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Abstract

We develop a sequential optimal sampling framework
for stereo disparity estimation by adapting the Sequential
Probability Ratio Test (SPRT) model. We operate over local
image neighborhoods by iteratively estimating single pixel
disparity values until sufficient evidence has been gathered
to either validate or contradict the current hypothesis re-
garding local scene structure. The output of our sampling
is a set of sampled pixel positions along with a robust and
compact estimate of the set of disparities contained within
a given region. We further propose an efficient plane prop-
agation mechanism that leverages the pre-computed sam-
pling positions and the local structure model described by
the reduced local disparity set. Our sampling framework
is a general pre-processing mechanism aimed at reducing
computational complexity of disparity search algorithms by
ascertaining a reduced set of disparity hypotheses for each
pixel. Experiments demonstrate the effectiveness of the pro-
posed approach when compared to state of the art methods.

1. Introduction

Dense stereo disparity/depth estimation methods com-

monly rely on the exhaustive enumeration of the photo-

consistency cost volume attained from an a priori deter-

mined set of disparity/depth hypotheses. This is inherent-

ly inefficient given that, in the absence of scene structure

priors, all pixels share a common hypotheses search space

designed to cover the entire scene volume. To avoid ex-

haustive sampling we propose a novel framework to reduce

the candidate hypotheses per pixel. The reduction especial-

ly benefits high resolution stereo for modern high resolu-

tion digital cameras or satellite terrain heightmap estimation

shown as in Figure 1 (with an additional computational bur-

den due to the rational polygonal camera model (RPC) [3]

during the photo-consistency cost computation).

Recent randomized [1] and structured [8] sampling

schemes are efficient and robust mechanisms for disparity

Figure 1. Left: Stereo disparity for high resolution satellite images

(150M) is a computationally intensive task evaluating upwards of

1000 hypotheses per pixel. Right: Output from our prosed SOS+

framework, space reduction enables an order of magnitude reduc-

tion in computational complexity.

estimation. The concepts of sparsity and propagation are re-

curring themes across these efficiency driven optimizations

of the basic disparity search framework. The underlying

property being exploited is that of scene structure regulari-

ty due to the assumption of local depth correlations among

adjacent pixels. These assumptions are typically encoded

as predetermined sampling distributions or data propaga-

tion schemes. Since these broad a priori assumptions are in

general error prone we, instead, favor the explicit adaptive

sampling of the disparity (or depth) search space to build

incremental models of the local scene structure.

We propose an efficient sampling scheme for building

an accurate model of the local disparity structure. Our sam-

pling scheme strives to minimize the number of sampling

computations while providing statistical guarantees of cov-

erage sufficiency based on the sequential probability ratio

test (SPRT). This data driven sampling scheme enables an

adaptive framework for optimal disparity sampling leading

to a turnkey solution for reduced complexity disparity sam-

pling along with a high-efficiency seed propagation. We

utilize the output of our optimal pixel based sampling to

estimate local planar surface approximations and deploy a

seed propagation framework leveraging our reduced dispar-

ity search space. Figure 2 depicts an overview of our devel-

oped system, which attains state of the art performance.
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Figure 2. Overview of our proposed approach

2. Related Work

High computational cost is commonly required to obtain

disparity maps with satisfying quality, such as clear bound-

aries, by using global methods (e.g. Graph Cuts and Belief

Propagation [13]) or adaptive support aggregation window

[20]. The recent explosion in image resolution has brought

efficiency to the forefront of requirements for high quality

stereo. Algorithms for reducing the burden of matching cost

aggregation while retaining matching accuracy include non-

local aggregation [19], cross-based aggregation[7], and fast

cost-volume filters [10]. Search space reduction for stereo

offers a complexity reducing framework to avoid the ex-

haustive evaluation of the cost volume (i.e. reducing the

number of matching cost computations). Our proposed sta-

tistical analysis sampling framework falls into this category.

Hierarchical stereo (HS) [14, 12] is a multi-resolution

approach for deterministic search space reduction, but lacks

adaptability to fine structures. Veksler [15] compared the

effect of using the disparities obtained by HS, dynamic pro-

gramming and local stereo for limiting the disparity range,

and concluded that reduction by local stereo resulted in al-

most no loss in accuracy with a significant efficiency im-

provement over HS and dynamic programming. We operate

at the original pixel resolution, using probabilistic modeling

to adapt to local scene structures and provide a bound for

omitting such structures from the disparity search space.

