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Abstract

Large-scale Structure-from-Motion systems typically
spend major computational effort on pairwise image match-
ing and geometric verification in order to discover con-
nected components in large-scale, unordered image collec-
tions. In recent years, the research community has spent
significant effort on improving the efficiency of this stage.
In this paper, we present a comprehensive overview of
various state-of-the-art methods, evaluating and analyzing
their performance. Based on the insights of this evalua-
tion, we propose a learning-based approach, the PAirwise
Image Geometry Encoding (PAIGE), to efficiently identify
image pairs with scene overlap without the need to per-
form exhaustive putative matching and geometric verifica-
tion. PAIGE achieves state-of-the-art performance and in-
tegrates well into existing Structure-from-Motion pipelines.

1. Introduction

Over the last years, large-scale Structure-from-Motion
(SfM) has seen tremendous evolution in terms of robust-
ness and speed in all stages of processing [1, 39, 13, 11,
42, 41, 37, 20]. Incremental SfM (Figure 2) commonly
starts with feature detection and extraction (Stage 1), fol-
lowed by matching (Stage 2), and geometric verification
(Stage 3) of successfully matched pairs. After the match-
ing and verification stage, typical SfM seeds the model with
a carefully selected initial two-view reconstruction, before
incrementally registering new cameras from 2D-3D corre-
spondences, triangulating new 3D features, and refining the
reconstruction using bundle-adjustment (Stage 4).

Generally, major computational effort is spent on Stages
2–4. In Stages 2 and 3, it is essential to discover a suffi-
cient number of image correspondences that link together
all parts of the scene to obtain complete and large-scale
reconstructions. In addition, robust and accurate align-
ment is aided by finding multiple redundant image-to-image

connections across the entire scene. However, exhaus-
tively searching for these overlapping pairs is infeasible
for large-scale image collections due to quadratic compu-
tational complexity in the number of images and features.
Moreover, as the number of registered images grows, the
scalability of bundle-adjustment algorithms becomes a sig-
nificant performance bottleneck.

This paper evaluates existing techniques for reducing the
cost of Stages 2 and 3, feature matching and geometric
verification. Usually, the majority of image pairs in un-
ordered Internet photo-collections do not have scene over-
lap, so rejecting those pairs dominates execution time, even
though such pairs are not useful for 3D reconstruction. Con-
sequently, various approaches have been proposed to effi-
ciently find overlapping pairs in noisy datasets and only for-
ward those pairs to Stages 2 and 3. A downside of sending
fewer image pairs to Stages 2 and 3 is that enough images
with overlapping geometry must be processed to produce
accurate camera alignment and complete reconstructions.
Hence, it is essential to find the right trade-off between com-
putational efficiency and sufficient image connectivity.

Despite the impressive progress in reducing the cost of
the matching (Stage 2), relatively little attention has been
paid in comparing the techniques. The goals of this paper
are therefore twofold: First, we present a comprehensive
analysis and evaluation of various state-of-the-art matching
techniques; second, we use the insights gained from this
evaluation to propose the PAirwise Image Geometry En-
coding (PAIGE) to build a scalable framework (Figure 1)
for the efficient recognition of the relative viewing geome-
try, all without explicit feature matching and without recon-
structing the actual camera configuration using geometric
verification. The proposed encoding is based on location
and orientation properties efficiently inferred from approx-
imate feature correspondences. A subsequent classification
strategy leverages the encoding to only perform matching
and geometric verification for image pairs that are identi-
fied as overlapping. As demonstrated in comprehensive ex-
periments, this novel approach leads to a further speedup of
large-scale SfM than the existing state of the art.



Feature location change

Feature orientation change

1. Approximate matching 2. PAIGE quantization 3. PredictionInput
Image pair with features

Output

Histogram of location and orientation
change for correspondences

Feature correspondences through
multi-resolution histogram
intersection

Random forest classifier

Features 1

Features 2

Overlap classification

Figure 1. The proposed framework for PAIGE extraction, and its application for scene overlap and viewpoint change prediction.

2. Related work

Large-scale SfM systems have tremendously advanced
in terms of increased robustness and reduced runtime. A
variety of methods have been proposed to improve the effi-
ciency in different stages of SfM pipelines (Figure 2).

Stage 1 While SIFT [27] is a popular choice for robust
feature detection and description, the slightly more efficient
SURF features are a commonly used alternative [5]. In
addition, a number of binary features have also been pro-
posed [36, 24, 3]. These binary features lead to a signifi-
cant speedup of the extraction and the subsequent matching
stage as well as a reduced memory footprint.

