating high-quality visu-
alizations. Such visualizations can be in the form of panoramic
mosaics (Teller et al., 2003; Román et al., 2004), simple geo-
metric models (Cornelis et al., 2006) or accurate and detailed 3D
models. The construction of mosaics and simple geometric mod-
els is not very computationally intensive, but the resulting visu-
alizations are either as simple as the employed models or limited
to rotations around pre-specified viewpoints. In this paper, we
investigate the reconstruction of accurate 3D models from long
video sequences with emphasis on urban environments. These
models offer considerably more flexible visualization in the form
of walk-throughs and fly-overs. Moreover, due to the use of GPS
information, the models are accurately geo-located and measure-
ments with a precision of a few cm can be made on them. Screen-
shots of our 3D reconstructions can be seen in Figure 1. The
massive amounts of data needed in order to generate 3D models
of complete cities pose significant challenges for both the data
collection and processing systems, which we address in this pa-
per.

We introduce a large-scale, 3D reconstruction system that is able
to reconstruct detailed 3D models in the form of textured polyg-
onal meshes at speeds that are close to or exceed real-time. The

data acquisition part of the system collects video streams from
up to eight cameras, as well as data from a Global Positioning
System (GPS) and an Inertial Navigation System (INS). Our ap-
proach uses computationally efficient components and computa-
tion strategies to achieve real-time processing for the enormous
amounts of video data required to reconstruct entire cities.

We have developed a novel two-stage strategy for dense 3D re-
construction that allows us to achieve high processing rates. By
decoupling the problem into the reconstruction of depth maps
from sets of images followed by the fusion of these depth maps,
we are able to use simple fast algorithms that can be implemented
on the Graphics Processing Unit (GPU). The depth maps are re-
constructed using an extended plane sweeping stereo technique
operating on frames of a single video-camera (Gallup et al., 2007).
Since this stereo algorithm does not perform costly global opti-
mization, depth maps often include erroneous depth estimates for

Figure 1: Screenshots of reconstructed models



several pixels. We address these errors in a depth map fusion
step that combines multiple depth maps into one consistent depth
map, thus increasing accuracy and decreasing redundancy. It de-
livers a compact and geometrically consistent representation of
the 3D scene, which is especially important for long video se-
quences. Figure 1 shows screenshots of representative models
reconstructed by our system.

The paper is organized as follows: the next section briefly reviews
some related work; Section 3 is an overview of the complete sys-
tem; Section 4 presents the data acquisition platform; Section 5
discusses pose estimation using the GPS/INS data; Section 6 de-
scribes the core of the stereo reconstruction module; Section 7
shows the principles of our approach for depth map fusion; Sec-
tion 8 discusses the mesh generation process; Section 9 shows
experimental results; Section 10 describes quantitative results us-
ing our evaluation method and Section 11 concludes the paper.

2 RELATED WORK

The research community has devoted a lot of effort to the mod-
eling of man-made environments using both active and passive
sensors. Here, we briefly review work relying on ground-based
imaging since it is more closely related to our project. An equal,
if not larger, volume of work exists for aerial imaging. The goal is
accurate reconstruction of urban or archaeological sites, includ-
ing both geometry and texture, in order to obtain models useful
for visualization, for quantitative analysis in the form of measure-
ments at large or small scales and potentially for studying their
evolution through time.

Combining active range scanners and digital cameras is a design
choice that satisfies the requirement of simultaneously modeling
the geometry and appearance of the environment. Stamos and
Allen (2002) used such a combination, while also addressing the
problems of registering the two modalities, segmenting the data
and fitting planes to the point cloud. El-Hakim et al. (2003) pro-
pose a methodology for selecting the most appropriate modality
among range scanners, ground and aerial images and CAD mod-
els. Früh and Zakhor (2004) developed a system that is similar
to ours since it is also mounted on a vehicle and captures large
amounts of data in continuous mode, in contrast to the previous
approaches of (Stamos and Allen, 2002; El-Hakim et al., 2003)
that scan the scene from a set of pre-specified viewpoints. A sys-
tem with similar configuration, but smaller size, that also operates
in continuous mode was presented by Biber et al. (2005).

