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Abstract. We present a solution for motion estimation for a set of cam-
eras which are firmly mounted on a head unit and do not have overlap-
ping views in each image. This problem relates to ego-motion estimation
of multiple cameras, or visual odometry. We reduce motion estimation
to solving a triangulation problem, which finds a point in space from
multiple views. The optimal solution of the triangulation problem in L-
infinity norm is found using SOCP (Second-Order Cone Programming)
Consequently, with the help of the optimal solution for the triangulation,
we can solve visual odometry by using SOCP as well.

1 Introduction

Motion estimation of cameras or pose estimation, mostly in the case of having
overlapping points or tracks between views, has been studied in computer vision
research for many years [1]. However, non-overlapping or slightly overlapping
camera systems have not been studied so much, particulary the motion estima-
tion problem. The non-overlapping views mean that all images captured with
cameras do not have any, or at most have only a few common points. There
are potential applications for this camera system. For instance, we construct a
cluster of multiple cameras which are firmly installed on a base unit such as a
vehicle, and the cameras are positioned to look at different view directions. A
panoramic or omnidirectional image can be obtained from images captured with
a set of cameras with small overlap. Another example is a vehicle with cameras
mounted on it to provide driving assistance such as side/rear view cameras.

An important problem is visual odometry – how can we estimate the tracks
of a vehicle and use this data to determine where the vehicle is placed. There has
been prior research considering a set of many cameras moving together as one
camera. In [2] an algebraic solution to the multiple camera motion problem is
presented. Similar research on planetary rover operations has been conducted to
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estimate the motion of a rover on Mars and to keep track of the rover [3]. Other
research on visual odometry has been performed to estimate the motion of a
stereo rig or single camera [4]. Prior work on non-overlapping cameras includes
most notably the paper [5]. This differs from our work in aligning independently
computed tracks of the different cameras, whereas we compute a motion estimate
using all the cameras at once. Finally, an earlier solution to the problem was
proposed in unpublished work of [6], which may appear elsewhere.

In this paper, we propose a solution to estimate the six degrees of freedom
(DOFs) of the motion, three rotation parameters and three translation parame-
ters (including scale), for a set of multiple cameras with non-overlapping views,
based on L∞ triangulation. A main contribution of this paper is that we provided
a well-founded geometric solution to the motion estimation in non-overlapping
multiple cameras.

2 Problem formulation

Consider a set of n calibrated cameras with non-overlapping fields of view. Since
the cameras are calibrated, we may assume that they are all oriented in the
same way just to simplify the mathematics. This is easily done by multiplying
an inverse of the rotation matrix to the original image coordinates. This being
the case, we can also assume that they all have camera matrices originally equal
to Pi = [I| − ci]. We assume that all ci are known.

The cameras then undergo a common motion, described by a Euclidean ma-
trix

M =
[
R −R t
0> 1

]
(1)

where R is a rotation, and t is a translation of a set of cameras. Then, the i-th
camera matrix changes to

P′i = Pi M
−1 = [I | − ci]

[
R> t
0> 1

]
= [R> | t− ci]

which is located at R(ci − t).
Suppose that we compute all the essential matrices of the cameras indepen-

dently, then decompose them into rotation and translation. We observe that the
rotations computed from all the essential matrices are the same. This is true only
because all the cameras have the same orientation. We can average them to get
an overall estimate of rotation. Then, we would like to compute the translation.
As we will demonstrate, this is a triangulation problem.

Geometric concept. First, let us look at a geometric idea derived from this
problem. An illustration of a motion of a set of cameras is shown in Figure 1.
A bundle of cameras is moved by a rotation R and translation t. All cameras
at ci are moved to c′i. The first camera at position c′1 is a sum of vectors ci,
c′i − ci and c′1 − c′i where i = 1...3. Observing that the vector vi in Figure 1
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Fig. 1. A set of cameras is moved by Euclidean motion of rotation R and translation
t. The centre of the first camera c1 is moved to c′1 by the motion. The centre c′1 is
a common point where all translation direction vectors meet. The translation direction
vectors are indicated as red, green and blue solid arrows which are v1, v2 and v3,
respectively. Consequently, this is a triangulation problem.

is the same as the vector c′i − ci and the vector c′1 − c′i is obtained by rotating
the vector c1 − ci, the first camera at position c′1 can be rewritten as a sum of
three vectors ci, R(c1− ci) and vi. Therefore, the three vectors vi, colored solid
arrows in Figure 1 meet in one common point c′1, the position of the centre of
the first camera after the motion. It means that finding the motion of the set of
cameras is the same as solving a triangulation problem for translation direction
vectors derived from each view.

