
Distributed Interaction Processing and Visualization of 3D Scenes in Realtime

Jan-Michael Frahm, Jan-Friso Evers-Senne and Reinhard Koch
Institute for Computer Science and Applied Mathematics

Christian-Albrechts University of Kiel, Germany
{jmf, evers, rk}@mip.informatik.uni-kiel.de

Abstract

A distributed realtime system for immersive visualization
is presented which uses distributed interaction for control.
We will focus on a network architecture for distributed inter-
action processing for multiple devices and distributed visu-
alization. Furthermore we will discuss in detail user track-
ing with fixed and pan-tilt-zoom cameras. One of our goals
is the use of standard hardware and standard network pro-
tocols for the system. For the distributed realtime visualiza-
tion we use consumer graphics hardware only.

1 Introduction

The design of novel human computer interfaces is an ac-
tive research topic. The main goal is the design of interfaces
which can be used in a more natural way [2, 6, 7]. This can
be achieved by utilizing natural human actions like walking,
pointing or gestures for interaction control. Our system cap-
tures these natural human actions with nonimmersive sen-
sors, namely a multi camera system.

The distributed interaction and visualization system has
two major parts:

1. Processing of the interaction data and fusion of infor-
mation.

2. Updating of all affected data and displaying the new
state of the application.

The next section will give a brief overview of the differ-
ent components of the system and how they work together.
Section 3 introduces a protocol to synchronize distributed
visualization and distributed interaction processing. The in-
teraction processing will be discussed in section 4. Finally,
the distributed visualization is discussed in section 5.

2 System overview

In this section we will give a brief overview of our sys-
tem architecture and its components. The aim of the sys-
tem is to enable the user to explore a virtual scene inter-
actively with more immersive techniques than keyboard,
mouse, headtracker or any other cable connected devices.

The virtual 3D-scene is displayed simultaneously on a
stereo backprojection wall in front of the user and on two
displays placed beside the user (side displays). All these
displays are synchronized with the presented techniques.

The user can interact with the 3D scene by simply walk-
ing throughout the scene. To get the motion of the user
we track the user with three cameras. One fixed camera
is located at the ceiling and two pan-tilt-zoom cameras are
mounted in front of the user at the bottom of the stereo dis-
play (see fig. 1). This interaction is very natural because
there is no special tracking device fixed to the user’s body.

Figure 1. View of interaction area with the dis-
play and the cameras.

The system architecture is as follows. The camera at the
ceiling (overhead camera) locates the position of the user’s
feet on the floor. This sensor delivers a 2D position that can
be used to initialize and confine the search range of the two
pan-tilt cameras facing the user. If the pan-tilt-zoom cam-
eras have found the user’s head by searching for skin col-
ored blobs they will track the user’s face. From the rotation
angles of the pan-tilt cameras we will triangulate the user’s
3D head position in space. This position is used to calculate
the viewpoint for a virtual view of the scene. The viewpoint
position is transmitted to four framewise synchronized visu-
alization nodes for the stereo display and the side displays.

All the modules of the system are computationally ex-
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Figure 2. Components of the distributed sys-
tem and their connections

pensive and demand realtime requirements of at least 10-15
frames per second for tracking and 30 frames per second
for visualization. We have therefore distributed the compu-
tational load to different Linux client nodes. Currently each
camera is attached to a separate node with a frame grab-
ber, and the stereo display is splitted onto four nodes with
fast OpenGL consumer graphics cards for the stereo display
and the side displays. These machines need a synchroniza-
tion and intercontrol protocol to meet the requirements of
the realtime interaction system and to fuse and distribute
the inputs. This is handled by the interaction server. All
machines are connected by standard Ethernet network in-
terfaces. Figure 2 sketches the complete system and the
connectivity with the interaction server.

3 Distributed synchronized visualization and
interaction

This section describes at first the synchronization of the
graphics clients and in the next subsection the synchroniza-
tion of the distributed interaction processing with the graph-
ics clients.

