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Abstract. The calibration of cameras from external orientation infor-
mation and image processing is addressed in this paper. We will show
that in the case of known rotation the calibration of rotating cameras
is linear even in the case of fully varying parameters. For freely moving
cameras the calibration problem is also linear but underdetermined for
fully varying internal parameters. We show one possible set of contraints
to reach a fully determined calibration problem. Furthermore we show
that these linear calibration techniques tend to fit to noise for some of
the intrinsics. To avoid this fit to noise we introduce a statistical cali-
bration technique which uses the robust components of linear calibration
and prior knowledge about cameras. This statistical calibration is fully
determined even for freely moving cameras.

1 Introduction

We have seen a lot of research on camera calibration from image sequences over
the last decade. These approaches calibrate the cameras by observing unknown
scenes and therefore they may suffer under degeneracies caused by the scenes
respectively the image information. We will introduce a technique for selfcalibra-
tion from image sequences together with external orientation information. This
information is available in many applications. Today’s cars are already equipped
with orientation sensors for Electronic Stability systems (ESP) for example.
Future cars will also have smart cameras. Another popular application is the
surveillance with rotating and zooming cameras. In this case we have rotation
information of the camera but normally lack correct zoom data.

In this contribution we will discuss the possibilities to use this external orien-
tation information for selfcalibration of arbitrary moving and zooming cameras.
We will first review the literature in section 2. Selfcalibration from image and
rotation data will be discussed in detail in section 3. Finally we will discuss some
experiments and conclude.

2 Previous work

Camera calibration has always been a subject of research in the field of computer
vision. The first major work on selfcalibration of a camera by simply observing



an unknown scene was presented in [9]. Since that time various methods have
been developed. Methods for the calibration of rotating cameras with unknown
but constant intrinsics were first developed in [11]. The approach was extended
for rotating cameras with partially varying intrinsic parameters in [5]. This work
uses the infinite homography constraint and has the disadvantage that not all
parameters are allowed to vary. The calibration process has three major steps:
linearized calibration, nonlinear calibration, and statistical calibration. Some-
times the first calibration step may fail due to noisy data.

Camera selfcalibration from unknown general motion and constant intrinsics
has been dicussed in [12]. For varying intrinsics and general camera motion the
selfcalibration was proved by [8]. All these approaches for selfcalibration only
use the images of the cameras themselves for the calibration.

Only few approaches exist to combine image analysis and external rotation in-
formation for selfcalibration. In [10] cameras with constant intrinsics and known
rotation were discussed. They use unconstrained nonlinear optimization to esti-
mate the camera parameters. This lack of attention is somewhat surprising since
this situation occurs frequently in a variety of applications: cameras mounted in
cars for driver assistence, robotic vision heads, surveillance cameras or PTZ-
cameras for video conferencing often provide rotation information.

In this paper we will address one of the few cases which have not yet been
explored, that of a rotating camera with varying intrinsics and known rotation
information. We will show that orientation information is helpful for camera
calibration. Furthermore it is possible to detect degenerate cases for calibration
like rotation about only one axis or about the optical axis.

3 Selfcalibration with known rotation

In this section we will develop novel techniques to use available external orienta-
tion information for camera selfcalibration. We will address both cases of purely
rotating and arbitrarily moving cameras.

3.1 Rotating cameras

We can exploit given rotational information to overcome the limitations on the
number of varying intrinsics and the problems caused by noise during compu-
tation in [5]. The homography H∞

j,i between two images i and j of a rotating
camera is given by

H∞
j,i = KiRj,iK

−1
j with K =

f s cx

0 a · f cy

0 0 1

 , (1)

where f is the focal length of the camera expressed in pixel units. The aspect
ratio a of the camera is the ratio between the size of a pixel in x-direction and
the size of a pixel in y-direction. The principal point of the camera is (cx, cy)
and s is a skew parameter which models the angle between columns and rows of



the CCD-sensor. Rj,i is the relative rotation of the camera between image j and
i. If Rj,i is known from an external orientation sensor, then equation (1) can be
rewritten as

