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Abstract

In the last decade the visualization of virtual environ-
ments and interaction within was possible only with spe-
cialized hardware. This hardware was very expensive, had
a lack of scalability and used specific protocols, busses, net-
works for communication and specialized graphics hard-
ware for visualization. We will present a simple protocol
for synchronized distributed scalable visualization and in-
teraction processing in distributed environments. The goal
of our protocol is that it can run with standard network pro-
tocols like TCP/IP and UDP and standard hardware. It’s
easy to integrate our protocol into every OpenGL based vi-
sualization but the approach is not restricted to OpenGL.
These design issues can be used to integrate every standard
acceleration for visualization like distributed rendering. We
will focus on synchronized multiview visualization and con-
trolling of the displayed context by interaction.

1 Introduction

For visualization of complex virtual environments for
CAVEs, stereodisplays or multiscreen applications in the
past specialized graphics and communications hardware has
been used [16, 23, 25], but the specialized hardware nor-
mally is expensive and has a lack of scalability. Due to
advances in accelerator technology in the last decade, it
is now possible to visualize complex virtual environments
with consumer or semiprofessional graphics hardware to-
day [12, 5, 19]. To use these graphics hardware for CAVE or
multidisplay visualization one has to address synchronized
distributed scalable visualization and interaction handling
for distributed environments. Synchronization on the level
of video frame buffer switching is nessessary to avoid vi-
sual artefacts in a multi-display visualization based on dis-
tributed rendering. This paper will focus on the two major
problems of synchronization and interaction handling.
The paper is organized as follows: First we will describe
the design issues of our approach. Next we will give an

overview about related work. Then we will describe dis-
tributed synchronized visualisation over standard networks
in detail. After that we will present an extension of the pro-
tocol to use interaction information for visualization con-
trol. Finally we will present some experimental results to
demonstrate usability and performance of our protocol for
distributed visualization and interaction.

2 Design issues

We have designed a protocol for synchronized dis-
tributed visualization which can handle interaction infor-
mation for the visualization process. In contrast to most
existing solutions the protocol doesn’t require any special-
ized graphics or network hardware, but it can incorporate
specific hardware if available.
Our first goal is to synchronize the video displays of multi-
ple realtime visualization processes by using standard net-
work protocols like UDP and TCP over standard ethernet
without decreasing the video frame rate noticeably. The
transfer rate of the underlying ethernet network is 100
MBit/s or 1 GBit/s. One can use this synchronization with
standard graphics hardware and there is no need for special-
ized hardware with genlock1. In case that genlock hardware
is used the additional genlock feature will also be supported.
The second goal is the integration of interaction information
into the protocol. It’s designed to transport additional infor-
mation at each frame. Furthermore it has an interface for
external synchronous or asynchronous interaction informa-
tion. So every type of interaction data is possible and each
visualization client can be used to acquire interaction infor-
mation and distribute it to all other clients.
The protocol can be integrated in the familiar OpenGL li-
brary. For this reason our protocol is very easy to integrate

1genlock: The synchronization of two signals at the vertical, horizontal,
and chroma phase levels such that the signals may be cut, mixed, or cross-
faded without noticeable roll, jump, or chroma shift. Note: Modern usage
accomplishes this with a frame synchronizer time base corrector, but it may
also be accomplished by a closed loop method or an open loop method, the
latter using a pair of rubidium clocks and a video delay line to maintain
chroma lock.



in every existing OpenGL based application but it is not lim-
ited to such applications.

3 Related work

A lot of research has been performed in the fields of
distributed rendering, network architectures for distributed
rendering, distributed multimedia systems, interactive
scene representation and cooperative work in the last ten
years. Our approach concerns these fields and we will
review the most significant work in these fields.

