
Distributed Realtime Interaction and Visualization System

Jan-Friso Evers-Senne, Jan-Michael Frahm, Felix Woelk, Jan Woetzel and Reinhard Koch

Christian-Albrechts-University of Kiel , Institute of Computer Science and Applied Mathematics
Hermann-Rodewald-Straße 3, 24098 Kiel, Germany

Email: {evers,jmf,woelk,jw,rk }@mip.informatik.uni-kiel.de

Abstract

A distributed realtime system for immersive visu-
alization is presented which uses distributed inter-
action for control. We will focus on user tracking
with fixed and pan-tilt-zoom cameras, synchroniza-
tion of multiple interaction devices and distributed
synchronized visualization. The system uses only
standard hardware and standard network protocols.
Furthermore for the realtime visualization we only
use consumer graphics hardware.

1 Introduction

In the last years a lot of research was performed
to design human computer interfaces which can be
used in a more natural way [2, 6, 7]. Some of these
systems have devices attached to the user’s body to
facilitate interaction. The most intuitive way to con-
trol interaction, however, is to exploit natural hu-
man actions like walking, pointing or gestures. We
will describe a system that captures these natural
actions with a multicamera system.

Every human computer interface has different
tasks. These tasks are organized as follows:

1. Recording of user interaction with sensor de-
vices like cameras, mouse, keyboard, tracking
devices, microphones, etc.

2. Processing of the interaction data and fusion
of information.

3. Updating of all affected data and displaying
the new state of the application.

In the following we will discuss those tasks. User
interaction processing is a problem on it’s own and
has been investigated in detail in the past but there
is still work in progress. The problem of dis-
tributed interaction processing is also a current re-
search topic [11, 9, 10].

The paper is organized as follows: At first we
will give an overview of the different tasks of the

system and how they work together. Then we will
review the synchronisation protocol and extend it
to incorporate interaction processing. Section 4 de-
scribes the interaction processing in detail with the
user interface tasks for the user tracking, sensor in-
tegration and synchronized scene rendering. We
will evaluate the system and conclude with some
outlook for future work.

2 System overview

In this section we will give a brief overview of our
system architecture and its tasks. The system en-
ables the user to explore a virtual scene interac-
tively with more immersive techniques than key-
board, mouse, headtracker or any other cable con-
nected devices.

We will track the user with three cameras. One
fixed camera is located at the ceiling and two pan-
tilt-zoom cameras are mounted in front of the user
(see fig. 1). The user can interact with a 3D scene
that is displayed on a stereo backprojection wall by
simply walking throughout the scene. This interac-
tion feels very natural for the user, because there is
no special tracking device fixed to the users body.
Since the system is not restricted to a single user, an
extra task in case of multiple users is to select the
user in control.

Distributed
processingPan-Tilt-

Cameras

Overhead-
Camera

Stereo backprojection
unit

Interaction room

Figure 1: View of interaction area with the display
and the cameras.

VMV 2002 Erlangen, Germany, November 20–22, 2002



Viewpoint

IEEE1394

RS232

RS232

pan, tilt

pan, tilt

x,y

x,y

x,y
MCast: go

Interaction Server

Visu2 Visu1

ready

MCast: go

Video

Video

Projector L Projector R

Pan−Tilt−Zoom Camera 1

Overhead Camera

netsync protocol
cable connection

Pan−Tilt−Zoom Camera 2

sensormessage protocol

Figure 2: Components of the distributed system and
their connections

The system architecture is as follows. The cam-
era at the ceiling (overhead camera) locates the po-
sition of the user’s feet on the floor. This sensor
delivers a 2D position that can be used to initialize
and confine the search range of two pan-tilt-zoom
cameras facing the user. If the pan-tilt-zoom cam-
eras have found the user’s head by searching for
skin colored blobs they will track the user’s face.
From the rotation angles of the pan-tilt cameras we
will triangulate the user’s 3D head position in space.
This position is used to calculate the viewpoint for
a virtual view of the scene. The viewpoint position
is transmitted to two framewise synchronized visu-
alization nodes for realtime stereo display.