Secondly, let us derive detailed equations on this problem from the geometric
concept we have described above. Let Ei be the essential matrix for the i-th
camera. From E1, we can compute the translation vector of the first camera, P1,
in the usual way. This is a vector passing through the original position of the
first camera. The final position of this camera must lie along this vector. Next,
we use Ei, for i > 1 to estimate a vector along which the final position of the
first camera can be found. Thus, for instance, we use E2 to find the final position
of P1. This works as follows. The i-th essential matrix Ei decomposes into Ri = R
and a translation vector vi. In other words, Ei = R[vi]×. This means that the
i-th camera moves to a point ci + λivi, the value of λi being unknown. This
point is the final position of each camera c′i in Figure 1. We transfer this motion
to determine the motion of the first camera. We consider the motion as taking
place in two stages, first rotation, then translation. First the camera centre c1

is rotated by R about point ci to point ci + R(c1 − ci). Then it is translated in
the direction vi to the point c′1 = ci + R(c1 − ci) + λivi. Thus, we see that c′1
lies on the line with direction vector vi, based at point ci + R(c1 + ci).



In short, each essential matrix Ei constrains the final position of the first
camera to lie along a line. These lines are not all the same, in fact unless R = I,
they are all different. The problem now comes down to finding the values of λi

and c′1 such that for all i:

c′1 = ci + R(c1 − ci) + λivi for i = 1, ..., n . (2)

Having found c′1, we can get t from the equation c′1 = R(c1 − t).

Averaging Rotations. From the several cameras and their essential matrices
Ei, we have several estimates Ri = R for the rotation of the camera rig. We
determine the best estimate of R by averaging these rotations. This is done by
representing each rotation Ri as a unit quaternion, computing the average of the
quaternions and renormalizing to unit norm. Since a quaternion and its negative
both represent the same rotation, it is important to choose consistently signed
quaternions to represent the separate rotations Ri.

Algebraic derivations. Alternatively, it is possible to show an algebraic
derivation of the equations as follows. Given Pi = [I| − ci] and P′i = [R> | t− ci]
( See (2)), an essential matrix is written as

Ei = R>[ci + R(t− ci)]×I = [R>ci + (t− ci)]×R> . (3)

Considering that the decomposition of the essential matrix Ei is Ei = Ri[vi]× =
[Rivi]×Ri, we may get the rotation and translation from (3), namely Ri = R> and
λiRivi = R>ci + (t− ci). As a result, t = λiR>vi + ci − R>ci which is the same
equation derived from the geometric concept.

A Triangulation Problem. Equation (2) gives us independent measurements
of the position of point c′1. Denoting ci + R(c1− ci) by Ci, the point c′1 must lie
at the intersection of the lines Ci +λivi. In the presence of noise, these lines will
not meet, so we need find a good approximation to c′1. Note that the points Ci

and vectors vi are known, having been computed from the known calibration of
the camera geometry, and the computed essential matrices Ei.

The problem of estimating the best c′1 is identical with the triangulation
problem studied (among many places) in [7, 8]. We adopt the approach of [7] of
solving this under L∞ norm. The derived solution is the point c′1 that minimizes
the maximum difference between c′1 − Ci and the direction vector vi, for all i.
In the presence of noise, the point c′1 will lie in the intersection of cones based
at the vertex Ci, and with axis defined by the direction vectors vi.

To formulate the triangulation problem, instead of c′1, we write X as the
final position of the first camera where all translations derived from each essen-
tial matrix meet together. As we have explained in the previous section, in the
presence of noise we have n cones, each one aligned with one of the translation
directions. The desired point X lies in the overlap of all these cones, and, find-
ing this overlap region gives the solution we need in order to get the motion



of cameras. Then, our original motion estimation problem is formulated as the
following minimization problem:

min
X

max
i

||(X−Ci)× vi||
(X−Ci)>vi

. (4)

Note that the quotient is equal to tan2(θi) where θi is the angle between vi

and (X−Ci). This problem can be solved as a Second-Order Cone Programming
(SOCP) using a bisection algorithm [9].