3.1 Distributed rendering

At first we will discuss the related work in the field of
distributed rendering and visualization. For visualization of
large scientific simulations it’s useful to render on a remote
or distributed renderer and only visualize results on local
displays. The most efficient approach for remote and dis-
tributed rendering is WireGL [3, 7]. It provides the OpenGL
API to each node in a cluster, virtualizing multiple graph-
ics accelerators into a sort-first [15] parallel renderer with a
parallel interface. Because of it’s cluster based approach the
architecture is scalable in a wide range. In addition WireGL
is able to compose distributed image tiles for local displays.
To provide ordering control for parallel rendering, WireGL
adds barriers and semaphores to the OpenGL API [8].
In contrast to our approach WireGL uses very fast network
architectures like Myrinet [17]. For efficient composing of
tiled images it uses the Lightning-2 system which is a hard-
ware based DVI composer [28]. In addition WireGL is able
to compose tiled images with a network based algorithm
in software but this approach strongly decreases the frame
rate. It only supports OpenGL for remote and distributed
rendering and is not open to other visualization architec-
tures. It doesn’t contain any architecture for interaction han-
dling and uses specialized networks and specialized hard-
ware for composing tiled images. However, WireGL’s fea-
tures of distributed rendering can be used in our framework
for better graphics performance of visualization clients. We
will discuss integration of WireGL later.
Another architecture which is related to our synchroniza-
tion for distributed rendering was discussed in [11] based
on HP’s fx-architecture. It uses shared memory architec-
ture and semaphores for synchronization of participating
OpenGL based graphic-clients who are hosted in one mul-
tiprocessor computer. One of the extentions for clustered
graphics clients uses broadcasts on standard networks in-
stead of shared memory for synchronization. With this ex-
tension the architecture is scalable in a wide range. This
approach is similar to the presented architecture in case of
pure synchonization for independent graphics visualization

hardware. However, it doesn’t handle any interaction infor-
mation for controlling such environments by interaction.

3.2 Network architectures

Now we will discuss related work in the fields of network
architectures for distributed environments and distributed
multimedia systems. The IEEE 1287 DIS protocol is a stan-
dard for distributed simulations and can be used with every
network architecture [9]. Special network software proto-
cols which use DIS and IP Multicast over WAN’s for large
scale virtual environments are described in [13]. Use of
Multicast in [13] optimizes the computational load for each
simulation client and reduces bandwith requirements on the
network [10]. One of the results was that it’s not efficient to
use fully meshed network structures for scalable distributed
environments. Some issues about general demands of mul-
timedia networks and distributed multimedia systems and
their effects for the design of network architecture can be
found in [18]. Singhal and Zyda discuss the promises and
challenges of networked virtual enviroments in [26].

3.3 Interactive environments

Another related field is interactive scene transmission
and interactive rendering. There is some current work for
scene transmission over networks with small bandwith us-
ing user interaction for level of detail and compression [30].
Furthermore in [34] a raytracer was developed which uses
interaction to boost performance. These approaches can be
utilized for faster rendering of the graphics clients in the
network by using information about user interaction which
are supported by our protocol.

4 Synchronization for distributed visualiza-
tion

Distributed rendering of a non-static scene depends on
the synchronization of graphic clients to assure a coherent
visualization. For synchronization of the graphic clients we
need a common decision that all clients have rendered their
views and simultaneously display their views after decision
concurrently. We will discuss the used network architecture
in this section.

4.1 sychronization architecture

For synchronized distributed visualization we need
communication of each graphic client (node) to each other
because every node has to know that all other nodes have
rendered their view completely. With that knowledge every
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node can decide that synchronized displaying is possible.
The synchronization can be done in two different ways.
The first way to synchronize multiple clients is to send a
ready-to-display-message to each other node after render-
ing. Every node displays its image immediately after it
has the knowledge that all other nodes are ready to display
their image because every node has to know that fact, too.
If this algorithm is used for synchronization the delay of
displays depends on network time skew for distribution of
the message to all clients.
The alternative algorithm to synchronize multiple clients
is to decide that synchronization is possible at one ded-
icated node and to distribute a synchronization message
to all other nodes. In contrast to the first algorithm
every node only has to distribute the information to one
dedicated node and not to all other nodes. The number
of messages is less than in the first architecture and net-
work skew is zero because only one message has to be send.