Wang et al. [17] proposed a search space reduction

method for MRF stereo based on estimating a putative dis-

parity map from pixel-wise photo-consistency. Estimation

reliability is verified through left-right consistency and reli-

able pixel estimates are propagated to the entire image. The

disparity variability in the local neighborhood is then used

to determine a candidate depth range for each pixel. In con-

trast, we model the uncertainty in the local photoconsisten-

cy to make a decision regarding the inclusion of a sampled

depth into a set of locally representative estimates.

Histogram Aggregation (HA) [8] reduces the computa-

tional complexity of the the disparity estimation by combin-

ing a pixel-wise likelihood histogram aggregation scheme

with sparse image sampling. To be robust against noisy

matching cost, the pixel-wise depth candidates for each seed

in the sampling grid are attained by selecting a fixed num-

ber of local extrema in the seed cost function. The resulting

set of extrema is used in a spatial voting framework to prop-

agate the depths to the entire image. Our approach does not

make hard a priori assumptions about the pixel cost behav-

ior, instead we build a statistical model of the confidence of

the global extremum for each sampled pixel cost function to

incrementally discern among reliable and unreliable depths.

PatchMatch (PM) [1] is a fixed propagation scheme with

random depth initialization. With assumed sufficient sam-

pling of the local structure (i.e. depths), the spatial propa-

gation and pairwise hypothesis comparison message pass-

ing framework effectively converges in few iterations. PM

treats each pixel as a seed, which propagates its best dis-

parity to other pixels.Our approach focuses on achieving

sufficient local depth sampling sufficiency and develops an

adaptive propagation framework to communicate not only

the current best estimate of a given pixel but also to incor-

porates information regarding its candidate set.

SDDS [18] is a sparse sampling framework that has a

similar goal to our proposed scheme. For each local patch, it

randomly computes the matching cost for one pixel per dis-

parity, and then finds a candidate set by repeated sampling

with a constant number (3 or 4) of iterations. In contrast,

our sampling scheme balances sampling completeness and

efficiency in a statistical framework, enabling the adaptive

termination of local structure sampling.

3. Our Optimal Disparity Sampling Scheme

We strive to improve the efficiency of stereo approach-

es by reducing the search space. To this end, our approach

focuses on eliminating most incorrect candidate disparities

(or depths) by stereo depth sampling. Such elimination en-

ables, in principle, stereo approaches leverage the reduced

search space without significant quality degradation. Stereo

depth sampling aims to attain a representative scene struc-

ture by exploring the photo-consistency cost volume. A

sampling operation refers to determining a pixel’s depth es-

timate from the enumeration of its cost function across the

entire depth range. We develop a sampling scheme aimed at

efficiently ascertaining a compact and sufficient representa-
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tion of local scene structure in terms of a reduced set of can-

didate disparities D. The sufficiency of our reduced search

space entails that D contains all distinct disparities in a local

neighborhood, while compactness pertains to the cardinali-

ty of D. Conversely, the efficiency of the sampling process

hinges on the number of sampling operations required to

determine the all the elements in D.

It is well known that local photo-consistency is a noisy

measurement. Since the best matching cost does not always

corresponds to the correct disparity, noisy depth observa-

tions will be mistakenly added to the candidate disparity

set. A naive sampling scheme is to specify a fixed sam-

pling ratio and perform random sampling (RS) for a prede-

termined portion of pixels. Such open loop sampling dis-

regards the observed local structure and may be arbitrarily

inefficient or insufficient, i.e. oversampling in simple and

flat regions while undersampling in regions with compli-

cated and overlapping structures. Our adaptive sampling

scheme overcomes these limitations by building an incre-

mental model of the local disparity candidate set D and re-

lying on SPRT to determine an optimal stopping criteria for

the random sampling within each local neighborhood.

3.1. Sequential Probability Ratio Test

SPRT is a pairwise likelihood-based hypothesis testing

technique commonly used in decision theory. The work

of Chum and Matas [2] is an example of the use of SPRT

within robust model estimation frameworks. Given two hy-

potheses H0 and H1, along with sequential observations

xk(k = 1, ..., n), suppose the corresponding likelihoods for

these two hypotheses P (xk|Hi={0,1}) are already known.

