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Abstract. We propose an approach for pose estimation based on a
multi-camera system with known internal camera parameters. We only
assume for the multi-camera system that the cameras of the system have
fixed orientations and translations between each other. In contrast to ex-
isting approaches for reconstruction from multi-camera systems we intro-
duce a rigid motion estimation for the multi-camera system itself using
all information of all cameras simultaneously even in the case of non-
overlapping views of the cameras. Furthermore we introduce a technique
to estimate the pose parameters of the multi-camera system automati-
cally.

1 Introduction

Robust scene reconstruction and camera pose estimation is still an active re-
search topic. During the last twelve years many algorithms have been developed,
initially for scene reconstruction from a freely moving camera with fixed calibra-
tion [2] and later even for scene reconstruction from freely moving uncalibrated
cameras [3]. All these approaches are using different self-calibration methods,
which have been developed in the last decade, to estimate the internal calibra-
tion of the camera. This self-calibration can be used to estimate the internal
parameters of multi-camera systems (MCS).

However, all these methods still suffer from ill-conditioned pose estimation
problems which cause flat minima in translation and rotation error functions [4].
Furthermore the relatively small viewing angle is also a problem which influences
the accuracy of the estimation [4]. Due to these problems we introduce a new pose
estimation technique which combines the information of several rigidly coupled
cameras to avoid the ambiguities which occur in the single camera case. In our
novel approach we estimate a rigid body motion for the MCS as a whole. Our
technique combines the observations of all cameras to estimate the six degrees
of freedom (translation and orientation in 3D-space) for the pose of the MCS. It
exploits the fixed rotations and translations between the cameras of the MCS.
These fixed rotations and translations are denoted as a configuration in the
following. We also give a technique to determine these parameters automatically
from an image sequence of the MCS.

The paper is organized as follows. At first we discuss the previous work in pose
estimation from a single camera or a MCS. Afterwards we introduce our novel
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pose estimation approach. In section 4 we provide a technique to automatically
estimate the configuration of the MCS. Furthermore in section 5 we show some
experimental results to measure the robustness of our approach.

1.1 Notation

In this subsection we introduce some notations. The projection of scene points
onto an image by a calibrated camera may be modeled by the equation x = PX.
The image point in projective coordinates is x = [xx, xy, xw]T , while X =
[Xx, Xy, Xz, Xw]T is the 3D-world point [ Xx

Xw , Xy

Xw , Xz

Xw ]T in homogeneous co-
ordinates and P is the 3×4 camera projection matrix. The matrix P is a rank-3
matrix. If it can be decomposed as P = [RT | − RT C], the P-matrix is called
metric, where the rotation matrix R (orientation of the camera) and the trans-
lation vector C (position of the camera) represent the Euclidian transformation
between the camera coordinate system and the world coordinate system.

2 Previous work

For a single moving camera, Fermüller et. al. discussed in [4] the ambiguities for
motion estimation in the three dimensional space. They proved that there were
ambiguities in estimation of translation and rotation for one camera for all types
of given estimation algorithms. These ambiguities result in flat minima of the cost
functions. Baker et. al. introduced in [5] a technique to avoid these ambiguities
when using a MCS. For each camera the pose is estimated separately and the
ambiguities are calculated before the fusion of the ambiguous subspaces is used
to compute a more robust pose of the cameras. In contrast to our approach the
technique of [5] does not use one pose estimation for all information from all
cameras simultaneously.

There is some work in the area of polydioptric cameras [7] which are in fact
MCSs with usually very small translations between the camera centers. In [8] a
hierarchy of cameras and their properties for 3D motion estimation is discussed.
It can be seen that the pose estimation problem is well-conditioned for an MCS
in contrast to the ill-conditioned problem for a single camera.

The calibration of a MCS is proposed in [5]. The line-based calibration ap-
proach is used to estimate the internal and external parameters of the MCS.
For a MCS with zooming cameras a calibration approach is introduced in [9, 10].
An approach for an auto-calibration of a stereo camera system is given in [1].
Nevertheless, all standard calibration, pose-estimation and structure from mo-
tion approaches for stereo camera systems exploit the overlapping views of the
cameras, what is in contrast to our pose estimation approach, which does not
depend on this.