Laser scanners have the advantage of providing accurate 3D mea-
surements directly. On the other hand, they can be cumbersome
and expensive. Researchers in photogrammetry and computer vi-
sion address the problem of reconstruction relying solely on pas-
sive sensors (cameras) in order to increase the flexibility of the
system while decreasing its size, weight and cost. The challenges
are due mostly to the well-document inaccuracies in 3D recon-
struction from 2D measurements. This is a problem that has re-
ceived a lot of attention from computer vision and photogramme-
try. Due to the size of the relevant literature we refer interested
readers to the books by Faugeras (1993) and Hartley and Zisser-
man (2000) for computer vision based treatments and the Man-
ual of Photogrammetry (American Society of Photogrammetry,
2004) for the photogrammetric approach. It should be noted here
that while close-range photogrammetry solutions would be effec-
tive for 3D modeling of buildings, they are often interactive and
would not efficiently scale to a complete city.

Among the first attempts for 3D reconstruction of large scale en-
vironments using computer vision techniques was the MIT City

Scanning project (Teller, 1998). The goal of the project was the
construction of panoramas from a large collection of images of
the MIT campus. A semi-automatic approach under which sim-
ple geometric primitives are fitted to the data was proposed by
Debevec et al. (1996). Compelling models can be reconstructed
even though fine details are not modeled but treated as texture
instead. Rother and Carlsson (2002) showed that multiple-view
reconstruction can be formulated as a linear estimation problem
given a known fixed plane that is visible in all images. Werner and
Zisserman (2002) presented an automatic method, inspired by
(Debevec et al., 1996), that fits planes and polyhedra on sparse re-
constructed primitives by examining the support they receive via
a modified version of the space sweep algorithm (Collins, 1996).
Research on large scale urban modeling includes the 4D Atlanta
project described by Schindler and Dellaert (2004), which also
examines the evolution of the model through time. Recently, Cor-
nelis et al. (2006) presented a system for real-time modeling of
cities that employs a very simple model for the geometry of the
world. Specifically, they assume that the scenes consist of three
planes: the ground and two facades orthogonal to it. A stereo
algorithm that matches vertical lines across two calibrated cam-
eras is used to reconstruct the facades, while objects that are not
consistent with the facades or the ground are suppressed.

We approach the problem using passive sensors only, building
upon the experience from the intensive study of structure from
motion and shape reconstruction within the computer vision com-
munity (Pollefeys et al., 1999; Nistér, 2001; Pollefeys et al., 2003,
2004; Nistér et al., 2006). The emphasis in our project is on the
development of a fully automatic system that is able to operate
in continuous mode without user intervention or the luxury of
precise viewpoint selection since capturing is performed from a
moving vehicle and thus constrained to the vantage points of the
streets. Our system design is also driven by the performance goal
of being able to process the large video datasets in a time at most
equal to that of acquisition.

3 SYSTEM OVERVIEW

Our complete system consists of the data acquisition system and
the processing pipeline. The two parts are separated for various
reasons, which include less complex design and development, re-
duced power, cooling and processing requirements for the acqui-
sition vehicle and increased flexibility in the processing pipeline.
The latter refers to providing the user with the option to invoke
slower but more accurate processing modules.

The data acquisition system consists of eight cameras, an INS,
GPS antennas and a set of hard-drives. It collects data and streams
them to the hard drives after very little processing.

Processing entails estimating the vehicle’s trajectory, recovering
the camera poses at the time instances when frames were cap-
tured, computing dense depth maps and finally generating a model
in the form of a polygonal mesh with associated texture maps.
The dense reconstruction module consists of two stages: multiple-
view stereo that computes depth maps given images and the cor-
responding camera poses and depth map fusion that merges depth
maps to increase accuracy and reduce redundancy. We show that
this two-stage strategy allows us to achieve very fast performance
by implementing fast algorithms on the GPU without compro-
mising the quality of the models. The massive amounts of data
needed in order to generate large-scale 3D models pose signifi-
cant challenges for the processing system, which we address in
this paper.