In the SPRT model, testing is controlled by the accumulat-

ed likelihood ratio L:

Ln =

n∏

k=1

P (xk|H0)

P (xk|H1)
= Ln−1 · P (xk|H0)

P (xk|H1)
. (1)

Given thresholds T1 and T0 (T1 ≤ T0), for each observation

the SPRT model will be one of following three states: 1)

L ≥ T0: stop testing and accept H0; 2) L ≤ T1: stop

testing and accept H1; 3) T1 < L < T0: wait for a new

observation. The SPRT model is completely data driven

and optimal in the sense that it minimizes the number of

samples needed arrive at a given decision [16].

We now describe how the likelihood thresholds T0 and

T1 are determined a priori through user-defined decision

error bounds e0 and e1. The errors e0 and e1 correspond

to the admissible probability of erroneously accepting H0

and H1, respectively. For illustration, without loss of gen-

erality, we assume H0 is the correct hypothesis and a giv-

en threshold T1. Given the set of all possible sequences of

consecutive observations xk, the likelihood error e1 is the

proportion observation sequences leading to the acceptance

of H1 (i.e. Ln ≤ T1). A corresponding argument also ap-

plies to H1 and T0 to describe e0. Accordingly, e0 and e1
quantify the representative ability of the likelihood function

Ln and can be pre-specified a priori. The thresholds T0 and

T1 are related to the likelihood errors by T0 ≤ 1−e0
e1

and

T1 ≥ e0
1−e1

[16]. The above modeling describes a general

framework for robust and efficient sampling, we now de-

scribe the framework in the context of disparity estimation.

3.2. Sequential Optimal Sampling for Stereo

Recall that a depth sampling model finds a set of can-

didate depth D for each local patch by sampling K pixels

in the search space S and evaluating their matching costs

for a given aggregation window. We design a scheme that

dynamically adjusts the value of K according to the pre-

vious observations. The observation xk is represented by

the cost profile of the kth randomly selected pixel p, com-

prised by the matching cost for all candidate depths d ∈ S.

Our matching cost is computed based on color and gradient

values as in Bleyer et. al. [1].

In our SPRT scheme, hypothesis H0 is that the current

disparity set D is sufficient with a probability α, and H1 is

that D should be expanded to D′(⊇ D). Different from the

standard SPRT scheme, our model performs an incremental

test, where hypotheses H0 and H1 keep changing until D is

accepted. P (xk|H0) and P (xk|H1) are the likelihoods to

accept D and D′ respectively. Since D′ is a superset of D,

we have P (xk|H0) ≤ P (xk|H1). Accordingly, the accu-

mulated likelihood ratio L is monotonically decreasing for

any given pair of hypotheses H0 and H1. Hence, we can see

that our SPRT model based on evolving hypotheses is simi-

lar to a “one-sided” model, which only considers whether to

expand the current D by comparing the accumulated likeli-

hood ratio L with the threshold T1.

A candidate depth set D is α-sufficient if it has not been

updated in N consecutive observations, and our optimal

sampling aims to find an α-sufficient depth set with the min-

imum samples. Values for hypotheses errors e0 and e1 are

attained from two user parameters: αsuff (sufficiency) and

αconf (confidence), where αsuff is an acceptable accuracy of

the reduced disparity set (e.g. for αsuff = 90%, the reduced

set contains the true depths of at least 90% of the pixels

within the sampling block), and αconf is an estimated prob-

ability of finding a new depth through N independent sam-

ples, e.g. our confidence on the 90% sufficiency assertion.

Given the two parameters, since αconf = 1 − (αsuff)
N , we

have N = ln(1−αconf)/ln(αsuff), which is an overestimate

as it assumes sampling with replacement.