3.1 Synchronization for distributed visualization

Distributed rendering of a dynamic scene depends on the
synchronization of graphics clients to assure a coherent vi-
sualization. For framewise synchronization of the graphics
clients we need a common decision that all clients have ren-
dered their views and simultaneously display their views
after decision concurrently. To guarantee this framewise
synchronization of the displays we use the protocol as de-
scribed in [4].

This protocol uses a spanning tree architecture for graph-
ics nodes to distribute aready-to-displaymessage to a spe-
cific node (root node) in the network, namely one of the

graphics nodes. After receivingready-to-displaymessages
from all other visualization nodes the root node distributes a
display-immediatelymessage via IP-multicast to all clients
(see fig. 3). This protocol is optimal with respect to the
number of messages sent and therefore produces few colli-
sions on the network. In [4] it was measured that the gener-
ated time shift between different displays is not noticeable
to the user.

Furthermore it provides a frame counter to synchronize
interaction devices. The protocol is also able to distribute
payload information on each synchronization step to the
graphics nodes. In the next section we will describe the
extension of the protocol used for interaction processing in
detail.

3.2 Control of visualization network by interac-
tion

In many virtual environments user interaction has to be
processed. The above mentioned protocol [4] for synchro-
nization of graphics clients can be extended to handle such
interaction information. We will describe this extension of
the protocol in this section.
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Figure 3. Architecture for visualization and in-
teraction processing

We assume that every type of interaction processing has
one process (interaction server) which is able to transmit
interaction processing information to our visualization net-
work (see fig. 3). This assumption is no constraint for inter-
action processing because there is only one interaction pro-
cess, which is the interaction server itself. For distributed
interaction processing one process has to collect the relevant
interaction information, fuse the information and transmit it
to the visualization network.

Tracking of user interaction does not depend on the
frame rate of visualization because it can be continuous in-
teraction, for example pointing to an object at the display, or
discrete interactions like clicking, selecting, etc. Especially,
interaction processing does not need to be synchronous to
the frame rate of visualization. For this reason we assume
interaction processing as an asynchronous task. This as-
sumption leads to a visualization network separated from
the architecture for interaction processing. In this case it is
possible to use any type of interaction processing algorithm.
To correlate interaction events with the displayed context it
is necessary to have a globally consistent time for visual-
ization and interaction clients. For time synchronization of



the client clocks NTP [8] could be used. For framewise syn-
chronization the frame counter is an appropriate time stamp.

3.3 Interaction synchronization

The interaction server is a specific process not included
in the visualization network. It communicates with the root
of the visualization network and transmits all interaction
data to the root. Furthermore, the interaction server receives
the frame counters which are distributed via multicast from
the root of the visualization network. These frame counters
could be used to correlate the interaction events with the
displayed context.

The root of the visualization tree provides interaction in-
formation to all graphic clients simultaneously through the
IP-Multicast for synchronization. All graphic clients have
to process this information in their context. In this way ev-
ery client can modify its state depending on interaction in-
formation. If this processing produces relevant information
for other graphic clients it can be submitted as payload with
theready-to-display-messages to the root and will be trans-
mitted to all other clients with the nextsynchronization-
message. The modified architecture for visualization and
interaction is shown in figure 3.

The interaction processing adds a delay to the synchro-
nization. In the worst case we will have a delay of two
frames. The aspects of quality-of-service criterion for in-
teraction are discussed in detail by Holloway [5]. If the
visualization reaches frame rates of 30 or more frames per
second, this interaction delay meets the quality-of-service
criterion for most applications.

4 Interaction processing

In this section we will discuss the distributed interaction
processing for the multi camera system. Furthermore the
fusion of the cameras interaction data to compute the cur-
rent viewpoint for visualization will be introduced.

4.1 2D Foot tracking with overhead camera

The overhead camera mounted at the ceiling is equipped
with a wide-angular lens. It is tilted to view the whole
floor of the interaction area in front of the display. Further-
more the radial distortion is compensated during computa-
tion. Since the camera views the planar floor we can use
four points on the floor to compute a homographyHfloor

that relates ground floor scene coordinates and image coor-
dinates.