KiRj,i −H∞
j,iKj = 03x3 or K−1

i mi,k − α(mj,k)Rj,iK
−1
j mj,k = 03x3, (2)

where α(mj,k) is the factor to homogenize Rj,iK
−1
j mj,k. (mi,k,mj,k) is in the

set of point correspondences between a point mk in image j and a point mk

in image i. The homography H∞
j,i can be estimated from the image point cor-

respondences [3]. Therefore, (2) is linear in the components of Ki and Kj and
provides nine linear independent contraints on the intrinsics of the cameras.

The estimated homographies are determined only up to scale ρj,i. There-
fore we can estimate only H̃∞

j,i := ρj,iH
∞
j,i from the images. For the estimated

homographies H̃∞
j,i equation (2) is modified to

03x3 = K̃iRj,i −H∞
j,iKj with K̃i = ρ−1

j,i Ki, (3)

which is also linear in the intrinsics of the camera j and linear in the elements
of K̃i. Note that due to the unknown scale we have now six unknowns in K̃i.
Eq. (2) provides nine linearily independent equations for each camera pair for
the five intrinsics contained in Kj and the five intrinsics of Ki plus the scale ρ−1

j,i

contained in K̃i. If there are no constraints available for the intrinsics, (2) has no
unique solution for a single camera pair. With two constraints for the intrinsics
or the scale ρ−1

j,i the solution is unique. Alternatively, if we consider a camera
triplet (i, j, k) with estimated homographies H̃∞

j,i and H̃∞
j,k, (3) provides

K̃iRj,i −H∞
j,iKj = 03x3 and K̃kRj,k −H∞

j,kKj = 03x3, (4)

with 17 unknowns and up to 9 independent equations for each camera pair.
Therefore, for each camera triplet the solution for the intrinsics and scales is
unique and can be solved even for fully varying parameters. In contrast to the
approach in [5] this calibration can always be computed even in the case of strong
noise.

Evaluation for rotating cameras: To measure the noise robustness of the cal-
ibration we test the approach with synthetic data. The center of the rotating
camera is at the origin , the image size is 512x512. The camera rotates about x-
axis and y-axis with up to six degrees and observes a scene in front of the camera.
The location of the projected points is disturbed by Gaussian noise with variance
of 2 pixel. The known camera orientation is also disturbed by noise of up to 2
degrees per axis. We varied both pixel and rotational noise. The homographies
H̃∞

j,i are estimated from point correspondences by least squares estimation. The
measurements for the first camera with focal length f = 415 and cy = 201 are
shown in figure 1. The measured errors for the other images are similar to these
results.

It can be seen from figure 1 that the estimated focal length f is rather
stable if the pixel noise is less than one pixel and the orientation data are noisy



by angular errors of less than one degree. The measured variance of the linear
estimation is below 10% for angle noise of up to 1 degree. The estimation for the
aspect ratio shows similar stability. The estimated principle point component cy

is not as stable as focal length f . It fits to noise for angular noise greater than
0.5 degrees. The estimation for the other principal point component cx and the
skew s is similar to the values of the principal point component cy. Furthermore
the influence of the orientation noise is much larger since the absolute rotation
angle between the cameras is in the range of the noise (6 degree camera rotation
with up to 2 degree noise). In the next subsection we will introduce a statistical
calibration method for robust calibration of all intrinsics.

3.2 Statistical calibration with known rotation

The above linear approach (4) is able to robustly estimate the focal length and
the aspect ratio. The estimation of the principal point is an ill posed problem [5].
For the most cameras the principal point is located close to the image center and
the skew is zero. Therefore the use of prior knowledge about the distribution of
the principal point and the skew can be used to reduce the estimation problems
of the linear approach (4).

