
Visual Word based Location Recognition in 3D models using Distance
Augmented Weighting

Friedrich Fraundorfer1, Changchang Wu2,
1Department of Computer Science

ETH Zürich, Switzerland
{fraundorfer, marc.pollefeys}@inf.ethz.ch

Jan-Michael Frahm2, Marc Pollefeys1,2

2Department of Computer Science
UNC Chapel Hill, USA
{ccwu,jmf}@cs.unc.edu

Abstract

For visual word based location recognition in 3D mod-
els we propose a novel distance-weighted scoring scheme.
Matching visual words are not treated as perfect matches
anymore but are weighted with the distance of the origi-
nal SIFT feature vectors before quantization. To maintain
the scalability and efficiency of vocabulary tree based ap-
proaches PCA compressed SIFT feature vectors are used in-
stead of the original SIFT features. A different eigenspace
is computed for each vocabulary tree cell to benefit from
the variance reduction as result of the partitioned SIFT fea-
ture space. Experiments show a significant improvement in
retrieval quality by incorporating the distance with small
costs in computational time and memory.

1 Introduction

Being able to create large scale 3D reconstructions [1],
e.g. from cities, opens up the possibility to do location
recognition and pose estimation from a a single image taken
somewhere within the mapped area. The most prominent
application is certainly localization with hand-held devices,
like cell phones. However, other applications include loop
closing for mapping as well as stitching of multiple inde-
pendent 3D reconstructions. The key idea for the current
approaches to location recognition is the use of visual word
based image search [2, 6, 8]. They proved to be scalable to
much larger image databases than previous bag-of-features
methods which mainly relied on nearest-neighbor search in
feature space [3, 4, 9, 5]. In most cases a kd-tree was used
to find the nearest-neighbor to the query feature. Then a
vote was cast to the according document in the database.
The distance between the database features and the query
feature was used as a weighting factor for the vote. Other
methods define a distance threshold for votes or vote for the
k closest nearest-neighbors [4]. For efficient queries theses

Figure 1. Given a 3D model as a map of the
environment we are interested in the location
from which a query image has been taken.

methods need the original feature vectors stored in memory.
This quickly leads to scalability problems e.g. when using
128-dimensional SIFT feature vectors that require 128 bytes
of memory in most implementations. For large databases
the image queries turned out to take too long for many ap-
plications. The recent visual word based approaches effec-
tively cut down the memory requirements and query times
for image search applications. The main idea is to quan-
tize a higher-dimensional feature vector into a single integer
value (visual word) which allows very compact image rep-
resentations and enables highly efficient retrieval methods,
e.g. using an inverted file as database. Typically quantiza-
tion is performed by splitting the high-dimensional feature
space into multiple non-overlapping partitions by k-means
clustering. Each resulting cluster cell is then mapped to a
visual word. A vote is cast for all the images in which the
same visual word appears in the query, which is efficiently

done through an inverted file. In contrast to the previous
nearest-neighbor methods the distance of the query feature
and the database feature is now unknown. It is not possi-
ble to weight the vote according to the distance or take the
k closest features. In addition the visual word cells in the
feature space are usually much larger than the variation of
a single SIFT feature and contain large quantities of visu-
ally significantly different features. Fig. 2(b) illustrates this
fact. It shows representative patches that fell into the same
vocabulary tree cell. While some of them are very similar,
others are significantly different.

We therefore propose a weighted scoring scheme for vi-
sual word voting based on the distance between features in
a vocabulary tree cell. Fig. 2(a) illustrates the method. The
distance between the query feature and the features in the
cell defines the strength of the individual vote. To main-
tain the scalability of the vocabulary tree approach, PCA
compressed feature vectors are stored instead of the orig-
inal SIFT feature vectors. The PCA compression is com-
puted individually for each vocabulary tree cell to make use
of the variance reduction by the feature space splitting. The
distance weights are seamlessly integrated into the scoring
scheme and require only a small computational overhead.