We call this SPRT-based sampling scheme Sequential

Optimal Sampling (SOS), which is able to sample less and

provide a significantly tighter search space for each local

image region. Figure 3 shows the flowchart of the SOS

model, where given the original depth set D, the model s-
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Figure 3. Sequential Optimal Sampling (SOS) model. Given a

depth set D and a new observations di, if the accumulated likeli-

hood drops below threshold T1, D is augmented. Sampling halts

after N consecutive samples without updates to D.

tate L (the accumulated likelihood ratio) is updated by each

new observation d. To improve the sensitivity to photo con-

sistency noise we design our likelihood function to be more

tolerant to costs slightly greater than the minimum matching

cost. Let c(x, d) be the matching cost for pixel x at depth

d, c̄(x) the mean cost for x across all depth hypotheses, and

d∗ the depth with the minimum matching cost. We define

the score for each depth d as:

s(d, x) = exp(−1 +
c̄(x)− c(x, d)

c̄(x)− c(x, d∗)
) (2)

The range of the score s(d, x) is (0, 1], with higher scores

being sought. Thus, even if the current best disparity esti-

mate d∗ is not included in the current depth set D, if there

exists some d ∈ D whose score is relatively high, we delay

the inclusion of d∗ into D until we have gathered more sam-

pling evidence to mitigate spurious depth outlier estimates.

Accordingly, in this new support test model, newly encoun-

tered depths will be stored in a candidate pool instead of

being directly added into D, and the sample information

(the coordinates and the cost curve) will be recorded and

will then be used in updating the candidate depth set.

The likelihood P (x|H) is defined as follows:

P (x|H) =
maxd∈D s(d, x)∑
D̃ maxd∈D̃ s(d, x)

(3)

where D̃ is an arbitrary subset of the entire search space.

Let D′ = D
⋃ {d′} be the superset of current reduced depth

candidate set D, which will be used to replace D. Recall

that H0: D is α-sufficient, and H1: D′ is α-sufficient. Then

the likelihood ratio is

P (x|H0)

P (x|H1)
=

maxd∈D s(d,x)∑
D̃ maxd∈D̃ s(d,x)

maxd∈D′ s(d,x)∑
D̃ maxd∈D̃ s(d,x)

=
maxd∈D s(d, x)

maxd∈D′ s(d, x)

≥ maxd∈D s(d, x)

maxd∈D
⋃{d∗} s(d, x)

= max
d∈D

s(d, x)

where equality is achieved when d′ = d∗. Then the accu-

mulated likelihood ratio L is

Ln =
n∏

i=1

P (xi|H0)

P (xi|H1)
≥

n∏

i=1

max
d∈D

s(d, xi) = L∗
n (4)

The lower bound of the accumulated likelihood ratio L∗
n

is used to replace Ln in the test, i.e. D will be updated if L∗
n

is less than a predefined threshold T1. Since there will be

several different depths in the candidate set, we exploit the

recorded sample information to accumulate the likelihood

ratio for each candidate, and choose the one with the lowest

value as d′ to expand the current depth set D. According to

the SPRT theory [16], the lower bound for threshold T1 is

given by T1 ≥ e0
1−e1

where e0 and e1 are errors for hypothe-

ses H0 and H1 respectively. Since D′ is the superset of D,

which yields e0 ≥ e1, we choose T1 = e0
1−e0

≥ e0
1−e1

to be

a more strict threshold, and e0 = 1− αsuff according to the

definition of α-sufficiency.

3.3. Bounding the Output Search Space

The number of attained disparities through sequential

optimal sampling for a given image region is dependent on

the observed scene structure. Accordingly, image region-

s covering a large number of disparities will be assigned

a larger set of candidate depths. However, the efficiency

of many stereo algorithms (such as Belief Propagation) is

heavily impacted by the maximum size of all candidate set-

s. To make the candidate depth sets more balanced over

the entire image, we introduced a quad-tree based recur-

sive sampling strategy to leverage sampling patch consis-

tent with the true depth distribution, which attains disparity

sets of bounded cardinality K across the entire image. This

adaptive sampling scheme guarantees that the search space

of each pixel won’t exceed K, so the upper bound of com-

putation cost for stereo is limited. In order to achieve such

behavior, when we detect that the current set of K depths is

still incomplete, instead of adding a new depth, the patch is

recursively partitioned into four sub-blocks and the optimal

sampling process restarted for each new partition. Figure

4 shows an image automatically segmented by constrained

optimal sampling. Note how complex regions are sampled

by smaller windows while large homogeneous regions like

the background remain unchanged.