All the modules of the system are computation-
ally expensive and demand realtime requirements of
at least 10-15 frames per second for tracking and 30
frames per second for visualisation. We have there-
fore distributed the computational load to different
Linux client nodes. Currently each camera is at-
tached to a separate node with a frame grabber, and
the stereo display is splitted onto two nodes with
fast OpenGL consumer graphics cards. These ma-
chines need a synchronization and intercontrol pro-
tocol to meet the requirements of the realtime inter-
action system and to fuse and distribute the inputs.
This is handled by the interaction server. All ma-
chines are connected by standard Ethernet network
interfaces. Figure 2 sketches the complete system
and the connectivity with the interaction server.

3 Distributed synchronized visualiza-
tion and interaction

In the following subsections we will describe the
protocol for framewise visualization synchroniza-
tion and synchronization of the interaction process-
ing.

3.1 Synchronization for distributed visu-
alization

Distributed rendering of a dynamic scene depends
on the synchronization of graphics clients to assure
a coherent visualization. For framewise synchro-
nization of the graphics clients we need a common
decision that all clients have rendered their views
and simultaneously display their views after deci-
sion concurrently. To guarantee this framewise syn-
chronization of the displays we use the protocol
from [4].
This protocol uses a spanning tree architecture for
graphics nodes to distribute aready-to-displaymes-
sage to a specific node (root node) in the network,
namely one of the graphics nodes. After receiv-
ing ready-to-displaymessages from all other visu-
alization nodes the root node distributes adisplay-
immediatelymessage via IP-multicast to all clients
(see fig. 3). This protocol is optimal with respect
to the number of messages sent and therefore pro-
duces few collisions on the network. In [4] it was
measured that the generated time shift between dif-
ferent displays is not noticeable by the user.

Furthermore it provides a frame counter to syn-
chronize interaction devices. The protocol is also
able to distribute payload information on each syn-
chronization step to the graphics nodes. In the next
section we will describe the extension of the proto-
col used for interaction processing in detail.

3.2 Control of visualization network by
interaction

In many virtual environments user interaction has to
be processed. The above mentioned protocol [4] for
synchronization of graphics clients can be extended
to handle such interaction information. We will de-
scribe this extension of the protocol in this section.

We assume that every type of interaction process-
ing has one process (interaction server) which is
able to transmit interaction processing information

666



syncronous MCast connection (UDP)

syncronous connection (TCP)

asyncronous connection (TCP)

root
multicast

interaction
data

interaction
server

Figure 3: Architecture for visualization and interac-
tion processing

to our visualization network (see fig. 3). This as-
sumption is no constraint for interaction processing
because there is only one interaction process, which
is the interaction server itself. For distributed inter-
action processing one process has to collect the rel-
evant interaction information, fuse the information
and transmit it to the visualization network.

Tracking of user interaction does not depend on
the frame rate of visualization because it can be con-
tinuous interaction, for example pointing to an ob-
ject at the display, or discrete interactions like click-
ing, selecting, etc. Especially interaction processing
does not need to be synchronous to the frame rate of
visualization. For this reason we assume interaction
processing as an asynchronous task. This assump-
tion leads to a visualization network separated from
the architecture for interaction processing. In this
case it is possible to use any type of interaction pro-
cessing algorithm. To correlate interaction events
with the displayed context it is necessary to have
a globally consistent time for visualization and in-
teraction clients. For time synchronization of the
client clocks NTP [8] could be used. For framewise
synchronization the frame counter is an appropriate
time stamp.

3.3 Interaction synchronization

The interaction server is a specific process not in-
cluded in the visualization network. It commu-
nicates with the root of the visualization network
and transmits all interaction data to the root. Fur-
thermore, the interaction server receives the frame
counters which are distributed via multicast from
the root of the visualization network. These frame
counters could be used to correlate the interaction
events with the displayed context.

The root of the visualization tree provides inter-
action information to all graphic clients simultane-
ously through the IP-Multicast for synchronization.

All graphic clients have to process this information
in their context. In this way every client can mod-
ify its state depending on interaction information.
If this processing produces relevant information for
other graphic clients it can be submitted as pay-
load with theready-to-display-messages to the root
and will be transmitted to all other clients with the
nextsynchronization-message. The modified archi-
tecture for visualization and interaction is shown in
figure 3.

The interaction processing adds a delay to the
synchronization. In the worst case we will have
a delay of two frames. The aspects of quality-of-
service criterion for interaction are discussed in de-
tail by Holloway [5]. If the visualization reaches
frame rates of 30 or more frames per second, this
interaction delay meets the quality-of-service crite-
rion for most applications.