2 Related work

In recent years a lot of progress has been achieved in
object recognition and image search. The object recogni-
tion system presented in [3] represents a bag-of-features
approach using SIFT features. It uses a kd-tree for near-
est neighbor search with a best-bin-first modification to in-
crease the query speed. It also uses the distance between
features to discriminate between reliable matches and likely
mismatches. The distance ratio between the first and second
nearest neighbor is computed. If the second nearest neigh-
bor is far enough away from the first nearest neighbor the
match is accepted. The necessary distance ratio is empiri-
cally set. The approach presented in [8] quantizes SIFT fea-
tures into visual words. Matching is done by voting, the dis-
tance between corresponding features is not used. In [6] this
approach gets extended by a hierarchical quantization with
a vocabulary tree. It also introduces a hierarchical scoring.
It demonstrates a very efficient and highly scalable image
search. In [2] the hierarchical vocabulary tree is replaced
again by a flat vocabulary tree. An approximate nearest
neighbor search is used to find the cells for quantization.
Schindler et al. [7] proposed the greedy N-best-path algo-
rithm for feature quantization to deal with features close to
the decision boundaries. Matching features that lie close
to decision boundaries might end up with different visual
words otherwise. This is especially problematic in hierar-
chical vocabulary trees where small shifts in higher levels
might lead to completely different visual words. In addition

EV1
EV2

query feature

(a)

(b)

Figure 2. (a) We propose to weight the votes
with the distance to the query feature. For ef-
ficiency the distance is computed from PCA
compressed features and the weights are fol-
lowing a Gaussian bell curve. (b) Example
image patches that fall into the same vocab-
ulary tree cell. Some of them are significantly
different.

Schindler et al. [7] proposed to build the vocabulary tree
from the most informative features only to improve recog-
nition quality. In contrast to all the previous techniques our
novel approach efficiently employs the feature distances in a
vocabulary tree. This joins the benefits of the two different
classes of matching approaches and leads to an improved
recognition performance as shown in our experiments.

3 Image search with a vocabulary tree

Our approach is along the lines of the method described
in [6]. Firstly local features are extracted from images. We
use DOG keypoints and compute a SIFT feature vector for

each keypoint. Each SIFT feature vector is quantized by
a hierarchical vocabulary tree. All visual words from one
image form a document vector which is a v-dimensional
vector where v is the number of possible visual words. It is
usually extremely sparse. For an image query the similarity
between the query document vector to all document vectors
in a database is computed. As similarity score we use the
L2 distance between document vectors. The organization
of the database as an inverted file and the sparseness of the
document vectors allows a very efficient scoring. For scor-
ing, the different visual words are weighted based on the
inverse document frequency (IDF) measure. We introduce
an additional weight based on the distance between the in-
dividual query features and the features in the same vocab-
ulary tree cell. For scalability we don’t store the original
feature vector but store PCA compressed features vectors to
compute an approximate distance. The PCA compression
is computed for each vocabulary tree cell differently to ex-
ploit the variance reduction by the clustering. The database
images corresponding to the document vector with the low-
est L2 distance to the query vector is reported as the best
match.

4 Distance augmented weighted scoring

As described in [6] the L2 distance between the query
document vector q and a database document vector d can
be computed as

||q − d||2 = 2− 2
∑

qidi (1)

For simple scoring the entries qi, di are set to 1 if the
VW i occurs in the image otherwise they are set to 0 and
normalized afterwards so that the L2-norm is 1. The doc-
ument vectors are high-dimensional but very sparse and so
only the non-zero products (qi 6= 0, di 6= 0) are usually
computed, which is implicitly done by inverted file scoring.

When using inverse document frequency (IDF) weight-
ing, as we do in this work, the entries of the document
vectors are normalized IDF weights. We denote the IDF
weighted document vectors by q, d. The IDF weight m(i)
for each visual word i is computed by

m(i) = log
|D|
|Di|

, (2)

where |D| is the total number of documents (i.e. images)
in the database and |Di| is the number of images in which
the visual word i appears.