3 Pose estimation for multi-camera systems

In this section we introduce our novel approach for rigid motion estimation
of the MCS. The only assumptions are that we have a MCS with an internal
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calibration Ki for each of the cameras and a fixed configuration. That assump-
tion is valid for most of the currently used MCSs because all these systems are
mounted on some type of carrier with fixed mount points. The computation of
the configuration from the image sequence itself is introduced in section 4. The
internal camera calibration Ki can be determined using the techniques of [10,
3]. For convenience we will always talk about K-normalized image coordinates
and P-matrices, therefore Ki can be omitted for pose estimation.

3.1 Relation between world and multi-camera system

The general structure from motion approach uses an arbitrary coordinate sys-
tem Cworld to describe the camera position by the rotation R of the camera,
the position C of the camera center and the reconstructed scene. Normally the
coordinate system Cworld is equivalent with the coordinate system of the first
camera. In this case the projection matrix of camera i with orientation Ri and
translation Ci is given by

Pi =
[
RT

i | −RT
i Ci

]
. (1)

For a multi camera-system we use two coordinate systems during the pose
estimation. The absolute coordinate system Cworld is used to describe the posi-
tions of 3D-points and the pose of the MCS in the world. The second coordinate
system used, Crig, is the relative coordinate system of the MCS describing the
relations between the cameras (configuration). It has its origin at Cv and it is
rotated by Rv and scaled isotropically by λv with respect to Cworld.

Now we discuss the transformations between the different cameras of the
MCS and the transformation into the world coordinate system Cworld. Without
loss of generality we assume all the translations ∆Ci and rotations ∆Ri of the
cameras are given in the coordinate system Crig. Then with (1) the camera
projection matrix of each camera in Crig is given by

P
Crig

i =
[
∆RT

i | −∆RT
i ∆Ci

]
. (2)

The position Ci of camera i and the orientation Ri in Cworld is given by

Ci = Cv +
1
λv

Rv∆Ci, Ri = Rv∆Ri, (3)

where translation Cv, orientation Rv and scale λv are the above described rela-
tions between the MCS coordinate system Crig and the world coordinate system
Cworld. Then the projection matrix of the camera i in Cworld is given by

Pi =
[
∆RT

i RT
v | −∆RT

i RT
v (Cv +

1
λv

Rv∆Ci)
]

. (4)

With (3) we are able to describe each camera’s position in dependence of the
position and orientation of camera i in the coordinate system of the multi-camera
system Crig and the pose of the MCS in the world Cworld. Furthermore with (4)
we have the transformation of world points X into the image plane of camera i
in dependence of the position and orientation of the MCS and the configuration
of the MCS.
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3.2 Virtual camera as a representation of a multi-camera system

We now introduce a virtual camera as a representation of the MCS, which is used
to determine the position of the MCS in Cworld independent of its configuration.

The virtual camera v which represents our MCS is at the origin of the coor-
dinate system Crig and is not rotated within this system. It follows immediately
that it has position Cv and orientation Rv in Cworld because it is rotated and
translated in the same manner as the MCS. With (1) the projection matrix Pv

of the virtual camera v is

Pv =
[
RT

v | −RT
v Cv

]
, (5)

where rotation Rv and position Cv are the above given rotation and position of
the MCS. From (4) and (5) it follows that the projection matrix Pi of camera i
depends on the virtual camera’s projection matrix Pv :

Pi = ∆RT
i

(
Pv +

[
03x3| −

1
λv

∆Ci

])
. (6)

3.3 Pose estimation of the virtual camera

Now we propose a pose estimation technique for the virtual camera using the
observations of all cameras simultaneously. The image point xi in camera i of
a given 3D-point X is given as xi

∼= PiX, where xi ∈ IP2, X ∈ IP3 and ∼= is
the equality up to scale. With equation (6) the image point xi depends on the
virtual camera’s pose by

xi
∼= PiX = ∆RT

i

(
Pv +

[
03x3| −

1
λv

∆Ci

])
X, (7)

For a MCS with known configuration, namely camera translations ∆Ci, camera
orientations ∆Ri and scale λv, this can be used to estimate the virtual camera’s
position Cv and orientation Rv in dependence of the image point xi in camera i
as a projection of 3D-point X.