We use a background image to substract background in-
formation from the current image [3] (see fig. 4(a) and
(b)). After this background substraction the difference im-
age only contains noise, the user, and the shadows caused by
the user. The noise caused by the camera CCD is canceled
out by adaptive thresholding. To determine the threshold
we compute the camera noise and mean of this noise in the
previous segmented image. Then we are able to compute

(a) (b)

(c) (d)

Figure 4. (a) background image of the over-
head camera, (b) current image, (c) seg-
mented difference image, (d) segmented im-
age after shadow removal

a confidence intervall for intensity differences caused fom
noise. Normally we use anα = 99.9% confidence intervall.

After noise rejection the difference image contains the
user and the shadows (see fig 4 (c)). We assume for shadows
the following properties:

• a shadow pixel is darker than the corresponding pixel
in the background image,

• the texture of the shadow is correlated with the corre-
sponding texture of the background image.

In the next step we will remove the segmented shadows.
At first we erode single segmented pixels because these

segments are normally caused by noise but were not re-
jected by the previous test. Then we compute a 9x9 normal-
ized cross correlation for each remaining segment which is
darker than in the background image.

For shadow pixels this cross correlation is near to one
except for camera contrast changes. These contrast changes
are caused by the nonlinear system transfer function of the
CCD sensor. The range of illumination changes caused
from the displays leaves the contrast of the camera approx-
imately constant in our interaction room. Each pixel with a
normalized cross correlation greater than a given threshold
θNCC is segmented as background. NormallyθNCC = 0.7
is a good choice. After this segmentation update we use a
dilatation to close the segmented structure (see fig 4 (d)).

Now the current image is segmented into foreground
which contains only the user and background which is the
interaction area. At last we have to locate the user’s feet on
the floor. We exploit the fact that, due to the tilted view-
ing frustum of the camera, the feet are always visible in the
camera even if the head of the user in the interaction area
may not be visible. With respect to the viewing geometry



of the cameras, the user’s feet are always located on the bot-
tom most part of the foreground.

We identify the user position with the bottom most foot
position in the segmented camera image. The foot position
is found by scanning the segmented image from the bottom
right to the top left and searching for the first occurrence
of a block of the sizeu(x, y), whereu(x, y) models the
expected feet size depending on the position(x, y) of the
feet on the interaction area.

The reliability of this pose estimation depends on the
noise in the difference image. To avoid noise in the esti-
mated position we only update the estimated position if the
new position has a distance from the last estimated position
in pixel greater than a given thresholdω. Normallyω = 2
pixel is a good choice.

It can be assumed that the feet move on a plane, namely
the floor, so the above mentioned homographyHfloor from
the camera coordinates to the floor coordinates is applied
to get the position of the user’s feet on the floor. These
2D coordinates are submitted to the interaction server for
further processing.

This segmentation and searching for the users feet is
computed with an unoptimized implementation in 30ms on
a computer with an Athlon 1.2GHz processor and 512MB
RAM.

4.2 3D Head tracking with pan-tilt-zoom cameras

For the correct estimation of the users viewpoint it is not
sufficient to know the 2D position of the user as given by
the overhead camera. Instead we need to know the 3D po-
sition of the user’s head. The missing unknown parameter
is the height of the head above the floor. In the most sim-
ple approach this height could be assumed to be fixed. The
drawback would be, that movements in vertical direction
could not be recognized and therefore would not effect the
virtual camera position, which is used for visualization.

As an extension we use two pan-tilt-zoom (ptz) cam-
eras positioned on either side of the screen to determine the
user’s head position. The mapping between the camera co-
ordinates and the interaction floor coordinates can also be
described by a homographyHptz.

In order to obtain information for 3D triangulation two
tasks have to be solved:

• The position of the user’s head within the image has to
be determined depending on the current pan angle, tilt
angle, and zoom.

• If the user’s head is not within the image, initialization
angles have to be computed from the users location on
the interaction floor.

For the first task, we use a color based algorithm instead
of face recognition which utilises a self-adapting bounding
box in the HSV color space. This approach is described in
detail in [3].

The second task requires a technique to compute the pan
angle and the tilt angle given a position on the floor of the

Figure 5. Left : Picture of the user as seen by
the pan-tilt-zoom camera. Right: The accord-
ing binary image after color segmentation.

interaction area. For this calculation we use the concept of
a virtual camera from [3]. With this virtual camera and a
fixed mean body height as initial assumption we are able to
compute the pan and tilt angle for each ptz-camera from the
floor position given from the overhead cameras.