Stage 2 Various methods have been proposed to re-
duce the number of image pairs considered in the match-
ing module. Frahm et al. [13] leverage iconic image selec-
tion through GIST clustering to find similar images. Agar-
wal et al. [1] employ image retrieval systems [30] to only
match against similar images and then use approximate
nearest neighbor feature matching. Furthermore, Chum et
al. advance in the field of efficient image retrieval [10] and
improve retrieval results with a randomized data mining
method [9]. Another improvement to retrieval systems was
developed by Chao et al. [7], who employ an online learn-
ing strategy to rerank retrieval results. Krapac et al. [23] and
Jégou et al. [22] encode spatial information of features in
bag-of-words models as used in retrieval systems. Orthog-
onally, Raguram et al. [35] use GPS tags to match images
only to spatially nearby ones. Wu [42] follows a preemp-
tive matching strategy by filtering image pairs that fail to
match on a reduced feature set. Beyond that, Lou et al. [26]
develop a scalable method to find connected components in
large datasets. Most recently, Hartmann et al. [17] propose
to predict the matchability of individual features to reduce
the number of feature comparisons during feature match-
ing; Havlena et al. [18] inspired by [32, 40] directly use the
assignments of individual features to visual words in a vo-
cabulary tree as verified correspondences for SfM, skipping
the pairwise image matching stage altogether.

Stage 3 Apart from the advancements in fast essential
matrix estimation [29], a number of efficient RANSAC [12]

variants have been developed [28, 8, 33]. Complementary,
Raguram et al. propose to improve the efficiency of geo-
metric verification with an online learning approach [34].

Stage 4 Snavely et al. [39] compute skeletal subsets of
images to reduce the runtime of incremental reconstruction,
whereas Agarwal et al. [2] and Wu et al. [43] progress
in the field of bundle-adjustment by developing efficient
and scalable algorithms for multi-core machines. Com-
plementary to the efforts in incremental SfM, Gherardi et
al. [14] propose a hierarchical SfM pipeline with balanced
branching and merging. Sinha et al. [38] compute two-
view reconstructions from vanishing points followed by ef-
ficient 3D model merging, while Crandall et al. [11] de-
scribe a replacement for traditional incremental SfM by
finding a coarse initial solution for bundle-adjustment us-
ing a discrete-continuous optimization approach based on
GPS initializations. Recently, Wilson et al. [41] propose
to estimate camera translations by solving simplified lower-
dimensional problems with epipolar geometry averaging.

For the comparative evaluation of matching techniques
(Stage 2) in this work, we choose one popular representa-
tive of each family of approaches. The above described ap-
proaches can be categorized into three different families of
approaches. The first family, approximate matching tech-
niques, describe images as a whole and avoid exhaustive
pairwise image matching [1, 13, 9, 10, 26, 7]. The second
family, exhaustive matching techniques, try to either pre-
emptively filter image pairs [42] or reduce the cost of fea-
ture matching [17]. The third family consists of approaches
that try to avoid pairwise matching and verification alto-
gether [18]. We rely on publicly available implementations
of the methods; implementations that have already been
successfully applied in large-scale 3D reconstruction. In
the following, we briefly describe the chosen approaches;
an evaluation of their performance on several large-scale
datasets (Table 1) is given in Section 3.

Image retrieval has been extensively employed in large-
scale SfM [1, 13, 26]. Hence, we use it as a representative
of the first family. Image retrieval is often efficiently im-
plemented using vocabulary trees [30], an instance of bag-
of-words (BoW) models, which try to describe images as
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Figure 2. The proposed prediction framework (purple) integrated into a typical SfM pipeline.

a whole. Features are hierarchically quantized and indexed
in the vocabulary tree. Similarity from indexed images to a
query image is measured using, e.g., tf-idf, co-occurrence,
or burstiness scoring. In large-scale SfM systems, vocabu-
lary trees are leveraged to match every image only against a
number of most similar images (approximate nearest neigh-
bors), effectively eliminating the quadratic computational
cost in the number of images of exhaustive pairwise match-
ing. The number of retrieved images is determined by re-
trieving a fixed number of images NR and/or thresholding
the similarity score. However, BoW similarities are noisy,
due to faulty quantization and feature detection. As a con-
sequence, it is difficult to find good similarity thresholds,
which is why, in our analysis, we retrieve a fixed number
of nearest neighbors per query image. We employ the im-
plementation of Agarwal et al. [1], a tf-idf weighted vocab-
ulary tree using min-distance metric and 1M visual words
(branching factor 10, depth 5) trained from approximately
100M features (unrelated to evaluation datasets). We denote
this method as Retrieval NR.