4 DATA ACQUISITION SYSTEM

The on-vehicle video acquisition system consists of two main
sub-systems: an eight-camera digital video recorder and an Ap-
planix GPS/INS (model POS LV) navigation system. The cam-
eras are connected to PC boards that stream the raw images to
disk, and the Applanix system tracks the vehicle’s position and
orientation. The DVR is built with eight Point Grey Research
Flea 1024 × 768 color cameras, with one quadruple of cameras
for each side of the vehicle. Each camera has a field-of-view of
approximately 40◦ × 30◦, and within a quadruple the cameras
are arranged with minimal overlap in field-of-view. Three cam-
eras are mounted in the same plane to create a horizontal field of
view of approximately 120◦. The fourth camera is tilted upward
to create an overall vertical field of view of approximately 60◦

with the side-looking camera. The cameras are referred to as the
forward, side, backward and upward camera in the remainder of
the paper.

The CCD exposure on all cameras is synchronized using hard-
ware synchronization units and timestamps are recorded with the
images. The GPS timestamps are used to recover the position
and orientation of the vehicle at the corresponding time from the
post-processed trajectory. Recovering camera positions and ori-
entations, however, requires knowledge of the hand-eye calibra-
tion between the cameras and the GPS/INS system that one es-
tablishes during system calibration.

The first stage of calibration is the estimation of the intrinsic pa-
rameters of the camera using a planar calibration object and ap-
plying the algorithm of Zhang (2000). We do not attempt to esti-
mate the external relationships of cameras since there is little or
no overlap in their fields of view. Instead, we estimate the cal-
ibration of the cameras relative to the GPS/INS coordinate sys-
tem. This process is termed hand-eye or lever-arm calibration.
The hand-eye transformation, which consists of a rotation and a
translation, between the camera coordinate system and the ve-
hicle coordinate system is computed by detecting the positions
of a few surveyed points in a few frames taken from different
viewpoints. The pose of the camera can be determined for each
frame from the projections of the known 3D points and the pose
of the vehicle is given by the sensor measurements. The opti-
mal linear transformation can be computed using this informa-
tion. This allows us to compute the positions of cameras and 3D
points in UTM coordinates given by the GPS sensor. After the
hand-eye transformation for each camera has been computed, all
3D positions and orientations of points, surfaces or cameras can
be transformed to UTM coordinates. This is accomplished using
the timestamps, which serve as an index to the vehicle’s trajec-
tory, to retrieve the vehicle’s pose at the time instance an image
was captured. We can, then, compute the pose of a particular
camera by applying the appropriate hand-eye transformation to
the vehicle pose.

5 POSE ESTIMATION

In the first stage of processing, the GPS/INS data are filtered to
obtain a smooth estimate of the vehicle’s trajectory. Since these
signals are collected at 200Hz, we can recover the position and
orientation of the vehicle at the time instance a frame was cap-
tured with high accuracy. Estimates of position and orientation
are obtained by interpolating the trajectory between the dense
sample positions.

Precise camera poses are critical for 3D reconstruction. We pur-
sue three options for pose estimation: one entirely based on vi-
sual tracking which has reduced hardware requirements, but can-
not determine the scale or geo-location of the models and suffers

from drift; one that uses accurate GPS/INS data only; and one
that combines vision-based tracking with the GPS/INS measure-
ments. The first option suffers from drift especially when applied
on very long video sequences, such as the ones we show here
that consist of several thousand frames. The third option is com-
putationally more expensive and makes small improvements in
pose estimation. In addition, it is a safeguards against rare errors
in the GPS/INS trajectory. Here we employ the second option
of relying solely the GPS/INS data for pose estimation. Our ex-
periments and quantitative evaluations against surveyed buildings
(see Section 10) have shown that this option allows us to obtain
accurate 3D reconstructions in real time.

We require that the baseline between two consecutive frames ex-
ceeds a certain threshold before a frame is accepted for further
processing. If the baseline is too short, the frame is by-passed
and the next frame is examined. This step, on one hand, quickly
detects whether the vehicle has stopped and prevents unneces-
sary processing and, on the other, guarantees that images used
for stereo have sufficiently different viewpoints. The latter is im-
portant to reduce the geometric uncertainty of the reconstruction.
Typical values for the minimum baseline between two frames are
10 and 40cm. We typically use 5 to 15 frames for stereo. For a
typical depth range of the scene between 3 to 20m, the triangula-
tion angles vary between 30◦ and 7◦ for 7 frames to the left and
right of the reference view spaced at least 35cm apart.