It is not necessary to find the user’s head exactly (in the
image center) at first guess. It suffices if the user’s head is
visible somewhere in the image. Therefore we use a wide
angular view at first. Then the exact pan and tilt angles are
computed from the deviation of the user’s head position to
the image center. As an additional advantage the pan and
tilt angles can be used for triangulation if the user’s head
is exactly centered in both pan-tilt-zoom camera images. If
one camera is not able to recognize the face, it sets an in-
valid flag. These data are sent to the interaction server that
computes the final 3D head position based on the available
estimates from all three cameras.

The described user tracking with a Sony (DVI-30 video
conferencing pan-tilt-zoom camera) is computed in less
than 40ms on a computer with an 1.2GHz Athlon proces-
sor with 512MB RAM. Normally the computation is much
faster than 40ms but the processing time depends on the area
in the image of skin colored blobs.

4.3 Sensor fusion with interaction server

The interaction server acts as a central communication
platform between one or more sensors and the visualization
network.

The interaction server is connected to the root node of
the visualization network which uses the netsync protocol to
control visualization. The interaction server receives mul-
ticast messages containing the frame counter of the current
render cycle. In addition, the interaction server sends in-
teraction data like viewpoint updates asynchronously to the
root node.

The interaction server accepts TCP connections from ar-
bitrary sensor clients, each implementing a specialized in-
teraction device. These clients send their data, marked
with the frame counter of the time it was acquired, asyn-
chronously to the interaction server. The frame counter of
the sensor data is used to maintain data consistency. The
fusion of the data from multiple sensors is done in the inter-
action server to assure a coherent status.

If new data from any sensor client arrives, the current



state (in this case position of the user’s head) is recalcu-
lated based on the known data of other sensor clients and
the newly received data.

The sensor clients are also allowed to request data from
other sensors. These requests are handled by the interac-
tion server to avoid network traffic between individual sen-
sor clients and again to assure coherence. For example the
sensor client controlling the pan-tilt-zoom cameras for face
tracking uses this mechanism to initially query the 2D user
position from the overhead camera.

The concept of sensor fusion with the interaction server
is generic. As an example we will describe 3D head position
estimation from our multi camera setup. Three cameras are
used to observe the interaction area: one overhead camera
and two pan-tilt-zoom cameras. Therefore we achieve a ro-
bust pose estimation in the case of one user and we are also
able to select the controling user in case of multiple users.

For a 3D tracking of the user the overhead camera and
one pan-tilt-zoom camera is sufficient. Alternatively we can
also use only the two pan-tilt-zoom cameras to estimate the
3D position of the users head. Knowing the position of the
two pan-tilt-zoom cameras, the interaction server receives
the orientation from each pan-tilt-zoom camera and calcu-
lates the intersection of the two rays originating from the
cameras. In the general case these two rays do not intersect
due to the problems of wide base line stereo position esti-
mation. Therefore the point which has the minimal distance
to each ray is used as user’s head position.

Now we can use every combination of two cameras to
compute additional pose estimates. It is then possible to
compute a mean value of the positions as a reliable estimate
of the users head position.

If only the overhead camera is available it is possible
to track the users position in 2D on the floor. In addition
we can extend the feet position received from the overhead
camera to a 3D position by assuming a fixed height of the
head above the floor.

If both pan-tilt-zoom cameras are tracking and the over-
head camera does not work properly, this does not affect the
user tracking, as long as there is only one single user in the
interaction area.

If there is more than one face visible for the pan-tilt-
zoom cameras, it has to be decided which one should be
tracked. In this case pan and tilt angles for all faces seen
from both pan-tilt-zoom cameras can be used to compute
a 3D position for each visible face. The one which is the
nearest to the display is chosen to be thecontrol user. Using
this control user’s position, the matching blob in the over-
head cameras image is selected and the two redundant posi-
tions from overhead camera and one pan-tilt-zoom camera
are calculated. Finally, the mean value of all three positions
is taken as the user position.