Preemptive matching, as a representative of the exhaus-
tive matching techniques, follows the idea that matching
a small subset of the features is effective in determining
whether an image pair has overlap. The method assumes
that features detected at higher scales are more repeatable
and stable across images; hence, if a small number NP of
LP higher scale features match, the image pair is said to
have overlap. Full putative feature matching is only per-
formed for those pairs that pass this preemptive filtering
stage. On the one hand, this strategy theoretically allows
us to find all possible image pairs. On the other hand, it still
has quadratic computational complexity in the number of
features and images. However, the work for individual im-
age pairs dramatically decreases (e.g. by a factor of 10,000
when LP = 100), since feature matching is itself quadratic
in the number of features. We use the implementation of Wu
[42] and denote it as Preemptive NP , setting LP = 100, as
suggested by the author.

Vocabulary matching, as a representative of the third
family, skips the pairwise image and feature matching
stages altogether by using the indexing of multiple features
to the same visual word in a precomputed vocabulary tree as
implicit matches. Feature matches between image pairs are
then generated by the pairwise combination of all assigned
features per visual word. A symmetric clustering matrix is
used to find connected components in an image collection.
To avoid ambiguous matches, only one visual word may ap-

Images Pairs Verified pairs

London Eye 7,047 24,826,581 319,591 (1.29%)
San Marco 7,792 30,353,736 237,130 (0.78%)

Tate Modern 4,813 11,580,078 119,483 (1.03%)
Time Square 6,426 20,643,525 140,193 (0.68%)

Trafalgar 6,981 24,363,690 285,022 (1.17%)
Rome 16,179 130,871,931 – (–)

Table 1. Evaluation datasets.

pear in each image. For reasons of efficiency and to reflect
the importance of a visual word w.r.t. frequency of its oc-
currence (similar to the motivation of tf-idf weighting), the
method discards visual words that appear in too many im-
ages (the authors propose a threshold of 1%). Given a suf-
ficiently large visual vocabulary, correspondences from as-
signments of features to visual words are stronger than from
pairwise putative matching. Note that this method requires
significantly more visual words than in standard vocabulary
trees in order to achieve good performance. In addition, the
proposed approach is infeasible for very large image col-
lections with millions of images, since the clustering matrix
cannot be stored in memory, as noted by the authors. We
use the implementation and visual vocabulary provided by
Havlena et al. [18], and denote the method as VocMatch.

3. Evaluation
In this section, we evaluate the previously described ap-

proaches on different large-scale datasets (Table 1). We pro-
pose to formulate the problem of finding overlapping image
pairs as a classification problem, where we try to learn a
model that separates image pairs with scene overlap (pos-
itive) from image pairs without scene overlap (negative).
The objective of an optimal method is to minimize the ra-
tio of false over true positives (overhead), whereas the true
positives should comprise all relevant image pairs of the
dataset. Since in Internet photo collections typically only
a small fraction of the images are relevant and therefore an
even smaller fraction of image pairs actually match, the ef-
fective runtime of a method is determined by the overhead.
Hence, the goal of an optimal matching strategy is to pro-
duce minimal overhead while finding all true positives. In
the end, the effective utility of a matching method for SfM
is related to the completeness and stability of the resulting
reconstructions.

The evaluation datasets comprise five crowd-sourced im-
age collections (London Eye, San Marco, Tate Modern,
Time Square, and Trafalgar) [7], and a well-studied dataset
of Rome [25]. These collections contain a diverse set of



viewpoints, rather than a single dominant one. The first five
datasets are contaminated with a large number of irrelevant
images that do not match to the actual landmarks. Con-
trary, the Rome dataset only consists of relevant images,
which should register to at least one landmark. For all ex-
periments, we use SIFT features (Hessian-Affine [31] for
VocMatch, Difference of Gaussian for all other methods).
We consider an image pair as geometrically verified (i.e. it
has scene overlap) if the putative SIFT matches (max. dis-
tance ratio of 0.8 between top two matches, max. cosine
distance of 0.7, and mutual best matching) have at least 20
inliers in essential matrix estimation with RANSAC (4px
Sampson error threshold). As a baseline approach, we ex-
haustively compute the ground-truth image pairs, with NG

denoting the number of verified pairs. The performance of
each method is quantified in several measures obtained from
the confusion matrix (NTP : true positives, NFP : false pos-
itives). First, we measure how many of the ground-truth
image pairs are found (NTP /NG). Second, we measure the
overhead of finding these pairs (NFP /NG). Third, we mea-
sure the required time by isolating the runtime of the respec-
tive method including the subsequent Stages 2 and 3. For
the matching procedure, we use an optimized GPU imple-
mentation, and for geometric verification a multi-threaded
RANSAC CPU implementation. To quantify the impact of
the reduction of each method, we measure the complete-
ness of 3D reconstruction in terms of the total number of
registered cameras. All experiments were performed on the
same machine with 2x12 physical cores, 256GB RAM, and
a NVIDIA GeForce GTX TITAN Z graphics card. I/O over-
head is excluded from the timing for all methods.