3.4. Recovering Isolated Structures

Sequential optimal sampling is designed to achieve dis-

parity set α-sufficient for each given region. Accordingly,

our coverage may be incomplete whenever there are isolat-

ed structures comprising a region coverage near or below

the 1 − α confidence threshold. The shortcoming of sam-

pling in regular square blocks is that some isolated regions

(such as the tip of the lamp in Figure 4) might be missed.

Although the portion of such areas is much smaller with
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Figure 4. Optimal sampling with constrained search space. Lim-

iting the size of the disparity setby spatial partitioning incurs in a

marginal accuracy penalty at partition boundaries.

respect to the entire patch, it is still worth to recover the

missed search space for some boundary sensitive applica-

tions. In this paper, the search space for the local patch will

be propagated to small neighboring regions, so that isolat-

ed areas (as the errors shown in Figure 4) will have a joint

search space that contains the correct depth. The length of

the propagation is set as 10% (called propagation ratio) of

the patch size. In practice such propagation results in a s-

mall dilation of each sampling block aimed at mitigating the

boundary effects of our block partitioning scheme.

4. Stereo under Optimal Sampling
The SOS scheme proposed in Section 3 reduces the

search space for each pixel. Accordingly, the proposed

method can be deemed as a generic complexity reducing

pre-processing step for stereo estimation algorithms. The

computational benefits of performing such pre-processing

depend on the choice of the stereo disparity algorithm be-

ing deployed. Clearly, exhaustive search stereo achieves a

linear speedup with respect to the search space compression

ratio, while global methods may benefit at rate proportional

to their algorithmic complexity. Besides the reduced search

space, our optimal sampling scheme adaptively separates

the image into proper sub-regions, whose local structures

are also inherently represented by the candidate disparity

set and the spatial distribution of the corresponding sampled

pixels. To fully utilize these cues, here we propose an effi-

cient stereo approach by propagating exploited structures.

4.1. Local Structure Approximation

A local image patch may contain one or more distinc-

t structures (e.g. fronto-parallel or slanted planes), most

of which should be sufficiently covered by sampled pixels

under SOS. We first group sampled pixels into connected

components based on their color similarity and spatial dis-

tance. Then, each component is treated as a distinct struc-

ture and locally approximated by oriented planes. Name-

ly, each sampled pixel s will be assigned with the disparity

having the minimum matching cost in the reduced dispar-

ity set, and fitted with an oriented plane by RANSAC-like

estimation [9]: for each iteration we randomly select three

sampled pixels from the same component, and generate a

plane pl(x, y): a · x + b · y + c, where x and y are coor-

dinates of the seed, d is the corresponding best disparity,

and a, b, and c are estimated coefficients. Aggregating the

weighted matching cost for pixel s from all the seeds be-

longing to the same component with respect to the gener-

ated plane, and keep the plane if its cost is better than the

current cost (the default cost is computed from the fronto-

parallel plane). Once a new plane is found, we also check

the neighboring planes pl+ and pl−, which are generated

by increasing and decreasing c with 1 disparity, and keep

the one with the best matching cost. We repeat sampling,

until no better matching cost is found for R = 10 consecu-

tive samples. In this way, we can find the best planes for all

sampled pixels, which will be used as propagation seeds.

4.2. Local Structure Propagation

We use the sampled pixel positions s and their associated

local plane estimates pls as the input for a spatial propaga-

tion scheme. Each seed ps propagates its plane pls(x, y)
to its four neighbors, and each neighbor pn will discard the

invalid planes whose disparities are not in pn’s search s-

pace. For a valid plane, pn will simply set pls as its local

plane if pn has not received any plane before. Otherwise,

pn compares the matching cost of pls against the cost of its

current best plane, and if the new cost is better pn will up-

date its local plane by the best of {pl−s , pls, pl+s }. When the

local best plane is updated, the new plane will also be prop-

agated to pn’s neighbors. Pixels updating their local plane

will be the seeds in the next iteration, and the propagation

will stop when a steady state is reached. Since SOS splits a

local patch into compact regions having reduced candidate

depths, our seed propagation corresponds to the implicit s-

moothness of the local patches. Namely, many pixels di-

rectly “borrow” the plane estimate from neighboring seeds.