The calculated 3D user position in world coordinates is
transformed to a coordinate system appropriate to the visu-
alization subsystem and transmitted to the root node of the
visualization subsystem.

Figure 6. A view of the interaction area with
a user wearing polarized glasses. The pan-
tilt-zoom cameras can be seen on the left and
right side of the display.

5 Synchronized 3D scene rendering

The users head position which has been computed by
the interaction server is now sent to the visualization sub-
system. Three different screens are used to create an im-
mersive visualization. The center screen is3m × 2m
stereoscopic backprojection system driven by two projec-
tors equipped with polarization filters. Two additional
screens are mounted besides the center screen and the two
corresponding projectors are mount at the ceiling. These
two side views are monoscopic only because the user fo-
cuses on the center display and the side views are only seen
by one eye.

Each projector is driven by one standard Linux PC
equipped with modern consumer 3D accelerator graphics
hardware. Figure 6 shows the view of the interaction area
with display and cameras.

The user can explore the scene by walking around the
interaction area. These movements are captured by the pre-
viously described multi camera system.

The four graphics nodes are synchronized as described
in section 3. The root node listens for a connection from the
interaction server. Once connected, the interaction server
sends updates of the data describing the virtual camera (po-
sition and orientation of the user) to the root node, which
distributes this update with the next synchronization cycle.
Each of the nodes receives this data and calculates the pa-
rameters of its virtual camera accordingly.

5.1 Multiple Virtual Views

Each projector displays one view of the virtual scene.
To ensure consistency for the user, care has to be taken
to calculate the parameters for each view. Using stan-
dard OpenGL these parameters are position, orientation and
viewing frustum of the virtual camera. For an easier han-
dling of movements, two nested coordinate systems are
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used. The outer one is calledscene spaceand all virtual
objects are located in this space. The origin of the second
coordinate system is also located in scene space at position
p and calledviewpoint space, {v1, v2, v3, p} is an orthonor-
mal base of the affine viewpoint space. Viewpoint space
coordinates can be transformed into scene space with

T4×4 =
[
v1 v2 v3 p
0 0 0 1

]
(1)

The user is located inside the viewpoint and sees the vir-
tual scene on the screens similar as if looking through win-
dows into the scene. The relative positionu of the user and
of all screens are given in viewpoint space. Each screen is
specified by the position of the bottom-left cornersbl and
two vectorsw, h spanning it, the lengths‖w‖2 and‖h‖2

correspond to the width and height. All positions are given
in homogeneous coordinates. We also need the normal
N = w × h of the screen pointing inside the interaction
area. The screen should be the near clipping plane for the
virtual camera so that virtual objects in front of the screen
get clipped. This is specified by the distance to the user:

dnear= u · N − sbl · N

The distance of the far clipping planedfar can be chosen
as needed. To calculate the right, left, bottom and top val-
ues according to the OpenGL viewing frustum the point-of-
intersectionsi of the normal throughu is used:

si = u − dnearN

Nowdleft, dright, dbottomanddtop can be calculated as follows:

dleft =
si · w − sbl · w

‖w‖2
, dright = dleft + ‖w‖2

dbottom =
si · h − sbl · h

‖h‖2
, dtop = dbottom+ ‖h‖2

Positioning the virtual camera requires to specify two points
in scene space:cpos andctarget and one vector for “up”:cup.
With the transformation from (1) these are:

cpos = T · u, ctarget= T · si, cup = T · h (2)

Stereo visualization can be achieved with the described
setup, too. Assuming the distance between the viewers eyes
is approximatly 7cm, the virtual camera for the left eye is
moved 3.5cm to the left, and the virtual camera for the right
eye is moved 3.5cm to the right. This leads to a method
called “parallel axis asymmetric frustum perspective pro-
jection” as described in [1].

6 Conclusions

We presented a technology for an interaction room which
only requires standard consumer graphics hardware, stan-
dard network hardware, and standard network protocols.
It allows intutive user interaction with non immersive sen-
sors, namely a multi camera tracking system. Furthermore
we discussed in detail the distributed interaction process-
ing and the distributed realtime visualization with standard
consumer hardware.
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