4.2 Network architecture

Now we want to discuss the requirements of the network
hardware. We want to design a scalable architecture, thus
we assume in the following that we have only one physical
bidirectional network interface at each node. An alternative
approach is that every connection between a pair of nodes
has it’s own physical network interface. But this is not scal-
able with standard hardware because one is only able to use
a few interfaces at each host. Therefore we will describe the
architecture as a logical network, which has to be mapped
on the physical network. This means that all logical con-
nections of one node are realized with one physical bidirec-
tional connection.
With above discussed requirements for the network hard-
ware in mind we will treat the logical network structure
in the following. The first possible choice of architecture
might be a fully connected network architecture. But it isn’t
a good choice because it produces very high network traffic
since each node has to send messages to each other node.
Another disadvantage of that architecture is the high de-
lay between the decision of the first graphic client and the
last one caused from network delay for sending messages to
each other node sequentially. The use of IP Multicast can
reduce this delay but often a noticeable delay caused from
collisions will be left [10].
For this reason we need another network architectures
which will be efficient in the number of sent messages and
the delay after the decision that all clients areready to dis-
play their rendered image. Today normally networks with
the ability of parallel point to point connections, for exam-
ple switched ethernet, are used. To use point to point net-
works optimally we need a decision architecture that has

minimal number of messages to decide that all images are
rendered and a minimal communication load on each node
to minimize the delay between nodes. If communicational
load is minimal at each node the number of collisions will
be minimal too.
The well known minimal spanning tree architecture [2]
achieves the requirement of minimal number of messages
to provide an information through a network of partially
connected nodes. To avoid collisions in such networks we
should use a small number of incoming and outgoing chan-
nels at each node. An architecture which combines features
of the spanning tree and of nodes with a small number of in-
coming and outgoing channels will achieve both, minimal
number of messages to decide that all clients areready-to-
displayand minimal number of collisions.
Now we will discuss what minimal number of channels
mean in our case. The minimal number of outgoing chan-
nels of a node to provide information to other nodes is one.
The minimal number of incoming channels to receive in-
formation from the network is also one. The only topology
for nodes with a single outgoing and incoming channel is a
chain. This topology has a diameter of the number of nodes.
For that reason it is not qualified for our case, because the
skew of the distribution ofsynchronization-message is half
of the diameter. Next choice of incoming channels is two.
If every node has two incoming channels and one outgoing
channel we can use a binary tree topology to order nodes.
If the binary tree is balanced it is a minimal spanning tree
for the nodes. For these reasons we use a balanced binary
decision tree to arrive at the decision that all clients have
rendered their views.
At first the root of our binary decision tree can decide that
all clients areready to display. All other clients need more
time to decide because the length of their paths to other
nodes is longer than the paths to the root. The different
length of that paths adds various delays to the decision at
the different levels of the tree. To overcome these vari-
ous delays we have to use an efficient communication pro-
tocol with minimal delay between all nodes to distribute
synchronization-message. We use the binary tree only to
collect information at the root and the root decides when
to display rendered views. To distribute the decision to all
other nodes we use a protocol with minimal delay. IP Mul-
ticast is a protocol that achieves the constraint of minimal
delay between different nodes [10]. The decision architec-
ture is shown in figure 1.

This architecture has a very small delay for distribution
of ready-to-display-information and synchronization mes-
sage. Further on it reduces collisions on networks with par-
allel point to point connections as much as possible. The
delay in switched ethernet with one switch for example is
normally less than 120µsec [1] for one message and for IP-
Multicast.
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Figure 1. Architecture for decision and syn-
chronization over network with 6 nodes:
solid line for balanced binary tree used to
transmit ready-to-display-message from graph-
ics clients, dash dotted line for IP Multicast to
transmit display-immedately-message with min-
imal delay.

In distributed environments it is necessary to have a globally
consistant time stamp. One can use well known protocols
like NTP [21] to synchronize system clocks. In the synchro-
nized distributed visualization framework it is sufficient to
have a globally consistent frame counter that takes the role
of a relative time stamp. For this reason our protocol pro-
vides a frame counter with the synchronization message.

4.3 Extensions of the protocol

The protocol is open to extensions with existing render-
ing acceleration techniques. To reduce the need of special-
ized hardware for better rendering power it is possible to
substitute our nodes in the protocol with WireGL driven
clusters. In this way one may boost render power of each
node with specific hardware while the synchronization be-
tween nodes can be done with standard components.