The results of the experiments are summarized in Table
2 and Figure 6. All methods significantly reduce the run-
time and number of evaluated pairs compared to exhaustive
matching. But they also produce a significant number of
false negatives, i.e. they eliminate correct image pairs. Nev-
ertheless, SfM is still able to produce quality reconstruc-
tions with the number of registered images being related to
the number of verified image pairs. In this regard, we also
observe that the number of registered images and, qualita-
tively, the stability of the reconstructed models saturates at
some point. In other words, SfM does not substantially gain
from finding all true positives. In the following, we briefly
discuss the individual results of each approach.

Retrieval As can be seen from Table 2, vocabulary trees
work relatively well in terms of precision, when only re-
trieving a few nearest neighbors. However, when more im-
ages are retrieved, such methods tend to yield many false
positives, resulting in a large computational overhead in
matching. Otherwise, in case only a few images are re-
trieved, the overhead of indexing and querying images in
the vocabulary tree becomes more relevant to the over-
all runtime. While theoretically possible [1], it is com-

paratively challenging to efficiently scale the indexing and
querying of a vocabulary tree across distributed machines
for large-scale datasets.

Preemptive Due to quadratic feature matching cost, we
must limit NP to a low number for reasons of efficiency.
Consequently, the threshold LP must be chosen very low
(LP = 4, NP = 100 as proposed by Wu [42]) to find rel-
evant pairs. Thus, a small change in LP has great effect
on the performance of this filtering strategy – both in terms
of efficiency and precision (compare Preemptive 3 and Pre-
emptive 4). Moreover, a small subset of the features may not
adequately represent the entire image, resulting in a noisy
classifier. Beyond that, image pairs with small overlap (e.g.,
due to large scale change or different viewpoint centers) will
likely fail to pass the filtering, because of the the low num-
ber of features, which may be spatially distributed across
the entire image. This method can be relatively easily scaled
across multiple cores and distributed machines.

VocMatch While this method drastically speeds up the
computation of pairwise matching, it also makes some as-
sumptions about the underlying structure of the image col-
lection. Since the method discards highly frequent visual
words, image collections of popular landmarks with many
redundant viewpoints may produce less stable reconstruc-
tions due to the lack of long feature tracks. Moreover, the
length of feature tracks depends on the relation of the num-
ber of features in the dataset and the codebook size of the
vocabulary tree. We find that the track lengths of 3D points
during reconstruction are significantly shorter for VocMatch
than for the other methods, i.e. the estimated point loca-
tions are more uncertain. Setting the maximum frequency
of visual words and using the right codebook size is diffi-
cult because there is usually no a priori knowledge about
the distribution of images in crowd-sourced datasets. We
can observe the impacts of the a priori assumptions by con-
sidering the high variance of the performance across the dif-
ferent datasets.

Summarizing the above evaluation, we conclude, that
there is no need to find all true positive image pairs to pro-
duce good reconstructions in terms of stability and com-
pleteness. In fact, we only need a comparatively small frac-
tion of the ground-truth image pairs. While the true pos-
itive rate accounts for some of the runtime, the methods’
overall runtimes are mostly determined by the overhead,
since RANSAC is especially expensive for false positive
pairs. Moreover, scalability becomes especially important
for large-scale datasets. None of the existing approaches
provides sufficient recall with low overhead and fast run-
time to produce quick reconstructions for large datasets.
Considering this analysis, we propose an efficient and scal-
able learning-based approach to preemptively predict the
geometric relation between an image pair with low over-
head (i.e. low false positive rate). To represent the image



with a larger subset of features, we develop a hierarchical,
approximate matching scheme that reduces the quadratic to
amortized linear complexity. Based on the resulting im-
plicit feature correspondences, we compute the PAirwise
Image Geometry Encoding (PAIGE). A subsequent classifi-
cation procedure leverages the encoding to predict whether
an image pair has overlap or not. Finally, standard putative
matching and geometric verification is only performed for
image pairs that are predicted to overlap.