6 STEREO RECONSTRUCTION

The stereo reconstruction module takes as input camera poses and
the corresponding frames from the video and produces a depth
map for each frame. As mentioned in Section 4, the cameras in
our system have minimal overlap and their purpose is to provide
a wider field of view. Thus, stereo is performed on consecutive
frames of a single camera as it moves. It uses a modified version
of the plane-sweep algorithm of (Collins, 1996), which is an ef-
ficient multi-image matching technique. Conceptually, a plane is
swept through space in steps along a predefined direction, typi-
cally parallel to the optical axis. At each position of the plane, all
views are projected on it. If a point on the plane is at the correct
depth, then, according to the brightness constancy assumption,
all pixels that project on it should have consistent intensities. We
measure this consistency as the sum of absolute intensity differ-
ences (SAD). We select the hypothesis with the minimum SAD
as the depth estimate for each pixel. One of the main reasons we
opted for the plane-sweep algorithm is that it can be easily paral-
lelized and thus is amenable to a very fast GPU implementation
as shown by Yang and Pollefeys Yang and Pollefeys (2005).

6.1 Plane-Sweeping Stereo with Multiple Sweeping Direc-
tions

We have made several augmentations to the original algorithm to
improve the quality of the reconstructions and to take advantage
of the structure exhibited in man-made environments, which typ-
ically contain planar surfaces that are orthogonal to each other.
Due to lack of space, we refer interested readers to (Gallup et
al., 2007) for more details on analysis of sparse information and
methods for selecting the sweeping directions and planes for stereo.
Sparse features are not reconstructed by the system described in
this paper since the poses are computed from the GPS/INS data.
Thus, we rely on simple heuristics to determine the optimal direc-
tions in which to sweep planes. The ground is typically approxi-
mately horizontal and very often visible in the videos we process.
Thus, we sweep horizontal planes at varying heights. We also
make the assumptions that the facades in an urban environment



Figure 2: Implications of cost aggregation over a window. Left:
Slanted surfaces with fronto-parallel plane-sweeping. Not all
points over the window are in correspondence. Right: Surface-
aligned sweeping plane to handle slanted surfaces correctly.

are typically parallel to the street, that buildings are orthogonal
and that streets also intersect at right angles. Under these as-
sumptions, the most likely vertical planes in the scene are either
parallel or orthogonal to the trajectory of the vehicle. Violations
of these assumptions, however, do not significantly degrade the
quality of the reconstruction.

Sweeping planes along three orthogonal directions, even if the
scene surfaces are not parallel to any of them, improves the re-
sults of stereo since it reduces misalignments between the plane
on which the cost is evaluated and the actual surface. Alignment
with the surface is necessary because the pixel dissimilarity mea-
sure is aggregated in windows. Since the measurement at a single
pixel is in general very sensitive to noise, several measurements
from neighboring pixels are combined by summing the absolute
intensity differences in a window centered at the pixel under con-
sideration. This reduces sensitivity to noise but introduces an
additional requirement for the stereo system: in order to detect
the best correspondence for the current pixel, all pixels in the
window need to be in correspondence. This is not always the
case in many stereo algorithms that use windows of constant dis-
parity since these are optimal only for surfaces that are parallel
to the image plane (fronto-parallel). Figure 2 shows the prob-
lems caused by sweeping fronto-parallel planes when the scene
contains non-fronto-parallel surfaces and our proposed solution,
which is to modify the direction of the sweep to match that of the
scene surface. Even if the matching is not accurate, increasing
the number of sweeping directions reduces this type of errors.

Once the sweeping directions have been selected, we generate a
family of planes for each, according to:Πm =

[
nT

m −dm

]
for m = 1, . . . , M , where nm is the unit length normal of the
plane and dm is the distance of the plane to the origin which is set
at the center of the camera when the reference view was captured.
The range [dnear, dfar] can be determined either by examining
the points obtained from structure from motion or by applying
useful heuristics. For example, in outdoor environments, it is
usually not useful for the ground plane family to extend above
the camera center. The spacing of the planes in the range is uni-
form in the majority of stereo algorithms. However, it is best to
place the planes to account for image sampling (pixels). Ideally,
when comparing the respective image warpings induced by con-
secutive planes, the amount of pixel motion should be less than
or equal to 1 according (Szeliski and Scharstein, 2004). This is
particularly important when matching surfaces that exhibit high-
frequency texture.