Matching cost is only estimated for pixels already having an

assigned local plane (either by seed initialization or subse-

quent propagation) and are receiving a contradicting dispar-

ity estimate from one of their neighbors. The influence of

incorrect seed estimates is restricted to those regions con-

taining such erroneous disparities.

4.3. Disparity Post-Processing

Next we perform a disparity refinement where the re-

liable pixel disparity estimates are identified through left-

right cross-validation and unreliable pixels near the left im-

age boundary are assigned the median of the neighboring

reliable pixels. Remaining unreliable pixels are interpolat-

ed according to the method proposed in Hirschmueller et

al. [5]. Then, errors in the textureless regions are mitigat-

ed by a) segmenting the image into connected components

based on color similarity, b) identifying segments having

small number of disparities (< 10) where there is dominan-

t disparity (≥ 50% of pixels), and c) propagate dominant
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disparity to entire connected component. Finally, weighted

median filtering is used to smooth the disparity map.

5. Experiments
We evaluate our search space reduction through SOS

sampling and present results of its use by our proposed

propagation scheme as well as in combination with other

stereo algorithms. For ground truth evaluation and bench-

marking we used the the Middlebury Stereo datasets [11].

All algorithms were implemented in C++ and executed on

an Intel Xeon CPU W3540 2.93GHz. The default aggrega-

tion window size is 3×3 for our depth sampling preprocess-

ing step. Matching cost computation parameters are set to

the default parameters proposed in [1]. The SOS stopping

parameters were set to αsuff = 0.90 and αconf = 0.95.

5.1. Search Space Reduction from SOS

We compare our (SOS) scheme and SOS with con-

strained search space ‖D‖ ≤ 5 (SOS-C) against a Random

Sampling scheme RS(X), which randomly selects pixels

with the fixed sampling ratio X = {0.005, 0.01, 0.05, 0.1}
in each patch and uses their disparities to form the reduced

search space. The reduced search space is evaluated in three

aspects: cardinality, accuracy, and redundancy. The results

of SOS are evaluated on non-overlapping blocks of default

size 50× 50. Our evaluation is based on the average data of

the five test images: tsukuba, venus, teddy, cones, and art.

Compactness. Figure 5 (column 1) compares the re-

duced search space for SOS and SOS-C against RS(X) with

multiple fixed sampling ratios. Both SOS and SOS-C con-

sistently provide smaller search spaces, irrespective of patch

size. Moreover, our proposal found more compact disparity

sets than the random sample variants geared at performing

less sampling (e.g. RS0.005).

Accuracy. We analyze the fraction of pixels whose

ground truth disparity is present in the reduced set. In Fig-

ure 5 (column 2) we can see the accuracy of SOS and SOS-

C are always above 95% with arbitrary matching windows

sizes and patch sizes, showing that our optimal schemes are

able to obtain a stable accuracy by adjusting the sampling

ratio according to local structures, providing more flexibili-

ty than random sampling with a predefined ratio.

Redundancy Figure 5 (column 3) measures by the av-

erage number of wrong disparities in the reduced disparity

set. Our optimal sampling models consistently mitigate re-

dundancy (less than 1 spurious disparities in the candidate

set), improving over any random sampling scheme. Note

the two high accuracy (nearly 100%) schemes RS 0.05 and

RS 0.1 offer large redundancy (2% accuracy improvement

with more than 20 spurious depths).

Sampling efficiency. We focus on the total number of

samples required to estimate the local structure. The sam-

pling ratios for SOS and SOS-C are shown in Figure 5 (col-
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Figure 6. Local structures exploited by optimal sampling with con-

strained search space. Left of pair images show spatial partitioning

while right of the pair images show the sampling ratio.

umn 4), and we observe a stable ratio around 1%. Figure 6

shows the final patches generated by SOS-C and the corre-

sponding sampling density in each of the patches. In gener-

al, the block size reveals the complexity of the local struc-

ture and all pixels in the image have a bounded (i.e. turnkey)

reduced disparity set. Moreover, SOS-C successfully de-

tects image regions with complex structure and recursively

partitions said region. Accordingly, flat regions with few

disparities are represented by relatively large blocks.