5 Control of visualization network by inter-
action

In many virtual environments user interaction has to be
processed. The above mentioned protocol for synchroniza-
tion of graphic clients can be expanded to handle such inter-
action information. We will describe this extension for the
protocol in this section.
User interaction processing is a problem in it’s own and has
been investigated in detail in last years but it is still a work in
progress. The problem of distributed interaction processing
is a current research topic [33, 31, 32, 29, 14]. There is a lot
of research with focus on wireless networks for distributed
interaction processing [4, 20, 22]. We assume that every
type of interaction processing has one process (interaction
transmitter) which is able to transmit interaction processing

information to our visualization network. This assumption
is no constraint for interaction processing because if there is
only one interaction process it is the interaction transmitter
itself. For distributed interaction processing one process has
to collect the relevant interaction information and transmit
it to the visualization network.
Tracking of user interaction does not depend on the frame
rate of visualization because it can be continous interaction,
for example pointing to an object at the display, or discrete
interactions like clicking, selecting, etc. Especially inter-
action processing does not need to be synchronous to the
frame rate of visualization. For this reason we assume in-
teraction processing as asynchronous task. This assumption
leads to a visualization network separated from the archi-
tecture for interaction processing. In this case it is possible
to use every type of interaction processing algorithm. To
correlate interaction events with the displayed context it is
necessary to have a globally consistent time for visualiza-
tion and interaction clients. For time synchronization of the
clients clocks also NTP [21] can be used or for framewise
synchronization the frame counter can be used.

5.1 Interaction synchronization

The interaction transmitter is a specific process not
included in the visualization network. It communicates
with the root of the visualization network and transmits
all interaction data to the root. Furthermore, the inter-
action transmitter receives the frame counters which are
distributed via multicast from the root of the visualization
network. These frame counters can be used to correlate the
interaction events with the displayed context.
The root of the visualization process provides interaction
information to all graphic clients together with the IP-
Multicast for synchronization. All graphic clients have
to process this information for their context themselve.
In this way every client can modify its state depending
on interaction information. If this processing produces
relevant information for other graphic clients it can be
submitted as payload of theready-to-display-messages to
the root and will be transmitted to all other clients with the
next synchronization-message. The modified architecture
for visualization and interaction is shown in figure 2
This algorithm for interaction processing adds a delay

to context modification by interaction. In the worst case
we will have a delay of two frames. The aspects of
quality-of-service criterion for interaction are discussed in
detail by Holloway [6]. If the visualization has frame rates
of 30 or more frames per second this interaction delay for
most applications meets the quality-of-service criterion.
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Figure 2. Architecture vor visualization and
interaction processing

6 Experimental results

To demonstrate the performance of our protocol, in this
section we will measure the synchronization time delay
throughout the network. Further on we will analyse the jit-
ter2 of the displays. This is the resulting error of our proto-
col and the graphics hardware which has to be unnoticible
for the users.

6.1 Time delay for synchronization

The amount of time for synchronization (sync-time) of
multiple clients varies in dependency of the number of
clients, the number of levels in the balanced binary deci-
sion tree and on the network.
We measure the time from sendingready-to-display-
message to the protocol until the protocol returns with a
synchronization-message without interaction payload. This
time varies with the number of participating clients and re-
sulting number of levels in the decision tree. We have mea-
sured this time for two clients (stereodisplay), six clients
(CAVE) and twelve clients (stereo CAVE). The experiments
were performed on two different networks, namely 100
MBit/s ethernet and 1 GBit/s ethernet. The binary decision
tree in these cases has two levels for two clients, three lev-
els in case of six clients and four levels for twelve clients.
The measurements are shown in table 1. The level four with
gigabit ethernet could not be measured since we had only 6
gigabit clients available.
One can see the dependency of synchronization time with

the number of decision tree levels for both networks. The
overall time for synchronization is very small for all tested
numbers of clients and networks. It is remarkable that the
synchronization time for Gigabit ethernet is higher than for
100 MBit/s ethernet. This is caused by interrupt coalescing
which is used in Gigabit ethernet devices. The idea behind
interrupt coalescing is to wait before generating an interrupt

2Jitter is a short-term variations of the significant instants of digital
signals from their ideal positions in time.

number of number of sync-time in ms
levels clients 100 MBit/s 1 GBit/s

2 2 0.129 0.39
3 6 0.386 0.70
4 12 0.616 -

Table 1. Measurement of time for synchro-
nization with different number of levels of de-
cision tree

until a certain number of packets have arrived or no packets
have arrived for a certain period of time to avoid interrupt
flooding. This is a tradeoff of latency for bandwidth.