Accordingly a document vector entry qi is given by

qi =

m(i)√∑

j|qj 6=0 m(j)2
, qi 6= 0

0 ,otherwise

(3)

and di by

di =

m(i)√∑

j|dj 6=0 m(j)2
, di 6= 0

0 ,otherwise

(4)

Each entry in qi, di is the IDF weight normalized by the
square root of the quadratic sum of all IDF weights that
occur in the image, e.g. for q all m(i) where qi 6= 0. The
denominator is a normalization so that ||q||2 = 1.

We now describe how to incorporate the proposed dis-
tance weight in the scoring process. We assume that the
distance between two instances of the same SIFT feature is
a normal distribution with N(µ, σ) and µ = 0. Then the
match probability p is computed as

p(x) =
1

σ
√

2π
e−

1
2 (x−µ

σ)
2

, (5)

where x is the L2 distance between two SIFT feature
vectors, x = ||si−sj ||. We want the actual weight w to be in
the interval [0...1], so we do not apply the normalization by
σ
√

2π in Equ. (5). Accordingly the weight w is computed
as

w(x) = e−
1
2 (x−µ

σ)
2

. (6)

The proposed scoring process now computes the
weighted distance between document vectors q and d using
the weight defined in Equ. (6). This writes as

||q − d||2 = 2− 2
∑

qidiw(dist(i)), (7)

where dist(i) is a function that computes the SIFT feature
distance for the visual word matches of qi and di.

The effect of the weight w is that an increased distance
between features leads to a decreased similarity between
document vectors. Adding unweighted qidi terms for all
the features in a cell wrongly increases the similarity of
non-matching document vectors. These erroneous votes get
corrected by the distance weight w from Equ. (6). A feature
that is far away from the query feature is down-weighted
with a w of almost zero. This means that the feature match
is practically not considered in the decision process during
the query, as if the feature would have a different visual
word. Thus the similarity between the corresponding doc-
ument vectors does not increase wrongly. For features very
close to the query feature the weight w is nearly one and
results in a full vote.

5 PCA compression of feature vectors

In the previous section we introduced our distance aug-
mented weighting in the vocabulary tree. The weight
hereby was computed from the distance between feature

vectors. It would require to keep those vectors in mem-
ory which is a significant drawback. We analyzed the dis-
tribution of the feature descriptors in the cells of the vo-
cabulary tree and found that they typically can be repre-
sented by a lower dimensional space. Accordingly the orig-
inal SIFT feature vectors are PCA compressed first before
storing them in the database resulting again in a memory
efficient approach. A PCA analysis is performed for each
vocabulary tree cell thus exploiting the variance reduction
as result of the partitioned SIFT feature space. Let Si be
the set of all SIFT feature vectors for the vocabulary tree
cell i. Si is a 128 × ni matrix where ni is the number of
SIFT features in the cell. The covariance matrix Ci for cell
i is a 128 × 128 matrix. PCA analysis gives the eigenvec-
tors Vi (128 × 128) and the eigenvalues of Ci. The SIFT
feature vectors can be projected into PCA space by multi-
plication with the eigenvectors Vi. The eigenvectors with
the largest eigenvalues define a subspace that contains the
principal variations of the SIFT features in the cell. By pro-
jecting each SIFT feature into a subspace with a smaller
dimension than 128 we obtain a compressed SIFT feature
vector. Let V ′

i be the k × 128 matrix that contains the k
eigenvectors that belong to the k largest eigenvalues (with
typically k << 128). A compressed SIFT feature vector is
computed as

s′j = V ′
i (sj − ui), (8)

where ui is the mean vector of the cell features used to
compute Ci. The distance da(j, l) between two compressed
feature vectors is an approximation of the original distance
of two feature vectors sj and sl which are located in the
same cell.

da(j, l) = ||V ′
i (sj − ui)− V ′

i (sl − ui)||2. (9)

If most of the variation is contained in the first k eigen-
vectors then da is a good approximation of the exact dis-
tance. Fig. 3 shows an analysis of the total cell variation for
vocabulary trees with different number of cells. The analy-
sis shows that in a 105 vocabulary tree more than 90% of the
total variation is described by already 40 eigenvectors. The
analysis also shows that the clustering of the feature space
reduces the variation within the cells.