4. Pairwise image geometry
In this section, we develop PAIGE, a new approach for

quickly predicting whether two images have scene overlap.
Toward this goal, we begin by analyzing how pairwise im-
age geometry relates to the pattern of correspondences be-
tween feature points in two images (Section 4.1). To use
this intuition in a fast approach, we first hash all the features
in an image into a fixed-sized data structure (Section 4.3),
and then compute an approximate descriptor of the pattern
between corresponding feature points (Section 4.4). The
PAIGE approach works by learning to predict scene overlap
from this representation. The whole process, from hashing
the descriptor of approximate correspondences to evaluat-
ing the classifier, is linear in the number of features per im-
age (Section 4.5), and is relatively light-weight in terms of
actual computation. The hashing process preserves enough
information about the geometry between pairs of images to
allow PAIGE to produce accurate and fast predictions about
whether two images should be sent onward to the computa-
tionally more expensive putative matching stage.

4.1. Feature correspondence and pairwise geometry

We define pairwise image geometry as the relative mo-
tion between two images. The relative motion between an
image pair can be determined up to unknown scale by es-
timating the essential matrix [16] for a freely moving and
by a homography for a purely rotating camera. Hence, an
image pair has scene overlap, if we can estimate its relative
motion from corresponding feature points.

Traditional SfM systems require the extraction of sparse
image features (Stage 1), preferably invariant under radio-
metric and geometric transformations. Current practice uses
local features that estimate four properties [19]: location
{x̄, ȳ}, orientation o, scale s, and the descriptor f .

The central observation underlying the PAIGE approach
is, that when images of the same structure are taken
from different viewpoints, corresponding features change in
scale, location, and rotation in recognizable patterns. Fig-
ure 3 visualizes patterns in the changes between features in
a synthetic experiment, demonstrating the relation of pair-
wise geometry and the properties of corresponding features.

To produce Figure 3, we find feature correspondences
for a pair of rendered images of a reference pattern with

256 feature points, with the first camera held stationary
and the viewpoint of the second camera increasingly trans-
formed. For this image pair, we calculate the displacement
for each feature using normalized image coordinates, such
that {x, y} ∈ [0, 1] (to handle zoom), and measure rotation
of features in degrees. Next, histograms quantize the distri-
bution of these two measures of feature transformation. We
observe, that the location change histogram (Figure 3 (a)) is
sufficient to recognize purely translational camera motion.
However, the location change alone does not distinguish be-
tween purely rotational motion (Figure 3 (b)) and a combi-
nation of translational and rotational camera motion (Figure
3 (c)). Considering histograms of both feature location and
orientation change allows us to separate the two cases.

Based on this motivation, the following sub-sections
describe how to efficiently find approximate feature cor-
respondences and then to leverage estimates of the cor-
responding location and orientation changes to predict
whether an image pair has scene overlap.

4.2. Approximate feature transformations

Computing the histograms shown in Figure 3 used
knowledge of the exact feature correspondences between a
pair of images. Our approach approximates this correspon-
dence. Conceptually, we make two levels of relaxations to
perform this approximation. First, instead of the exact cor-
respondence, we can consider the motion (translation and
rotation) between a feature in one image and any very sim-
ilar features in the other image. As the next relaxation, we
can consider individual dimensions of a feature descriptor.
Each time two descriptors match in one dimension, we use
their translation and rotation to increment the appropriate
bins of the translation and rotation histograms. This later
relaxation seems as if it would introduce a large number
of spurious increments to the histograms, but because non-
matching features rarely agree on many dimensions, unlike
closely matching features, the noisy additions are spread
out. In practice, this representation works well, as shown
in the experiments (Section 7). Furthermore, this approach
allows computing the histogram of translations and rota-
tions from approximate correspondences to be done in two
stages: 1) Hashing all of the features in an image into one
fixed-size data structure. 2) Using two of these data struc-
tures to compute an approximate histogram of translations
and rotations between features in two images.

4.3. Hashing the features from one image

Consider a collection (the images), X = {F1, . . . ,Fm},
of sets (the features for images) Fi = {f1, . . . , fni

} of cardi-
nality ni of d-dimensional feature descriptors fj . For sim-
plicity, we assume that all entries, fk, in each fj are non-
negative, and that ‖fj‖2 = 1. We quantize a given F into

F(F) = [H0(F),H1(F), ...,Hr−1(F)] (1)
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Figure 3. SIFT feature location and orientation change histograms for (a) camera translation, (b) camera rotation [0◦; 150◦] around the
viewing direction, and (c) camera translation and rotation. Histograms from top to bottom with increasing translation and/or rotation.