Now we deduce a formulation for the estimation of the virtual camera’s po-
sition Cv and orientation Rv given the translations ∆Ci, orientations ∆Ri, and
scale λv of the cameras of the MCS. From (7) we get

∆Rixi︸ ︷︷ ︸
x̃i

∼= PvX − Xw

λv
∆Ci︸ ︷︷ ︸

x̂

,

where X = [Xx, Xy, Xz, Xw]T ∈ IP3 is the 3D-point in the 3D projective space.
Using the same affine space for x̃i and x̂ leads to the following linear equations

Xxx̃x
i (Pv)3,1 + Xyx̃x

i (Pv)3,2 + Xzx̃x
i (Pv)3,3 + Xwx̃x

i (Pv)3,4

− (Xxx̃w
i (Pv)1,1 + Xyx̃w

i (Pv)1,2 + Xzx̃w
i (Pv)1,3 + Xwx̃w

i (Pv)1,4)
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= (∆C̃i)3Xwx̃x
i − (∆C̃i)1Xwx̃w

i , (8)
Xxx̃y

i (Pv)3,1 + Xyx̃y
i (Pv)3,2 + Xzx̃y

i (Pv)3,3 + Xwx̃y
i (Pv)3,4

− (Xxx̃w
i (Pv)2,1 + Xyx̃w

i (Pv)2,2 + Xzx̃w
i (Pv)2,3 + Xwx̃w

i (Pv)2,4)

= (∆C̃i)3Xwx̃y
i − (∆C̃i)2Xwx̃w

i (9)

in the entries of Pv with x̃i = [x̃x
i , x̃y

i , x̃w
i ]T and ∆C̃i = 1

λv
∆Ci .

Note that the above equations are a generalization of the case of a single
camera which can be found in [1] and analogous methods to those given in [1]
can be used to estimate Pv from these equations and to finally extract the
unknown orientation Rv and the unknown position Cv. The extension for the
MCS is that the rotation compensated image points x̃i are used and terms for
the translation ∆Ci of camera i in the multi-camera coordinate system Crig are
added. In the case of pose estimation for a single camera using our approach it is
assumed without loss of generality that the coordinate system Crig is equivalent
to the camera’s coordinate system. Then ∆Ci vanishes and the rotation ∆Ri

is the identity. In this case (8) and (9) are the standard (homogeneous) pose
estimation equations from [1].

4 Calibration of the multi-camera system

In the previous section we always assumed that we know the orientation ∆Ri

and translation ∆Ci of each camera in the coordinate system Crig and the scale
λv between Crig and Cworld. In this section we present a technique to estimate
these parameters from the image sequence of a MCS with overlapping views.
However, note that the simultaneous pose estimation of the MCS itself does not
depend on overlapping views, once the configuration is known.

Suppose we are given n cameras in the MCS and grab images at time t0.
After a motion of the MCS (time t1), we capture the next image of each camera.
We now have 2n frames with overlapping views, for which a standard structure-
from-motion approach (for example as described in [6]) for single cameras can
be applied to obtain their positions and orientations.

For each of the two groups of n cameras (the MCS at t0 and t1) the virtual
camera is set to the first camera of the system. Then the rigid transformations
for the other cameras are computed and averaged, which yields an initial approx-
imate configuration of the system. In order to obtain a mean rotation we use
the axis-angle representation, where axes and angles are averaged arithmetically
with respect to their symmetries. If Cworld is defined to be the coordinate system
of the estimated single cameras, it follows immediately that λv has to be set to
1 since Crig already has the correct scale.

To improve precision the estimate of the configuration is iteratively refined:
For each new pose of the system the pose of each single camera is revised with
respect to the points seen by that camera. Afterwards the configuration of the
refined cameras is computed and averaged with the previously estimated con-
figurations. Since the combined camera system pose estimation is somewhat
sensitive to noise in the configuration parameters, this is more robust.
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Fig. 1. Dependency of the standard deviation of the feature position noise in pixel (a)
the mean of the norm of camera center error, (b) the standard deviation of the latter
error, (c) the absolute value of the angular error of the cameras orientation, (d) the
standard deviation of the latter error.
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Fig. 2. Dependency of the standard deviation of the noise in the MCS configuration
(a) the mean of the norm of the camera center error, (b) the standard deviation of the
norm camera center error, (c) the absolute value of the angular error of the cameras
orientation, (d) the standard deviation of the angular error of the cameras orientation.