6.2 Jitter of displays

The jitter of the different displays can’t be measured
directly on the network. To measure the jitter one has
to use optical based techniques. For that reason we can
determine only an upper bound for jitter of displays. The
jitter of the displays∆tdisplays depends on the jitter of
the multicast∆tmulticast of the network. This can be
estimated by the difference between the minimal time for
synchronization and the maximal time for synchronization
(diff-sync-time) in one run. We consider the maximum of
this time differences as an upper bound of network jitter for
multicast. This upper bound is significantly larger than the
real value of multicast jitter∆tmulticast. The measurement
of ∆tmulticast is shown in table 2.

The jitter of displays also depends on the skew∆tsync

network ∆tmulticast in ms
100 MBit/s 4.2

1 GBit/s 1.9

Table 2. Difference between minimal and max-
imal synchronization time depending on net-
work

of the VSYNC3 signals of the different hosts. Since we
can’t measure this time we use the time to display one
video frame as an upper bound for∆tsync. This upper
bound depends on the video frame refresh rate of the
display and not on the frame rate of the renderer and
is usally less than 16 ms (video frame refresh rate of
75 Hz). The jitter of the displays∆tdisplays is the sum
of the multicast jitter∆tmulticast and jitter of VSYNC
∆tsync. For the above mentioned reasons the skew of
displays is less than 17.5ms for a video frame rate of
75 Hz and mostly effected by∆tsync. This skew is un-
noticable for users because it is smaller than1

50 second [27].

3Vertical Sync (VSYNC): portion of video signal that tells the receiver
when to start a frame refresh.
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6.3 Synchronization with payload

In the experiments described above we measured the
synchronization time without interaction payload. We can
also measure the dependency of payload size and synchro-
nization time. These measurements are shown in figure 3.
One can see that 100 MBit/s ethernet is linearly in payload
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Figure 3. Synchronization time in dependence
on payload

size just as gigabit ethernet. The mean inverse gradient of
each curve approximates the maximal transfer rate of the
network. The peak in the curve for 100 MBit ethernet re-
sults from network load of other applications because we
measure in a network with other loads like nfs filesystem,
etc.The gigabit ethernet has a slightly higher delay with no
payload due to interrupt coalesing, but better load perfor-
mance. Therefore we can find a break even point between
both networks at about 1 KByte per payload package.
The above mentioned reasons suggest to use 100 MBit/s
ethernet for purely synchronization or synchronization with
small (less than 1 KByte) payload and to use gigabit ether-
net for synchronization with larger payload.

6.4 Stereo rendering of 3D-scenes

To demonstrate the performance of our protocol we have
integrated it into the switch buffer command of OpenGL. In
this way it is easy to integrate it into an existing OpenGL
application. We extended the well kown OpenGLatlantis
demo which can be found in the standard GLUT distribu-
tion [24]. Our version of theatlantisdemo is extended by
the use of fog, textured fishes and ground sea floor. Fur-
ther on the modified switch buffer command of OpenGL
is used to synchronize the visualization nodes. The pay-
load in our case is 40 Bytes. We use the payload to trans-
mit the global viewing transformation given by interaction
and a type specifier for interaction information. We use
100MBit/s ethernet in this case of small payload to reach

best performance.
Our cluster contains four graphic nodes with 512 MB RAM
and Nvidia Geforce 3 or Nvidia Geforce 2 graphics engine
with 64MB memory. Our cluster drives a two sided stereo
CAVE. In this way two nodes render the views of the left
eye and the other two render the views of the right eye. To
avoid visual artefacts we have to synchronize the visualiza-
tion processes on the level of video frame buffer switching.
We survey the video frame rate in case of unsynchronized

Render type Graphics engine
Geforce 3 Geforce 2

unsynchronized 148.4 fps 60.73 fps
synchronized 144.0 fps 60.69 fps

loss of frame rate 2.9% 0.06%

Table 3. Measurement of time for synchro-
nization with different number of levels of de-
cision tree

and in case of synchronized visualization. The loss in frame
rate is denoted in percent. The results of unsynchronized
and synchronized visualization are shown in table 3. One
can notice that the frame rate decreases unnoticable to the
user, as was the goal of our approach.

7 Conclusions and future work

We have presented a protocol for distributed synchro-
nized visualization and interaction. Our protocol in cont-
trast to the most existing protocols has no need for special-
ized synchronization hardware or network. Further on our
protocol can handle interaction information to control con-
text independent of the interaction processing architecture.
The resulting jitter of displays is mostly effected by asyn-
chronous graphics hardware and is unnoticeable for users.
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