Experiments show that the SOS schemes outperform the

fixed ratio random sampling RS(X) schemes. Processing

times of SOS-C for tsukuba, venus, teddy, cones and art are

21ms, 42ms, 106ms, 114ms, and 193ms respectively. Thus,

SOS and SOS-C are reliable light-weight sampling schemes

suitable as a stereo complexity reduction pre-process.

5.2. SOS+: Stereo under SOS

We now evaluate the performance of our SOS-based

propagation framework (SOS+) as well the coupling of

SOS as a pre-processing step for a variety of stereo algo-

rithms. We compare the performance of our propagation-

based stereo against two efficiency driven state of the

art disparity sampling techniques PatchMatch (PM) [1]and

HistogramAggregation (HA) [8]. As an additional baseline

we include typical local and global stereo methods: Ex-

haustive search (EX) and Belief Propagation (BP) under the

complete and the reduced disparity search space estimated

through SOS (PM+S, HA+S, EX+S, and BP+S). The re-

duced search space is generated by SOS-C on 100 × 100
blocks with a maximum size of the disparity set of |D| = 5
and using propagation ratio γ = 0.1.

Stereo on Fronto-Parallel Planes To enable leveled

comparison against algorithms working under the fronto-

parallel assumption we modify SOS+ and PM for compli-

ance to this assumption. The default window size for cost

aggregation is 11, except for BP (no explicit cost aggre-

gation). For HA (position-dependent), the spatial ratio is 3,

and aggregation window is 31 ( the default value used in [8],

which is similar to aggregate cost from 11× 11 pixels). For

fronto-parallel PatchMatch (PM(FP)), the maximum num-

ber of iterations is four, and in each iteration the disparities

are propagated starting from the top-left to the bottom-right,

and then they are propagated back to the top-left. For BP,

the maximum number of iterations is fifteen.
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Figure 5. Sequential optimal sampling (SOS) vs. random sampling (RS) for various matching window size (top) and sampling neighbor-

hood size (bottom). Columns 1 to 3: cardinality, accuracy, redundancy of the reduced search spaces, and Column 4: sampling ratio.

Color image PM(FP)+S HA+S EX+S BP+S

SOS+(FP) PM(FP) HA EX BP

Figure 7. Raw disparity maps for various stereo methods.

Time (s) SOS+ (FP) PM(FP)+S PM(FP) HA+S HA EX+S EX BP+S BP

Tsukuba 0.33 1.76 1.91 1.40 1.80 2.54 5.13 7.88 34.00

Venus 0.41 2.49 2.80 2.10 3.09 3.81 9.48 14.57 78.30

Teddy 0.89 2.93 3.28 2.65 6.41 5.20 24.61 35.03 652.95

Cones 0.88 2.89 3.29 2.72 6.38 5.18 23.05 41.32 649.59

Art 1.13 3.26 3.72 3.70 8.21 7.76 31.22 102.38 1221.36

Books 0.94 3.11 3.5 3.06 8.13 6.27 32.34 58.33 1192.62

Table 1. Processing time for various stereo methods.

Figure 7 shows samples of raw disparity maps generat-

ed by the various stereo algorithms, and the correspond-

ing processing times are listed in Table 1. We observe no

significant quality loss between stereo algorithms under re-

duced and entire search spaces, while the processing time

on reduced spaces is smaller than using the entire space, for

PM(85%), HA(50%), EX(20%), and BP(6%). In principle,

the computational overhead of SOS may be comparable to

a real-time stereo method. Hence, slower global methods

will gain the most speedup benefits. Since the accuracy of

SOS search space reduction is above 95% (Fig 5) and can be

tuned through parameter manipulation.Note that SOS+(FP)

evaluates on reduced search spaces corresponding to local

structures (exploited by optimal sampling), which will con-

verge quickly and many pixels just receive the propagat-

ed disparity values without any matching cost computation.

These results indicate SOS is more efficient than sampling

methods not exploiting local scene structure.

Color image PM PM(FP)+S SOS+(FP)

Figure 8. Raw disparity maps for high resolution (21M ) images.