5 Experiments

In this section the introduced estimation techniques for the pose of a MCS are
evaluated. First we measure the robustness of the technique with synthetic data.
Afterwards we use image sequences generated by a simulator and compare our
results with the given ground truth data. Finally we also present experimental
results for a real image sequence.

To measure the noise robustness of our novel pose estimation technique we
use synthetic data. The MCS is placed in front of a scene consisting of 3D-points
with given 2D image points in the cameras of the MCS. At first we disturb the
2D correspondences with zero-mean Gaussian noise for each image. Afterwards
we use our approach to estimate the pose of the virtual camera, with a least
squares solution based on all observed image points. The norm of the position
error and the angle error of the estimated orientation can be seen in figure (1).
It can be seen that the proposed pose estimation is robust with respect to the
pixel location error of up to 1 pixel noise.

In a second test we disturb the configuration of the MCS with a zero-mean
Gaussian translation error (with sigma of up to 5% of the camera’s original
displacement) and a Gaussian rotation error of up to 0.35 degrees in each axis.
It can be seen that the proposed pose estimation technique is robust against these
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disturbances but the configuration errors cause higher errors in the estimated
pose than the noise in the feature positions does.

In order to measure the pose estimation errors of the proposed approach in a
structure-from-motion framework, we use a sequence of rendered images (see fig.
3) with ground truth pose data. In this sequence a MCS with two fixed cameras
with non-overlapping views is moved and rotated in front of a synthetic scene. We
implemented a pose estimation algorithm with the following steps: Given a set of
Harris corners and corresponding 3d points in an initial image 1.) in each image
a Harris corner detector is used to get feature positions, 2.) from the corners a set
of correspondences is estimated using normalized cross correlation and epipolar
geometry, 3.) using these correspondences (and the referring 3d points) the pose
is estimated with RANSAC using eq. (8) and (9), 4.) afterwards a nonlinear
optimization is used to finally determine the pose of the MCS. The measured
position and orientation errors are shown and compared to a single camera pose
estimation in fig. 3. It can be seen that using the MCS pose estimation the
rotation is estimated with a smaller error than in the single camera case, but
the translation estimatates for a single camera is slightly better for this data.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 2 4 6 8 10 12 14 16

ro
ta

tio
n 

er
ro

r i
n 

de
gr

ee
ro

ta
tio

n 
er

ro
r i

n 
de

gr
ee

multi-camera system
single camera

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16

ce
nt

er
 e

rr
or

 in
 %

multi-camera system
single camera

(a) (b) (c) (d)

Fig. 3. (a),(b): non-overlapping simulator images of MCS (c),(d): error of relative trans-
lation and rotation since previous estimate w.r.t. to ground truth (17 image pairs) for
standard structure from motion and MCS structure from motion.

Now we show that the pose estimation also works well on real images. The
images used have been taken at the National History Museum in London us-
ing a MCS with four cameras mounted on a pole. The configuration has been
computed from the image data as described in the previous section. Using
standard single-camera structure-from-motion approaches, the pose estimation
breaks down in front of the stairs. Due to the missing horizontal structure at
the stairs there are nearly no good features. However, incorporating all cameras
in our approach makes the pose estimation robust exactly in those situations,
where some of the cameras can still see some features. Using our approach to
compute the MCS configuration the initial estimates for the centers are refined
by about five to eight percent in Crig compared to the finally stable values. Af-
ter about the seventh pose estimate the center change rate reaches one percent.
It is interesting that although the parameters for the second camera are not
estimated very well, the system does work robustly as a whole.
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Fig. 4. Museum scene: (a) overview image, (b) reconstructed scene points and cameras,
(c) relative corrections of centers in Crig, (d) incremental optical axes rotations. The
sequence starts in front of the arc to the left, moves parallel to some wide stairs and
finishes in front of the other arc to the right. 25 times 4 images have been taken.

6 Conclusions

We introduced a novel approach for pose estimation of a multi-camera system
even in the case of non-overlapping views of the cameras. Furthermore we in-
troduced a technique to estimate all parameters of the system directly from the
image sequence itself. The new approach was tested under noisy conditions and
it has been seen that it is robust. Finally we have shown results for real and
synthetic image sequences.
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