Important for the search efficiency is that the eigenvec-
tors for each cell can be computed during vocabulary tree
clustering which is an off-line training.

6 Implementation details

In the most basic vocabulary tree recognition scheme
only one integer value (4 bytes) is stored for each image fea-
ture. In most cases however additional data is stored as well,
e.g. x, y coordinates for geometric verification etc. The pro-
posed use of distances in scoring needs additional data, too.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#eigenvectors used

av
g.

 to
ta

l v
ar

ia
tio

n
de

sc
rib

ed
 [%

]

1 cell
10 cells

102 cells

103 cells

104 cells

105 cells

Figure 3. Total variation of vocabulary tree
cells (avg. over all cells at the same level).
A smaller number of eigenvectors is neces-
sary to describe the cell variation in vocabu-
lary trees with higher number of cells.

Firstly, for each visual word (VW) in the database the cor-
responding compressed feature vector needs to be stored.
The original SIFT feature vector consist of 128 entries each
with a range from 0..255 thus we would need 128 bytes.
The compressed feature vector has a much lower dimen-
sion, e.g. 10 dimensions as used in our experiments. The
compressed feature vector will be stored as signed bytes,
cutting off all values higher and lower than the maximum
range. Thus we need 1 byte for each dimension, i.e. 10
bytes for the 10 dimensional case. It is important to keep
the amount of additional data low as it grows with the num-
ber of features in the database. Secondly, we need to store
the eigenvectors to compute the compressed SIFT vectors.
For a k dimensional compressed SIFT feature we need to
store a k × 128 eigenvector matrix, consisting of 128 × k
float values, resulting in 512 × k bytes for each cell. We
store a different set of eigenvectors for each possible VW.
However, the number of VW’s is determined by the vocabu-
lary tree and remains fixed. It is therefore a constant cost. In
addition it is most likely that not the whole range of VW’s is
actually used. In an application where the database remains
fixed the VW’s used can be pre-computed and eigenvectors
need to be loaded only for this set. This holds even when
new VW’s are used in the query. As they have no matching
VW’s in the database they do not contribute to the score. It
is therefore not necessary to compress them.

Additional computations are necessary for scoring and
when online adding new images to the database. During the
add process the SIFT feature vectors have to be compressed.
This needs a k × 128 matrix multiplication for each SIFT
feature detected in the new image. For an image query the

same computation has to be done. For each SIFT feature
in the query image the multiplication with the eigenvectors
has to be carried out. In the scoring itself the distances be-
tween the compressed query vector and the database vectors
have to be computed. We use the L2 norm. For each VW in
the query image we compute distances to each entry in the
corresponding inverted file bin. However, the distance com-
putation with the compressed feature vectors needs much
less calculations compared to distance computation using
the original SIFT features.

6.1 Setting of the σ parameter

The best way to determine the σ parameter for the
weighting function Equ. (6) is to conduct a limited number
of recognition experiments with varying σ in a small range.
To find a useful range for the σ value we used a histogram
of the distances between the features in the used vocabulary
tree. Only distances between features in the same cell are
computed. Fig. 4 shows the histogram. Most of the dis-
tances occur in the interval [20..200], so this is the range
where a meaningful value for σ can be determined. Table 1
lists the values we found to be useful for our experiments.
The values vary with the number of eigenvectors used for
compression.

Figure 4. Histogram of feature distances for
all the cells of the 105 vocabulary tree. The
range of occurring distances allows to deter-
mine a range of values for the σ parameter of
the weighting function.

7 Efficient 2-pass scoring

A major speedup in querying can be gained by a 2-pass
scoring scheme that combines the standard scoring with our

method sigma
compressed (10 eigen.) 40
compressed (20 eigen.) 55
compressed (40 eigen.) 65
distance scoring (exact) 110

Table 1. σ parameter settings used in our ex-
periments.

weighted scoring. For a query, firstly standard scoring is
used to generate a similarity ranked document list. Then
weighted scoring is applied in a second pass but considering
only the n-top ranked documents. The major computational
overhead for our method comes from the distance computa-
tion between the feature vectors. In the 2-pass method the
distances are only computed for features that occur in the n-
top ranked documents. This leads to a significantly reduced
computational overhead. Our experimental results (see sec-
tion 8.1 show no loss in retrieval quality compared to the
significantly slower 1-pass scoring scheme.