Let us consider that the noise n on the measured image positions is additive
and has a Gaussian distribution with mean zero and standard deviation σ. Then
an approximation of the Maximum Likelihood estimation is given by:

MLE = arg min
Ki,Ri

#cameras∑
i=1

#points∑
k=1

‖K−1
i mi,k − α(mj,k)Rj,iK

−1
j mj,k‖2 (5)

To compute an exact Maximum Likelihood we have to weight the backprojection
error with the inverse variance of the image measurement. The approximation
error is small because we use normalized coordinates [2] for the computation. If
we model the expectation ppprior that the principal point probably lies close to
the center of the camera and has also a Gaussian distribution whose mean is the
image center, a Maximum a Posterori estimation of the intrinsics is simply

MAPpp = MLE + λpp

∑
i∈cameras

(ci − ppprior)T

[
σ2

x 0
0 σ2

y

]
(ci − ppprior). (6)

where λpp is the weight of the prior knowledge and σ2
x, σ2

y the distribution
parameters for the components of the principal point. Furthermore we are able
to use the given sensor orientation as a prior knowledge:

MAPori = MAPpp + λori

∑
i∈cameras

(1− < rj,i, rest >) + |φi,j − φest|. (7)

where rj,i is the rotation axis of Rj,i and φj,i is the rotation angle about rj,i.
The estimated rotation axis is rest and φest is the estimated rotation angle about
rest. Now we are able to optimize the orientation information concurrently with
the calibration. This can be used to improve the orientation data. The statistical
optimization is started with the linearily estimated focal length and aspect ratio
and the prior knowledge about principal point and skew.
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Fig. 1. Noise robustness measurements. Top from left to right: mean of linear estimated
focal length f , variance of linear estimated focal length f , variance of MAP estimated
focal length f . Bottom from left to right:mean of linear estimated principal point
component cy, mean of MAP estimated cy, variance of MAP estimation

Evaluation for rotating cameras: To measure the noise robustness of the cali-
bration technique (7) we test the approach with the above described synthetic
data. The measurements are shown in figure 1. The principal point varies with
about eight percent around the image center. As prior knowledge we use the
principal point at the image center. It can be seen that the statistical estimation
is more robust if the data is noisy. The variance of the focal length is much bet-
ter than in the linear case. The estimation of the principal point is much more
stable than in the linear case. The results for the other intrinsics are very similar.
Since the error of orientation sensors like the InertiaCube2 from InterSense is
normally in the range below one degree, we can rely on the rotation information.
The homography estimation can also be estimated with an error of less than 1
pixel for the features’ positions in most situations. This shows that the proposed
calibration with (7) is robust for most applications.

3.3 Calibration for freely moving cameras

We will investigate how to combine rotational information and the Fundamental
matrix Fj,i in the general motion case. The Fundamental matrix as opposed to
projection matrix is not affected by projective skew, therefore we will use Fj,i in
the following to calibrate the cameras.

Without loss of generality[3] each Fundamental matrix Fj,i can be decom-
posed to

Fj,i = [e]xKiRj,iK
−1
j ⇔ [e]xKiRj,i − Fj,iKj = 03×3. (8)



This is linear in the intrinsics of camera i and camera j. Please note the relation-
ship to Eq. (2). One can see that (8) is an extension of (2) which contains the
unknown camera translation t in the epipole. Equation (8) provides six linear
independent equations for the intrinsics of the cameras. So we need five image
pairs to compute the camera calibration in case of fully varying intrinsics.

The Fundamental matrices F̃j,i that have to be estimated from the images
are scaled by an arbitrary scale ρj,i

F̃j,i = ρj,iFj,i. (9)

For these estimated Fundamental matrices F̃j,i (8) is

03×3 = [e]xKiRj,i − F̃j,iKj = [e]xK̃iRj,i − Fj,iKj with K̃i = ρ−1
j,i Ki, (10)

which is also linear in the intrinsics of camera j and the scaled intrinsics of camera
i in conjunction with the scale ρ−1

j,i . It provides six linear independent equations
for the scale and the intrinsics of the cameras. From the counting argument
follows that the solution is never unique if no constraints for the scales ρ−1

j,i or
the intrinsics of the cameras are available.