We also compare SOS+(FP) and PM(FP) on the high

resolution (21M ) images of Kim et al. [6] with a large

candidate disparities set of 250 disparities. After our op-

timal sampling, the average search space is reduced to 8.4

disparities. Figure 8 shows the raw disparity map for P-

M(FP), PM(FP)+S, and SOS+(FP), with the corresponding

processing time 534s, 419s, and 167s. We also can see P-

M has many outliers around the bush regions which have

been successfully removed by our sampling so that PM+S

has much fewer outliers. While the goal of our SOS sam-

pling scheme is to enable attainment of the same results as

exhaustive disparity search from a reduced search space, in

this case increased accuracy is a byproduct of our optimal

local structure estimates due to the removal of ambiguous

and wrong disparities.

Stereo with Oriented Plane In the next experiment, we

investigate the effect of aggregating matching cost across

oriented planes by comparing our SOS+ algorithm against

PatchMatch. The aggregation window for both method is

31×31 (similar as the default value in [1]). Two types of PM

are tested: the first one, PM(NPR), propagates the random-

ly initialized planes, and the second one (PM) incorporates

the iterative plane refinement [1]. The raw disparity map-

s are shown in Figure 9, and the corresponding processing

times are: SOS+(FP) 0.89s, SOS+ 17.41s, PM(FP) 3.28s,

PM(NPR) 220.54s, and PM 747.97s. SOS+ is able to ac-

count for the slanted surfaces (the ground in teddy), but is

slower than the fronto-parallel version SOS+(FP). Without

the iterative plane refinement step, there are many ambigu-

ous regions that can not be recovered by PM’s propagation

scheme, but recovered by our SOS+.
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SOS+(FP) SOS+ PM(FP) PM(NPR) PM

Figure 9. Raw disparity maps comparison for SOS and PM

with their fronto-parallel version SOS+(FP) and PM(FP), and P-

M(NPR) is the PM without plane refinement.

Tsukuba Venus Teddy Cones APBP
(nocc,all) (nocc,all) (nocc,all) (nocc,all) (%)

SOS+ (1.45,1.63) (0.21,0.32) (3.13,8.45) (2.43,7.10) 4.30
PM[1] (2.09,2.33) (0.21,0.39) (2.99,8.16) (2.47,7.80) 4.59

SOS+(FP) (1.58,1.81) (0.21,0.31) (5.67,11.0) (2.57,7.70) 5.37

NLF[19] (1.47,1.85) (0.25,0.42) (6.01,11.6) (2.87,8.45) 5.48

AW[20] (1.38,1.85) (0.71,1.19) (7.88,13.3) (3.97,9.79) 6.67

SG [4] (3.26,3.96) (1.00,1.57) (6.02,12.2) (3.06,9.75) 7.50

SDDS[18] (3.31,3.62) (0.39,0.76) (7.65,13.0) (3.99,10.00) 7.19

HA[8] (2.47,2.71) (0.74,0.97) (8.31,13.8) (3.86,9.47) 7.33

Table 2. Disparity map evaluation for non occlusion(nocc), all re-

gions, and average percent bad pixels (APBP).

Figure 10. Refined output for SOS+(FP) (top) and SOS+ (bottom).

Evaluation for Refined Disparity Maps Figure 10

shows the refined disparity maps for our constrained

SOS+(FP) and SOS+ algorithms, and the quality evalua-

tion are listed in Table 2, with the rank 23 and 10 in the

Middlebury benchmark for SOS+ and SOS+(FP) respec-

tively. The quality of the SOS+(FP) algorithm is similar to

PatchMatch (rank 22) with main differences coming from

the ground region of the teddy image, which can only be

recovered by using oriented planes. However, the process-

ing time of SOS(FP) is much faster than other investigat-

ed stereo algorithms. In practice, SOS+ is more suitable

for the scene with large slanted surfaces, and SOS+(FP) is

more efficient for time-sensitive applications.

6. Conclusion
We introduced a novel approach to reduce the dispari-

ty search space for stereo based on the Sequential Ratio

Probability Test from the sequential decision theory. Our

method avoids unnecessary evaluation of irrelevant dispar-

ities for pixels of an image. Moreover, our method can be

combined with a large variety of existing stereo estimation

methods. The propagation-based stereo scheme integrated

with the SOS is more efficient than state-of-art stereo meth-

ods. As shown in our experimental evaluation, our method

maintains the quality of the exhaustive disparity estimation

at significantly lower computational costs.
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