In addition to the reference image, N other images are used as
target images for the computation of each depth map. Typical
values of N are between 4 and 14. We denote their projection
matrices Pk and use Pref for the reference image. The reference
camera is assumed to be the origin of the coordinate system and
so its projection matrix is Pref = Kref

[
I3×3 0

]
. In order

to test the plane hypothesis Πm for a given pixel (x, y) in the
reference view Iref , the pixel is projected into the other images

k = 1, . . . , N . The planar mapping from the image plane of the
reference image Pref to the image plane of the camera Pk can
be described by the homography HΠm,Pk induced by the plane
Πm:

HΠm,Pk = Kk

(
RT

k +
RT

k CknT
m

dm

)
K−1

ref . (1)

where Rk and Ck are the rotation and translation of the camera at
frame k with respect to the reference frame Pref , Kk is the cor-
responding camera calibration matrix (allowing for varying but
known intrinsic parameters between frames), nm is the normal
of the plane and dm is its distance from the origin. The loca-
tion (xk, yk) in image Ik of the mapped reference pixel (x, y) is
computed by:[

x̃ ỹ w̃
]T

= HΠm,Pk

[
x y 1

]T
(2)

with xk = x̃/w̃, yk = ỹ/w̃.

If the plane is close to the surface that projects to pixel (x, y) in
the reference view and assuming the surface is Lambertian, the
colors of Ik(xk, yk) and Iref (x, y) are similar. We use the abso-
lute intensity difference as the dissimilarity measure and aggre-
gate several measurements in a window W (x, y) centered at the
pixel (x, y). To increase robustness against occlusion, we adopt
an algorithm proposed by Kang et al. (2001). For each pixel we
compute the cost for each plane using the left and right subset
of the images and select the minimum as the cost of the pixel.
This scheme is very effective against occlusions, since typically
the visibility of a pixel changes at most once in a sequence of
images. Therefore, the pixel should be visible in either the entire
left of right set of images. The depth for each pixel is chosen by
simply assigning it to the plane with the minimum SAD.

6.2 GPU Implementation of Plane-Sweeping Stereo

To achieve real-time performance, we implemented our stereo al-
gorithm on the GPU. Plane-sweeping stereo involves numerous
rendering operations (the mapping of a region from an image to
another via the homographies) and the GPU is optimized for this
type of operations. Cost aggregation for each pixel is performed
by boxcar filtering which can also be performed efficiently by the
GPU.

Images captured by our system, as with most cameras, are af-
fected by radial distortion of the lenses. Stereo algorithms assume
that the images are corrected for radial distortion. An additional
benefit that comes from using the GPU for stereo computations is
that correction for radial distortion can be performed with negli-
gible increase in processing time. In our processing pipeline the
only step that requires the radially undistorted images is stereo.
Therefore, we decided to compensate for it only in stereo process-
ing. As each new image is loaded on the GPU for stereo process-
ing, radial undistortion is accomplished by a vertex shader. The
shader performs a non-linear mapping with bilinear interpolation
that essentially moves the pixels to the positions they would have
if the camera obeyed the pinhole model. This step produces im-
ages without radial distortion and all subsequent operations can
be performed linearly.

Performing plane-sweeping on the GPU using 7 512 × 384 im-
ages, including the reference image, and 48 planes takes 24ms on
an NVidia GeForce 8800 series card. While an increased number
of planes and/or images results in improved reconstruction qual-
ity, these settings produce depth maps of satisfactory quality in
real-time. Quality is significantly improved in the depth map fu-
sion stage that is described in the following section.



7 DEPTH MAP FUSION

Due to the speed of the computation, the raw stereo depth maps
contain errors and do not completely agree with each other. These
conflicts and errors are identified and resolved in the depth map
fusion stage. In this step, a set of Q depth maps from neighbor-
ing camera positions are combined into a single depth map for
one of the views. The end result is a fused depth map from the
perspective of one of the original viewpoints, which is called the
reference view. The central image in the set is typically used as
the reference view. An additional benefit of the fusion step is
that it produces a more compact representation of the data be-
cause the number of fused depth maps is a fraction of the num-
ber of the input raw depth maps. Much of the information in
the original depth maps is redundant since many of the closely-
spaced viewpoints observe the same surface. We opted for this
type of viewpoint-based approach since its computational com-
plexity has a fixed upper-bound, for a given Q, regardless of the
size of the scene to be modeled. Many of the surface fusion algo-
rithms reported in the literature are limited to single objects and
are not applicable to our datasets due to computation and memory
requirements.