If we use prior knowledge about the principal point of the cameras we are
able to compute the camera calibration from an image triplet (j, i, k) with (10).
To get a full camera calibration we use an approach similar to (7).

Evaluation for freely moving cameras: To measure the noise robustness of the
proposed calibration for arbitrarily moving cameras we use synthetic data with
known noise and ground truth information. Six cameras are positioned on a
sphere, observing the same scene as used before in case of purely rotated cameras.
The cameras also have a resolution of 512x512 pixels. The noise is the same
as above. We calculate the Fundamental matrices F̃j,i for the image pairs by
least squares estimation. The computed Fundamental matrices F̃j,i are used for
the robustness measurements. The results for the case of known principal point
(cx, cy) and known skew s are shown in figure 2 for the first camera with focal
length f = 415. The errors and variances for the other images are very similar
to these measurements.

It can be seen that for orientation noise of up to 1 degree and pixel noise
of up to 1 pixel the calibration is rather stable. The noise sensitivity for this
calibration is very similar to the rotational case, but one can see a slightly larger
influence of pixel noise for F-estimation.

4 Experiments

In this section we show some experiments on real data for rotating cameras and
for simulator scenes for fundamental matrix calibration.
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Fig. 2. Noise robustness measurements. Left: mean of estimated focal length f , and
variance of estimated focal length f . Right: images from the sequence for Fundamental
matrix calibration.
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Fig. 3. Left:Images from the zoom-pan sequence for rotation calibration, right: cali-
bration results for constant and varying focal length

4.1 Calibration of rotating camera

We tested the calibration techniques for rotating cameras with a sequence taken
by a consumer pan-tilt-zoom camera as used in video conferencing (Sony DV-31).
The camera is panning, and zooming during the sequence. Some frames of the
sequence are shown in figure 3. The camera rotation is taken from the camera
control commands, which means that we used the angles which are sent to the
camera. Therefore the rotation error depends on the positioning accuracy of the
pan-tilt head which is in the range of below 0.5 degrees for each axis. As refer-
ence for the zoom we manually measured the focal length of the different zoom
positions to calculate approximate ground truth. The focal length of the camera
varied between 875-1232 (in pixel). We also compensated the zoom-dependent
radial distortion beforehand. This can be done for the different zooming steps
of the camera without knowledge of the correct zoom.

The sequence was processed by tracking feature points with a KLT-tracker [13].
From these tracks we calculated the homographies for the sequence with RANSAC
and least-squares-estimation over the inliers. The reprojection error gave a mean
pixel error of 0.8 pixel. Calibration estimates for the focal length were computed
from triples of images.

Figure 3 shows results for focal length estimation. The dashed line gives
the true values, the solid line the estimated values. The left chart shows the
estimated focal length (in pixel) for constant focal length ftrue =940 pixel, the
right chart contains a zooming camera. The average relative estimation error is
around 3% for fixed zoom and 7% for changing zoom.

We tested the calibration of a moving and rotating camera by using images
rendered from a photorealistic car driving simulator. A camera in the car is
looking sideways and is panning while the car is driving forward (see figure 2).



The focal length was fixed to 415 (in pixel). From this sequence we estimated
the fundamental matrix with RANSAC. The rotation is the given rotation of the
ground truth data. However, we were able to detect this situation easily due to
the known rotation information. The estimated focal length has a relative error
of 3% w.r.t. the true focal length.

5 Conclusions

We introduced a novel linear calibration technique for rotating and moving cam-
eras which uses external orientation information. This orientation information
is already avaible in many applications. Furthermore the robustness of this cal-
ibration approach was discussed.

The analysis of the linear calibration technique leads to a statistical approach
for calibration. We showed that the statistical approach is more robust and can
be used for a wide range of applications.
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