as a concatenation of r differently weighted 2-dimensional
multi-resolution histograms Hi(F) ∈Md×bi(R). Each Hi

has 1-dimensional histograms with bi bins for each of the
d dimensions of the feature vectors fj , hence is d × bi-
dimensional. The 1-dimensional histograms span the space
fk ∈ [0, 1] using bi = 2i bins of width ∆b = 2−i. To pop-
ulate the histograms, each fj ∈ Fi contributes its assigned
weight η (which varies depending on the task, see below)
once to each of the d locations in each Hi. Overall, the
hashed descriptor, F(Fi), for a set of features Fi from an
image, has dimension d

∑r−1
i=0 2i that does not depend on

the number of feature descriptors, ni, for the image.
This representation can be leveraged to establish approx-

imate correspondences between two entities Fa and Fb by
intersecting their respective F(Fa) and F(Fb). The more
similar two features fa ∈ Fa and fb ∈ Fb are, the more they
will contribute to corresponding bins in F(Fa) and F(Fb).

This approach is potentially prone to over-estimating the
number of correspondences, since it finds matches sepa-
rately in all marginals of f , which might result in duplicate
and false matches. However, if a pair of feature vectors
f are very close (e.g. for a true correspondence), they will
agree in more dimensions than dissimilar features. As the
dimension of the descriptors increases this effect becomes
stronger. Section 4.4 explains, how we account for the dif-
fering similarity across levels by weighting the relevance
of correspondences based on the histogram resolution. The
approximate matching scheme can naturally deal with sets
of unequal cardinalities, since a feature in the smaller set is
implicitly matched to multiple features in the larger set.

This scheme borrows ideas from the pyramid match ap-
proach [15], but differs in a fundamental way. The pyramid
match approach treats the descriptor vector as a whole, and
in practice it is therefore often implemented using a sparse
histogram. In our approach, we hash each dimension of the
descriptor separately, resulting in a more efficient, fixed-
size histogram implementation. Moreover, the traditional
pyramid match approach intersects the raw counts of over-
lapping features, while we use weighted histograms.

In the next section, we will see how to use this weighted
matching scheme to encode the geometric properties in the
PAIGE descriptor.

4.4. PAIGE quantization

The PAirwise Image Geometry Encoding (PAIGE) is de-
fined as the function

P : X×X→ RdP (2)

and quantifies the distribution of location and orientation
changes between an image pair (Fa,Fb) based on its fea-
ture correspondences (fa ∈ Fa, fb ∈ Fb). The approximate
matching scheme described in Section 4.3 is used to implic-
itly establish these correspondences. Therefore, we com-
pute separate multi-level histograms {Fx,Fy,Fo,F1} in a
computationally efficient manner for the respective cases
η ∈ {x, y, o, 1}. In other words, we quantize the geometric
information of a single image in separate histograms, and
count the number of elements (the features) per bin with
η = 1. The image locations are normalized using the di-
mensions of the image, such that

∆x ∈ [−1, 1] ,∆y ∈ [−1, 1] ,∆o ∈ [−2π, 2π] . (3)

In the next step, we average the location and orientation his-
tograms to account for the fact that multiple features might
populate the same bin

F =

[
Fx

F1
,
Fy

F1
,
Fo

F1

]
(4)

For all pairwise combinations of images (Fa,Fb) in X, we
can thereby efficiently calculate the approximate change in
location and orientation per marginal bin as

∆F = Fa −Fb (5)

We describe the distribution of these location and orienta-
tion changes using the PAIGE feature, which is defined as a
concatenation of uniformly spaced, weighted histograms

h (Fa,Fb) = [h∆x,h∆y,h∆o] (6)
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Figure 4. Average PAIGE from London Eye dataset, separated into
location and orientation parts.

populated from ∆F . The dimensionality of PAIGE is

dP = d∆x + d∆y + d∆o (7)

since h∆x ∈ Rd∆x , h∆y ∈ Rd∆y , h∆o ∈ Rd∆o . Finally,
the encoding is normalized to achieve invariance w.r.t. the
number of feature correspondences

P (Fa,Fb) =
h (Fa,Fb)

‖h (Fa,Fb)‖2
(8)

The weight ω a populated bin inF contributes to PAIGE de-
pends on the similarity of the approximate correspondences.
As shown in Section 4.3 the similarity of a match is depen-
dent on the resolution and thus the level i of the histogram
Hi in F . Hence, we choose the weight as ωi = 2i−r.
PAIGE is naturally robust against mismatches, since it is
dominated by fine-grained correspondences in the higher-
resolution histogram levels. Additionally, it is able to cap-
ture the overall location and orientation changes through the
correspondences in the coarser histogram levels. PAIGE
is intentionally designed as a non-symmetric function, i.e.
P (Fa,Fb) 6= P (Fb,Fa), since this allows us to encode
the direction of relative camera motion.