3 Algorithm

The algorithm to estimate motion of cameras having non-overlapping views is
as follows:

Given:

1. A set of cameras described in initial position by their known calibrated cam-
era matrices Pi = Ri[I|−ci]. The cameras then move to a second (unknown)
position, described by camera matrices P′i.

2. For each camera pair Pi, P′i, several point correspondences xij ↔ x′ij (ex-
pressed in calibrated coordinates as homogeneous 3-vectors).

Objective: Find the motion matrix of the form (1) that determines the com-
mon motion of the cameras, such that P′i = PiM−1.

Algorithm:

1. Normalize the image coordinates to calibrated image coordinates by setting

x̂ij = R−1
i xij and x̂′ij = R−1

i x′ij ,

then adjust to unit length by setting x̂ij ← x̂ij/‖x̂ij‖ and x̂′ij ← x̂′ij/‖x̂
′
ij‖.

2. Compute each essential matrix Ei in terms of correspondences x̂ij ↔ x̂′ij for
the i-th camera.

3. Decompose each Ei as Ei = Ri[vi]× and find the rotation R as the average of
the rotations Ri. Set Ci = ci + R(c1 − ci).

4. Solve the triangulation problem by finding the point X = c′1 that (approxi-
mately because of noise) satisfies the condition X = Ci + λivi for all i.

5. Compute t from t = c1 − R>c′1.

In our current implementation, we have used the L∞ norm to solve the
triangulation problem. Other methods of solving the triangulation problem may
be used, for instance the optimal L2 triangulation method given in [8].

Critical Motion. The algorithm has a critical condition when the rotation
is zero. If this is so then, in the triangulation problem solved in this algorithm
all the basepoints Ci involved are the same. Thus, we encounter a triangulation
problem with a zero baseline. In this case, the magnitude of the translation can
not be accurately determined.



4 Experiments

We have used SeDuMi and Yalmip toolbox for optimization of SOCP problems
[10, 11]. We used a five point solver to estimate the essential matrices [12, 13].
We select the best five points from images using RANSAC to obtain an essential
matrix, and then we improve the essential matrix by non-linear optimization.

An alternative method for computing the essential matrix based on [14] was
tried. This method gives the optimal essential matrix in L∞ norm. A comparison
of the results for these two methods for computing Ei is given in Fig 6.

Real data. We used Point Grey’s LadybugTM camera to generate some test
data for our problem . This camera unit consists of six 1024×768 CCD color
sensors with small overlap of their field of view. The six cameras, 6 sensors with
2.5mm lenses, are closely packed on a head unit. Five CCDs are positioned in
a horizontal ring around the head unit to capture side-view images, and one
is located on the top of the head unit to take top-view images. Calibration
information provided by Point Grey [15] is used to get intrinsic and relative
extrinsic parameters of all six cameras.

A piece of paper is positioned on the ground, and the camera is placed on
the paper. Some books and objects are randomly located around the camera.
The camera is moved manually while the positions of the camera at some points
are marked on the paper as edges of the camera head unit. These marked edges
on the paper are used to get the ground truth of relative motion of the camera
for this experiment. The experimental setup is shown in Figure 2. A panoramic
image stitched in our experimental setup is shown in Figure 3.

In the experiment, 139 frames of image are captured by each camera. Feature
tracking is performed on the image sequence by the KLT (Kanade-Lucas-Tomasi)
tracker [16]. Since there is lens distortion in the captured image, we correct the
image coordinates of the feature tracks using lens distortion parameters provided
by the Ladybug SDK library. The corrected image coordinates are used in all
the equations we have derived. After that, we remove outliers from the feature
tracks by the RANSAC (Random Sample Consensus) algorithm with a model
of epipolar geometry in two view and trifocal tensors in three view [17].

There are key frames where we marked the positions of the camera. They are
frames 0, 30, 57, 80, 110 and 138 in this experiment. The estimated path of the
cameras over the frames is shown in Figure 4. After frame 80, the essential matrix
result was badly estimated and subsequent estimation results were erroneous.