At each fusion step, there are a total of Q depth maps to be fused
denoted by D1(x), D2(x), . . . , DQ(x) which record the depth
estimate at pixel x† at each viewpoint. One of the viewpoints,
typically the central one, is selected as the reference viewpoint.
The fusion algorithm returns an estimate of the depth of each
pixel of the reference view. The current estimate of the 3D point
seen at pixel x of the reference view is called F̂ (x). Ri(X) is
the distance between the center of projection of viewpoint i and
the 3D point X.

The first step of fusion is to render each depth map into the refer-
ence view. When multiple depth values are projected on the same
pixel, the nearest depth is kept. Let Dref

i (x) be the depth map
from Di rendered into the reference view at pixel x. We also need
a notation for the depth value stored at the pixel of depth map Di

on which a 3D point X projects. This depth is in general differ-
ent from the distance of X from the camera center if X has not
been generated by camera i. Let Pi(X) be the image coordinates
where the 3D point X is seen in viewpoint i. To simplify the
notation, the following definition is used Di(X) ≡ Di(Pi(X))
which in general is not equal to Ri(X) .

Our approach considers three types of visibility relations between
the hypothesized depths in the reference view and the depths orig-
inating from other views. These are illustrated in Figure 3. In
view i, the observed surface passes behind A as A′ is observed
in this view. There is a conflict between these two measurements
since view i would not be able to observe A′ if there was truly a
surface at A. We say that A violates the free space of A′. This oc-
curs when Ri(A) < Di(A). In Figure 3, B′ is in agreement with
B as they are in the same location. In practice, we define points B

and B′ as being in agreement when |Ri(B)−Ri(B
′)|

Ri(B)
< ε. In the

reference view C′, rendered from view i, is in front of C. There
is a conflict between these two measurements since it would not
be possible to observe C if there was truly a surface at C′. We
say that C′ occludes C. This occurs when Dref

i (x) < Dref (x).
Note that occlusions are defined on rays of the reference view and
free space violations with respect to rays of other depth maps.

Taking into account the visibility relations introduced in the pre-
vious paragraph, the depth maps can be fused as follows. For

†x is used in this section instead of (x, y) to denote pixel coordinates
in order to simplify the notation

Figure 3: The point A′ seen in view i has its free space violated
by the point A seen in the reference view. Point B′ supports the
point B′. Point C seen in the reference view is occluded by point
C′.

each pixel, we count for each candidate depth, how many views
result in an occlusion and how many result in a free-space vio-
lation. We retain the closest depth for which the number of oc-
clusions is larger or equal to the number of free-space violations.
This depth is balanced in the sense that the amount of evidence
that indicates it is too close is equal to the amount of evidence
that indicates it is too far away.

The most frequent type of computations required for this process
is rendering a depth map observed in one viewpoint into another
viewpoint. These type of computations can be performed very
quickly on the GPU in order to achieve real time performance.
Our algorithm fuses 11 depth maps in 193ms (or 17.5ms per
frame) on a high-end GPU.

8 MESH GENERATION

The depth map fusion step generates a depth estimate for each
pixel of the reference view. Then, each fused depth map is passed
to the mesh generation module along with the image taken from
that viewpoint. The output of this module is a triangular mesh
and the image that is used for texture-mapping. Exploiting the
fact that the image plane can serve as reference for both geom-
etry and appearance, we can construct the triangular mesh very
quickly. We employ a multi-resolution quad-tree algorithm in
order to minimize the number of triangles while maintaining ge-
ometric accuracy as in (Pajarola, 2002a). Since the number of
triangles that need to be formed and evaluated is much smaller us-
ing a top-down approach than a bottom-up alternative, we choose
the former. Starting from a coarse resolution, we attempt to form
triangles making sure that they correspond to planar parts of the
depth map and do not bridge depth discontinuities. If these con-
ditions are not met, the quad, which is formed by two adjacent
triangles, is subdivided. The process is repeated on the subdi-
vided quads until the finest resolution, in which a binary decision
to add triangles to the model or not is made using the same cri-
teria. A part of a multi-resolution mesh can be seen in Figure
4.