4.5. Efficiency

The described matching approach enables us to find ap-
proximate feature correspondences without performing ex-
haustive pairwise feature matching, which is quadratic in
the number of features O(n2). More precisely, the popula-
tion of F isO(drn), since the dmarginals of f contribute to
a maximum of r histograms. The normalization step and the
PAIGE quantization are performed for each element in F ,
and thus are O(2r+1d). Typically, it is n � r and n � d.
Hence, the amortized computational complexity of quantiz-
ing PAIGE is O(n). Note that we hash every image in a
collection in the fixed-sized data structure F independently,
and then reuse it for the exhaustive pairwise computation of
PAIGE to reduce the computational effort.

5. Classification
Based on the proposed PAIGE feature (Equation 8), we

next design a binary classifier to predict scene overlap. In
doing so, we try to learn a model that separates image
pairs with scene overlap (positive) from image pairs with-
out scene overlap (negative). Choosing a suitable classifier

depends on two main factors. First, the joint distribution of
location and orientation change is expected to be complex
over the complete space of possible pairwise image config-
urations. Hence, we need a classifier that is able to dis-
criminate this complex parameter space. Second, the main
motivation for the proposed method is a speed improvement
over the traditional approach of exhaustive feature matching
and geometric verification; therefore, the classifier should
require minimal computational effort for maximal benefit.
In our experiments, random forests [21, 6, 4] gave the best
results in terms of accuracy and computational efficiency.

We use SIFT to extract invariant features at different
scales. Note, any other invariant features could be employed
alternatively. The 128-dimensional descriptors f are nor-
malized and stored with 8-bit precision. We use r = 9 as
the number of multi-resolution histograms; the number of
bins of the finest-resolution histogram therefore equals the
descriptor discretization. Empirically, the dimensionality of
PAIGE is chosen as d∆x = d∆y = 50 and d∆o = 100.

6. Training

Large-scale Internet photo-collections from several dif-
ferent landmarks across the world and a set of sequen-
tial image sequences acquired by mobile video cameras (to
counter the orientation bias of crowd-sourced images) serve
as the dataset for training the random forest classifier. Note,
the training dataset is disjoint from the evaluation datasets.
Ground-truth data is extracted by exhaustive pairwise im-
age matching and subsequent geometric verification for ap-
proximately 30M image pairs. Then, PAIGE is extracted
for all image pairs a and b in the forward P (Fa,Fb) and
backward P (Fb,Fa) directions. Hence, for each image
pair, we generate two training samples with the same label.
Analogously, when we classify an image pair, we can ex-
tract the forward and backward PAIGE features with requir-
ing only small additional computational overhead, since we
need only invert the order of subtraction in Equation 5. We
then classify both features and use the more confident pre-
diction as the final classification result. Due to the fact that
most image pairs in unordered collections do not have scene
overlap, we reduce (via random sub-sampling) the number
of negative samples with the goal of training classifiers with
differently tuned properties in terms of the expected over-
head. We denote these versions as PAIGE NP , where NP
is the ratio of negative over true training samples. Using 3-
fold cross-validation, we determined design choices for the
classifier, including using a forest with 50 decision trees, en-
tropy as the splitting criterion, and considering all features
when searching for the best split at each node in a tree. A
minimum number of three samples per leaf is enforced to
avoid over-fitting.



Time Prec. Found Overhead Reg. images

Retrieval 25 21h56m 0.18 0.14 4.48 11845
London Eye 3h58m 0.29 0.14 2.40 2354
San Marco 3h41m 0.28 0.17 2.55 3392
Tate Modern 2h30m 0.18 0.12 4.63 1429
Time Square 3h16m 0.14 0.12 6.01 2014
Trafalgar 3h59m 0.17 0.11 4.85 2656
Rome 6h43m – – – 15412

Retrieval 50 35h10m 0.15 0.23 5.84 13544
London Eye 5h25m 0.25 0.24 2.99 3280
San Marco 5h48m 0.23 0.28 3.41 3703
Tate Modern 3h28m 0.14 0.20 6.01 1481
Time Square 6h57m 0.11 0.18 8.34 2169
Trafalgar 7h0m 0.14 0.18 6.40 2911
Rome 9h4m – – – 15366

Retrieval 100 77h3m 0.11 0.35 8.02 14531
London Eye 11h55m 0.20 0.37 3.95 3331
San Marco 17h7m 0.17 0.41 4.87 3929
Tate Modern 6h32m 0.11 0.31 8.01 1647
Time Square 16h6m 0.08 0.26 11.86 2463
Trafalgar 9h54m 0.10 0.26 8.75 3161
Rome 17h41m – – – 15388