8 Experiments

8.1 UKY dataset

We tested our approach on the well known UKY bench-
mark dataset1. The dataset contains 4 images each of 2550
objects from different viewpoints and with changing scale
resulting in 10200 images. Our initial experiment uses a
database of 2550 images out of the 10200 images represent-
ing one view of each object. The query dataset of 2550 im-
ages uses a different view of each object. For SIFT feature
detection we used the publicly available SiftGPU software2

which resulted in up to 3000 features per image.
For the retrieval quality we count the number of cor-

rect best matches (top-1 rank). Table 2 shows the results
and timings for the standard scoring (IDF weighted non-
hierarchical scoring [6]), our new method (with different
compression settings) and an exact distance scoring. The
results show that even with the highest compression of us-
ing only 10 dimensions (out of 128) a significant improve-
ment with respect to the standard scoring scheme can be
achieved. In addition it is shown that the quality achieved
with 40 dimension is very close to the quality of the exact
distance scoring where all the 128 dimensions were used.
The computational overhead of our method is visible in the
timings. The listed execution times are the average for a
single image query and include the time for feature quanti-
zation. Feature quantization accounts for a substantial part

1Available at http://vis.uky.edu/˜stewe/ukbench/
2SiftGPU available at http://cs.unc.edu/˜ccwu/siftgpu/

http://vis.uky.edu/~stewe/ukbench/
http://cs.unc.edu/~ccwu/siftgpu/

method retrieval quality query time
[ms]

standard scoring 0.645 21.7
compressed (10 eigen.) 0.71 40.3
2-pass (10 eigen.) 0.71 28.6
compressed (20 eigen.) 0.726 49.2
2-pass (20 eigen.) 0.726 31.8
compressed (40 eigen.) 0.737 66.4
2-pass (40 eigen.) 0.732 39.1
distance scoring (exact) 0.739 56.9
feature quantization - 19.6

Table 2. Retrieval quality on database with
2550 images (subset of UKY dataset) com-
pared to the standard approach. The results
show that the quality achieved by the com-
pression with 40 eigenvectors is very close
to the exact method. A vocabulary tree (105

leaves, 5 levels, 10 branches) trained on a
different image set was used. The execution
times in the table are for a single image query
and include the time needed for feature quan-
tization.

of the query time for a database of this size. From Table 2
it can be seen that the 2-pass method provides a significant
performance gain without loss of retrieval quality. The ex-
ecution times were measured on a 2.4GHz Intel Quadcore
with 4GB of memory. Even if we look at the top-10 or
top-100 best ranked images the proposed approach has an
advantage, although it is less significant. However, we find
it important that correct matches are ranked as top-1 if pos-
sible. To identify a correct match in the top-n ranks, addi-
tional post-processing like geometric verification is neces-
sary which might be fast and reliable for certain applications
(e.g. CD demo in [6]) but might be difficulty and slow for
other scenarios, e.g. non-static scenes, multiple moving ob-
jects, etc. For visual word quantization we use a vocabulary
tree that was trained from 10 million features extracted from
independent images from the web . The trained vocabulary
tree has 5 levels and a branching factor of 10 which results
in 105 leaf nodes. The number of leaf nodes has been cho-
sen based on the analysis in [6]. It was shown that good
retrieval performance can be reached with 105 leaf nodes
and that there is not a significant increase when using more
nodes.