A summary of the experimental results is shown in Tables 1 and 2. As can be
seen, we have acquired a good estimation of rotations from frame 0 up to frame
80, within about one degree of accuracy. Adequate estimation of translations is
reached up to frame 57 within less than 0.5 degrees. We have successfully tracked
the motion of the camera through 57 frames. Somewhere between frame 57 and
frame 80 an error occurred that invalidated the computation of the position of
frame 80. Analysis indicates that this was due to a critical motion (near-zero
rotation of the camera fixture) that made the translation estimation inaccurate.
Therefore, we have shown the frame-to-frame rotations, over frames in Figure



Fig. 2. An experimental setup of the LadybugTM camera on an A3 size paper surrounded
by books. The camera is moved on the paper by hand, and the position of the camera
at certain key frames is marked on the paper to provide the ground truth for the exper-
iments.

Rotation True rotation Estimated rotation
pair Axis Angle Axis Angle

(R0, R1) [0 0 -1] 85.5◦ [-0.008647 -0.015547 0.999842] 85.15◦

(R0, R2) [0 0 -1] 157.0◦ [-0.022212 -0.008558 0.999717] 156.18◦

(R0, R3) [0 0 -1] 134.0◦ [ 0.024939 -0.005637 -0.999673] 134.95◦

Table 1. Experimental results of rotations at key frames 0, 30, 57 and 80, which
correspond to the position number 0–3, respectively. For instance, a pair of rotation
(R0, R1) corresponds to a pair of rotations at key frame 0 and 30. Angles of each rotation
are represented by the axis-angle rotation representation.

5-(a). As can be seen, there are frames for which the camera motion was less
than 5 degrees. This occurred for frames 57 to 62, 67 to 72 and 72 to 77.

In Figure 5-(c), we have shown the difference between the ground truth and
estimated position of the cameras in this experiment. As can be seen, the position
of the cameras is accurately estimated up to 57 frames. However, the track went
off at frame 80. A beneficial feature of our method is that we can avoid such bad
condition for the estimation by looking at the angles between frames and residual
errors on the SOCP, and then we try to use other frames for the estimation.

Using the L∞ optimal E-matrix. The results so-far were achieved using the
5-point algorithm (with iterative refinement) for calculating the essential matrix.
We also tried using the method given in [14]. Since this method is quite new,
we did not have time to obtain complete results. However, Fig 6 compares the



Fig. 3. A panoramic image is obtained by stitching together all six images from the
LadybugTM camera. This image is created by LadybugPro, the software provided by
Point Grey Research Inc.
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Fig. 4. Estimated path of the LadybugTM camera viewed from (a) top and (b) front. The
cameras numbered 0, 1, 2, 3, 4 and 5 are indicated as red, green, blue, cyan, magenta
and black paths respectively.

angular error in the direction of the translation direction for the two methods.
As may be seen, the L∞-optimal method seems to work substantially better.

5 Discussion

We have presented a solution to find the motion of cameras that are rigidly
mounted and have minimally overlapping fields of view. This method works
equally well for any number of cameras, not just two, and will therefore provide
more accurate estimates than methods involving only pairs of cameras. The
method requires a non-zero frame-to-frame rotation. Probably because of this,
the estimation of motion through a long image sequence significantly went off
track.



Translation Scale ratio Angles
pair True value Estimated value True value Estimated value

(t01, t02) 0.6757 0.7424 28.5◦ 28.04◦

(t01, t03) 0.4386 1.3406 42.5◦ 84.01◦

Table 2. Experimental results of translation between two key frames are shown in
scale ratio of two translation vectors and in angles of that at the two key frames. The
translation direction vector t0i is a vector from the centre of the camera at the starting
position, frame number 0, to the centre of the camera at the position number i. For
example, t01 is a vector from the centre of the camera at frame 0 to the centre of the
camera at frame 30.
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Fig. 5. The angles between pairs of frames used to estimate the motion are shown in
(a). Note that a zero or near-zero rotation means a critical condition for estimating the
motion of the cameras from the given frames. (b) Ground truth of positions (indicated
as red lines) of the cameras with orientations at key frames 0, 30, 57 and 80, and
estimated positions (indicated as black lines) of the cameras with their orientations at
the same key frames. Orientations of the cameras are marked as blue arrows. Green
lines are the estimated path through all 80 frames.

The method geometrically showed good estimation results in experiments
with real world data. However, the accumulated errors in processing long se-
quences of images made the system produce bad estimations over long tracks. In
the real experiments, we have found that a robust and accurate essential matrix
estimation is a critical requirement to obtain correct motion estimation in this
problem.
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