We begin by dividing the reference depth map into fairly large
quads and attempt to form triangles using as vertices the 3D re-
constructed points corresponding to the corners of the quads. If
the triangles pass the planarity test they are kept, otherwise the



Figure 4: Left: Input image. Right: Illustration of multi-
resolution triangular mesh

(a) Screenshot of model

(b) Overlapping triangles (c) After removal of duplicates

Figure 5: Duplicate surface removal for the circled area of the
model in (a), which consists of six sub-models, three each from
the side and upward cameras. (b) shows the overlapping meshes
as wireframes. Triangles in red are generated by the side cam-
era and the ones is blue by the upward camera. The results of
duplicate surface removal are shown in (c).

quad is subdivided and the process is repeated at a finer reso-
lution. We use the following simple planarity test proposed in
(Pajarola, 2002b) for each vertex of each triangle:

∣∣∣∣z−1 − z0

z−1
− z0 − z1

z1

∣∣∣∣ < t. (3)

Where z0 is the z-coordinate, in the camera coordinate system,
of the vertex being tested and t is a threshold. z−1 and z1 are
the z-coordinates of the two neighboring vertices of the current
vertex on an image row. (The distance between two neighboring
vertices is equal to the size of the quad’s edges, which is more
than a pixel at coarse resolutions) The same test is repeated along
the image column. If either the vertical or the horizontal tests fails
for any of the vertices of the triangle, the triangle is rejected since
it is not part of a planar surface and the quad is subdivided. For
these tests, we have found that 3D coordinates are more effective
than disparity values. Since we do not require a manifold mesh
and we are more interested in fast processing speeds, we do not
maintain a restricted quad-tree (Pajarola, 2002a). Typical values
for the coarsest and finest quad size are 32× 32 pixels and 2× 2
pixels respectively. Mesh generation is performed on the CPU
and takes approximately 30ms per fused depth map, or under
3ms per frame.

Figure 6: Screenshots of reconstructed buildings

8.1 Model Clean-up

The model generation module also suppresses the generation of
duplicate representations of the same surface. This is necessary
since surfaces are typically visible in more than one fused depth
map. Considering that the distance between the camera and the
scene is initially unknown and varies throughout the video stream,
these overlaps are hard to prevent a priori. In order to accomplish
the removal of duplicate surface representations, a record of the
previous fused depth map is kept in memory. When a new fused
depth map becomes available, the previous fused depth map is
rendered onto it and pixels that have been explained by the model
that has already been written to disk are masked out. The 3D
vertices that correspond to the masked out points are not used
for triangle generation. An illustration of the duplicate surface
removal process can be seen in Figure 5. The model shown in
Figure 5(a) was reconstructed using the side and upward camera.
Since the cameras are synchronized an the relative transforma-
tions from one coordinate system to the other are known, we can
register the partial reconstructions in the same coordinate system.
Figure 5(b) shows the overlapping meshes that are generated for
six fused depth maps from the two video streams. Our clean-up
scheme is able to remove most of the duplicate representations
and produce a simpler mesh shown in Figure 5(c). Note that glob-
ally the generated mesh is still not a manifold.

Despite its simplicity, this scheme is effective when the camera
maintains a dominant direction of motion. It does not handle,
however, the case of a part of the scene being revisited in a later
pass, since the entire reconstructed model cannot be kept in mem-
ory. A more efficient representation for parts of the model poten-
tially in the form of a bounding box is among our future research
directions.

9 RESULTS

Our processing pipeline can achieve very high frame rates by
leveraging both the CPU and GPU of a high-end personal com-
puter. An implementation of our software targeted towards speed
can generate 3D models at rates almost equal to those of video
collection. This can be achieved with the following settings:
GPS/INS-only pose estimation, 7 images with a resolution of
512 × 384 as input to the multiple-view stereo module which



Figure 7: A two-camera reconstruction comprising more than 2,600 frames. Close-ups show that features such as the ground plane
which is viewed at an angle from the camera and thin objects such as the light pole on the right are reconstructed well.

evaluates 48 plane positions and 11 depth maps as input to the fu-
sion stage. This configuration achieves a processing rate of 23Hz
on a PC with a dual-core AMD Opteron processor at 2.4GHz with
an NVidia GeForce 8800 series GPU. Since frames are not used
if the baseline with the previous frame is not large enough ac-
cording to Section 5, the effective frame rate we achieve can be
as high as 50Hz for typical driving speeds on streets with other
vehicles and intersections. Screenshots of 3D models generated
by our system can be seen in Figures 6 and 7.