The second experiment was conducted on a smaller
database, consisting of the first 125 objects from the UK
dataset. The results are listed in Table 3. Although the
retrieval quality is already very high for the standard ap-
proach, our method still improves the results significantly.

method retrieval quality query time
[ms]

standard scoring 0.814 17.2
compressed (10 eigen.) 0.864 25.0
compressed (20 eigen.) 0.888 31.1
compressed (40 eigen.) 0.888 39.4
distance scoring (exact) 0.896 25.7
feature quantization - 16.0

Table 3. Retrieval quality on database with
125 images (subset of UKY dataset) com-
pared to the standard approach. Although
the result with the standard approach is al-
ready very good it can still be improved with
the distance weighting. A vocabulary tree
(105 leaves, 5 levels, 10 branches) trained on
a different image set was used. The execu-
tion times in the table are for a single image
query and include the time needed for feature
quantization.

8.2 Location recognition in urban envi-
ronments

One of our main motivations for this work was to im-
prove the performance for location recognition in urban
environments. The image sets for this experiments were
acquired with car mounted cameras. Two cameras were
mounted on the roof of a car, one was pointing straight side
wards the other one was pointing forward in a 45° angle.
The fields of view of both cameras do not overlap but as the
system is moving over time the captured scene parts will
overlap. To retrieve ground truth data for the camera mo-
tion the image acquisition was synchronized with a highly
accurate GPS-INS system. Accordingly we know the lo-
cation of the camera for each image. In this experiment we
now match the images from the side camera with the images
from the forward camera. Usually the area that is viewed
in the forward camera can be seen in the side camera after
about 30 frames of straight movement, but of course with
a quite large viewpoint change of 45°. The images have a
resolution of 1024 × 768. For feature extraction we used
DOG keypoints and SIFT descriptors as in the previous ex-
periments which resulted in up to 5000 features per image.
And we reused the vocabulary tree trained for the previ-
ous experiment in Section 8.1. We created a database of
2644 images from the side camera and queried them with
the 2644 images from the forward camera using the stan-
dard scoring and our new method with 10 eigenvectors. The
location recognition results are visualized by plotting lines
between the matching camera positions (see Fig. 5). The

identical camera paths of the forward and side camera are
shifted by a small amount in x and y direction to make the
matching links visible. We only draw matches below a dis-
tance threshold of 20m. Matches with a distance lower than
20m are counted as correct and matches with higher dis-
tance are counted as mismatches. While we can’t guarantee
that all matches below 20m are actually correct we can be
almost certain that matches with a distance higher than 20m
are wrong. We therefore evaluate the number of mismatches
for the standard method and the proposed method. The stan-
dard approach counts 54% mismatches while our proposed
method reduces the mismatches to 40%, which is a 26% re-
duction of mismatches. Fig. 5(a) shows the location recog-
nition results for the standard approach. Fig. 5(b) shows the
results for our approach. Much more matches are below the
20m threshold which results in more links drawn. Fig. 5(c)
shows the corresponding distance histograms. Fig. 6 shows
some correct example matches.

We have implemented a location recognition tool using
the proposed technique. By specifying a query image, a
database query is performed and the corresponding part of
the 3D model is shown (see Fig. 7). We also queried the
database with images from a camera phone with good re-
sults (see Fig. 7(b) as an example).

9 Conclusion

We proposed a novel distance augmented weighting
scheme for visual word based image search schemes. The
proposed method significantly improves the retrieval per-
formance compared to the standard approach. To maintain
the scalability of the vocabulary tree approach we intro-
duced PCA compressed features. Each vocabulary tree cell
is compressed individually to exploit the sparseness intro-
duced by the vocabulary tree clustering. Our experiments
showed a significant retrieval quality improvement using
our new method that comes with only a small increase in
memory requirement and computation time especially when
using the proposed 2-pass method. And we successfully ap-
plied this method for location recognition in 3D models.