Preemptive 3 203h19m 0.05 0.35 20.65 14767
London Eye 38h6m 0.08 0.36 11.14 3418
San Marco 42h6m 0.06 0.34 16.24 3815
Tate Modern 14h33m 0.07 0.35 13.56 1825
Time Square 34h46m 0.03 0.24 34.53 2401
Trafalgar 35h10m 0.04 0.38 22.00 3308
Rome 223h12m – – – 15401

Preemptive 4 74h54m 0.11 0.23 7.76 14694
London Eye 13h32m 0.21 0.25 3.83 3477
San Marco 13h58m 0.16 0.23 5.23 3744
Tate Modern 6h28m 0.18 0.23 4.61 1930
Time Square 10h35m 0.06 0.13 14.84 2351
Trafalgar 13h53m 0.09 0.25 9.57 3192
Rome 80h43m – – – 15298

VocMatch 15h44m 0.31 0.26 2.25 4247
London Eye 2h15m 0.30 0.43 2.35 1353
San Marco 2h52m 0.29 0.37 2.47 1474
Tate Modern 1h21m 0.39 0.17 1.59 637
Time Square 2h46m 0.28 0.05 2.60 316
Trafalgar 2h1m 0.76 0.10 0.32 467
Rome 7h48m – – – 12944

PAIGE 10 95h9m 0.10 0.36 9.48 13520
London Eye 18h0m 0.13 0.35 6.70 3167
San Marco 20h25m 0.10 0.36 9.25 3544
Tate Modern 9h54m 0.14 0.45 6.17 1490
Time Square 4h31m 0.23 0.28 3.38 2193
Trafalgar 31h42m 0.07 0.48 13.07 3126
Rome 83h55m – – – 15298

PAIGE 20 26h9m 0.27 0.27 2.66 12198
London Eye 6h28m 0.30 0.28 2.33 2905
San Marco 4h22m 0.35 0.26 1.83 3145
Tate Modern 3h42m 0.30 0.35 2.37 1338
Time Square 1h8m 0.92 0.23 0.09 1999
Trafalgar 8h36m 0.18 0.32 4.41 2811
Rome 22h49m – – – 14725

PAIGE 30 7h52m 0.62 0.15 0.62 10697
London Eye 1h35m 0.81 0.16 0.24 2508
San Marco 1h20m 0.84 0.15 0.19 2770
Tate Modern 0h55m 0.70 0.18 0.42 1204
Time Square 0h43m 0.99 0.14 0.01 1747
Trafalgar 2h44m 0.35 0.18 1.84 2468
Rome 5h14m – – – 14566

Table 2. Precision (NTP /(NTP +NFP ), found pairs (NTP /NG),
overhead (NFP /NG), and number of registered images.

7. Evaluation of PAIGE

We perform the same experiments for PAIGE as for the
other methods. The PAIGE feature for overlapping vs. non-
overlapping pairs is shown in Figure 4. The results in Table
2 show, that PAIGE 30 has the lowest false positive rate of

Figure 5. Reconstruction based on PAIGE for Trafalgar dataset.

Figure 6. Visualization of the overall evaluation results.

any method and hence the lowest overhead in reconstruc-
tion cost, while still reconstructing nearly as much as any
other technique. At the other end of the spectrum, PAIGE
10 has the highest true positive rate and results in nearly
the highest reconstruction completeness at modest compu-
tational cost. Interestingly, PAIGE outperforms the other
methods on the Time Square dataset, for which we find that
the predictions of positives and negatives are much more
separated and confident than for the other datasets. The
clear separation is caused by the many video screens (dy-
namic scenes) and the day/night images, resulting in clearly
incorrect pairwise geometry and sets of SIFT features that
clearly cannot be aligned. The resulting models of PAIGE
are stable and cover the entire scenes (Figure 5).

8. Conclusion and outlook
In this paper, we conduct a comprehensive evaluation of

state-of-the-art matching methods. Based on the insights of
this evaluation, we propose PAIGE, a novel learning-based
approach to identify overlapping image pairs for improved
efficiency in the matching stage of SfM. We show, that ap-
proximate correspondence information reveals enough in-
formation to reliably predict the pairwise image geometry,
resulting in significant speedups compared to traditional,
exact correspondence approaches. Moreover, we show that
learning-based methods can effectively support 3D recon-
struction, in this case for improved efficiency. In future, it
will be interesting to explore how to leverage PAIGE for
other modules in SfM, e.g. to improve the robustness of
incremental reconstruction by inferring geometric informa-
tion between image pairs.
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