10 QUANTITATIVE EVALUATION

To evaluate the quality of our 3D models, we reconstructed a 3D
model of a building for which an accurately surveyed model has
been made available to us. The surveyed model is of a Firestone
building which is 80×40m and has been surveyed at a 6mm ac-
curacy. The input to our reconstruction software is 3,000 frames
of video of the exterior of the Firestone store which were cap-
tured using two cameras (side and upward) and GPS/INS mea-
surements. One of the cameras was pointed horizontally towards
the middle and bottom of the building and the other was pointed
up 30◦ towards the building. The videos from each camera were
processed separately and the reconstructed model was directly
compared with the surveyed model (see Figure 8). Our evalua-
tion software computes two metrics for the reconstructed model:
accuracy and completeness.

The surveyed model had to be pre-processed to remove incon-
sistencies with the video, since the survey and the video collec-
tion were conducted on different days. There are several objects
such as parked cars that are visible in the video, but were not
surveyed. Several of the doors of the building were left open
causing some of the interior of the building to be reconstructed.
Since reconstructions of these objects were not available in the
ground truth they were not considered in the evaluation. In addi-
tion, the ground which is accurately reconstructed is not included
in the ground truth model. We added a ground plane to the ground
truth model and exclude from the evaluation points that are con-
sistent with it. For all of the remaining parts, the distance from
each point to the nearest point on the ground truth model was
calculated to measure the accuracy of the reconstruction. A vi-
sualization showing these distances is provided in Figure 8, in
which blue, green and red denote errors of 0cm, 30cm and 60cm
or above, respectively. The median error was 2.60cm, the aver-
age error was 6.60cm and 83% of the points were reconstructed
within 5cm of the ground truth model. We also evaluated the
completeness of our model by reversing the roles of the model

and the ground truth. In this case, we measure the distance from
each point in the ground truth model to the nearest point in the
reconstructed model. Points in the ground truth that have been
reconstructed poorly or have not been reconstructed at all, result
in large values for this distance. Figure 8 also shows a visualiza-
tion of the completeness evaluation using the same color scheme
as the accuracy evaluation. The completeness of the model shown
in the figure was 73% using a threshold of 50cm. Note that some
parts of the building remain invisible during the entire sequence.

11 CONCLUSIONS

We have described a system aimed at real-time, detailed, geo-
registered, 3D reconstruction of urban environments from video
captured by a multi-camera system and GPS/INS measurements.
The quality of the reconstructions, with respect to both accuracy
and completeness, is very satisfactory, especially considering the
very high processing speeds we achieve. The system can scale
to very large environments since it does not require markers or
manual measurements and is capable of capturing and processing
large amounts of data in real-time by utilizing both the CPU and
GPU.

The models can be viewed from arbitrary viewpoints thus provid-
ing more effective visualization than mosaics or panoramas. One
can virtually walk around the model at ground-level, fly over it in
arbitrary directions, zoom in or out. Since the models are metric,
they enable the user to make accurate measurements by select-
ing points or surfaces on them. Parts of a model can be removed
or other models can be inserted to augment the existing model.
The additions can be either reconstructed models from a different
location or synthetic. Effective visualizations of potential modifi-
cations in an area can be generated this way. Finally, our system
can be used for archiving and change detection.

Future challenges include a scheme for better utilization of mul-
tiple video streams in order to reconstruct each surface under the
optimal viewing conditions while reducing the redundancy of the
overall model. Along a different axis, we intend to investigate
ways of decreasing the cost and size of our system by further ex-
ploring the implementation that uses a low-end INS and GPS or
even only GPS instead of the Applanix system and by compress-
ing the videos on the data acquisition platform.
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(a) Reconstructed Model (b) Accuracy evaluation. White indicates un-
surveyed areas. (Inset) Surveyed Model

(c) Completeness of the Firestone building.
Red areas mostly correspond to unobserved or
untextured areas.

Figure 8: Firestone Building Accuracy and Completeness Evaluation. (b,c) Blue, green and red indicate errors of 0cm, 30cm and
60+cm, respectively. Please view on a color display.
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