10 Discussion

Finally, we would like to draw your attention to an inter-
esting and quite surprising observation. To obtain the best
retrieval results the σ parameter needed to be varied more
than anticipated with the changing number of eigenspace
dimensions used (see Table 1). The σ parameter determines
basically the separating function between matches and mis-
matches or between intra-features (matching features un-
der image transformations, e.g. noise, scale change, view-
point change, ...) or inter-features (visually different, not-
matching features). We initially thought that we would have

320 340 360 380 400 420 440 460 480

−2360

−2340

−2320

−2300

−2280

−2260

−2240

−2220

x [m]

y
[m

]

(a)

320 340 360 380 400 420 440 460 480

−2360

−2340

−2320

−2300

−2280

−2260

−2240

−2220

x [m]

y
[m

]

(b)

0 50 100 150
0

500

1000

1500

distance histogram [m]

standard scoring

0 50 100 150
0

500

1000

1500

distance histogram [m]

compressed (10 eigenvectors)

(c)

Figure 5. Location recognition experiment.
Lines show matches (below a 20 m dis-
tance threshold) between the forward and
side camera. Our approach (b) shows much
more matches than the standard approach
(a). (c) Distance histograms show that more
matches have lower distances.

to vary σ according to the total variation captured by the k-
best eigenvectors (see Fig. 3), e.g. if 10 eigenvectors capture
65% of the total variation we intended to set the correspond-
ing σ to 65% of the exact distance σ. The values used how-
ever do not follow the total variation, instead it looks like
that σ2 roughly follows linearly the number of dimension of
the eigenspace, i.e. σ2 = 1600, 3025, 4225 and 12100 for

Figure 6. Example matches from the location
recognition experiment. Left column: For-
ward camera image (query). Right column:
Side camera image (database).

(a)

(b)

Figure 7. (a) Screenshot of our location
recognition tool. (b) Query with an image
from a camera phone.

dimensions 10, 20, 40, 128. While we don’t have proof, a
possible explanation could be, that the inter-feature distribu-
tion and intra-feature distribution are not correlated. In that
case the k-best eigenvectors from our PCA analysis (which
was mainly computed from inter-features) might only rep-
resent unordered random directions for the intra-feature dis-
tribution. Thus while the k-best eigenvectors capture most
of the variation of the inter-features they might only cap-
ture a small part of the intra-feature variation. If we assume
that the k-best inter-feature eigenvectors only sample ran-
dom directions from the intra-feature distribution then the
k-best eigenvectors will, at average, only capture a 1/kth

part of the total variance, which would explain the almost
linear relation of σ2 with the number of dimensions.

References

[1] A. Akbarzadeh, J. Frahm, P. Mordohai, B. Clipp, C. Engels,
D. Gallup, P. Merrell, M. Phelps, S. Sinha, B. Talton, L. Wang,
Q. Yang, H. Stewenius, R. Yang, G. Welch, H. Towles, D. Nis-
ter, and M. Pollefeys. Towards urban 3d reconstruction from
video. In 3D Data Processing, Visualization and Transmis-
sion, pages 1–8, 2006. 1

[2] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. To-
tal recall: Automatic query expansion with a generative fea-
ture model for object retrieval. In Proc. 11th International
Conference on Computer Vision, Rio de Janeiro, Brazil, 2007.
1, 2

[3] D. Lowe. Object recognition from local scale-invariant fea-
tures. In Proc. 7th International Conference on Computer Vi-
sion, Kerkyra, Greece, pages 1150–1157, 1999. 1, 2

[4] D. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2):91–
110, 2004. 1

[5] K. Mikolajczyk and C. Schmid. Indexing based on scale in-
variant interest points. In Proc. 8th International Conference
on Computer Vision, Vancouver, Canada, pages I: 525–531,
2001. 1

[6] D. Nistér and H. Stewénius. Scalable recognition with a vo-
cabulary tree. In Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition, New York City, New York, pages
2161–2168, 2006. 1, 2, 3, 5, 6

[7] G. Schindler, M. Brown, and R. Szeliski. City-scale location
recognition. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, Minneapolis, Minnesota, pages 1–7,
2007. 2

[8] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proc. 9th Interna-
tional Conference on Computer Vision, Nice, France, pages
1470–1477, 2003. 1, 2

[9] T. Yeh, K. Tollmar, and T. Darrell. Searching the web with
mobile images for location recognition. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition, Wash-
ington, DC, pages II: 76–81, 2004. 1