4 Interaction processing

In this section we will describe the different mod-
ules necessary for user interaction. User input is
obtained by evaluation of different camera sensors.
The acquired sensor data are fused in the interaction
server and forwarded to the scene visualization for
stereoscopic rendering. The processing is entirely
distributed and scalable, hence new sensors can be
added if available. A simple GUI is also integrated
into the interaction server that lets the user control
the scene using mouse and keyboard if no external
sensor clients are available, or to modify additional
parameters not supported by the external sensors.
All techniques described in this section have strong
realtime requirements of at least 10 frames per sec-
ond, which influences the choice of algorithms.

4.1 2D Foot tracking with overhead cam-
era

The overhead camera mounted at the ceiling is
equipped with a wide-angular lens. It is tilted to
view the whole floor of the interaction area in front
of the display. The significant radial lens distortion
of the wide-angular lens is compensated with the
inverse radial distortion function to avoid errors in
the estimated floor position. Since the camera views
the planar floor we can use four points on the floor
to compute a homography as calibration that relates

666



ground floor scene coordinates and image coordi-
nates.

The interaction area can be segmented into fore-
ground, which is the user, and background, which
is the empty interaction area. To acquire a back-
ground reference, a ground truth image is incorpo-
rated as mean image of a sequence of the interaction
area without the user. The lengthn of this sequence
depends on the noise of the camera. The required
lengthn for a given fixed noise levelσbackground
of the background image is given by

n =
σimage

σbackground
,

with σimage the variance of the ergodic noise pro-
cess of the camera images. To speed up processing
and to reduce image noise we use a mean-filtered
subsampled image of size 320x240 pixel.

To compute the position of the user in the inter-
action area we apply two steps:

The first step is based on calculating the differ-
ence image between the current camera image and
the background reference and uses a thresholdϑ to
segment it into background and foreground (see fig.
4). To allow change of the lighting situation an
adaptive threshold is used which is taking the fol-
lowing constraints into account:
• The adaptive threshold is limited to a maxi-

mum and minimum value as a confidental in-
terval depending on image noise.
• It is assumed that the user’s foot in the inter-

action area covers a ratiou(x, y) of the im-
age which only depends on the position on the
floor.
• The threshold should adapt uniformly as the

lighting condition changes smoothly and the
user is moving slowly with respect to the frame
rate of the camera.

The second step locates the user’s feet on the
floor. We exploit the fact that, due to the tilted view-
ing frustum of the camera, the feet are always vis-
ible in the camera even if the head of the user in
the interaction area may not be visible. With re-
spect to the viewing geometry of the cameras, the
user’s feet are always located on the bottom most
part of the foreground. Since the light falls from the
display onto the user, the shadows are always cast
away from the screen and the camera can easily see
the intersection of the feet with the human shadow.

We identify the user position with the bottom
most foot position in the segmented camera im-

(a) foot position (b) segmented image

Figure 4: Segmentation of the overhead camera into
foreground and background

age. The foot position is found by scanning the
segmented image from the bottom right to the top
left and search for the first occurrence of a block of
the sizeu(x, y) with at least 80 percent foreground
pixels.

The reliability of this pose estimation depends on
the noise in the difference image. To avoid noise
in the estimated position we only update the esti-
mated position if the new position has a distance
from the last estimated position in pixel greater than
a given thresholdω. Normally ω = 2 pixel is a
good choice.

It can be assumed that the feet move on a plane,
namely the floor, so a homography from the camera
to the floor is applied to get the position of the user’s
foot on the floor in world coordinates. These 2D
coordinates are submitted to the interaction server
for further processing.

4.2 3D Head tracking with pan-tilt-zoom
cameras

For the correct estimation of the users viewpoint
it is not sufficient to know the 2D position of the
user as given by the overhead camera. Instead we
need to know the 3D position of the user’s head.
The missing unknown parameter is the height of the
head above the floor. In the most simple approach
this height could be assumed to be fixed. The draw-
back would be, that movements in vertical direction
could not be recognized and therefore would not ef-
fect the virtual camera position, which is used for
visualisation.

We use two pan-tilt-zoom (ptz) cameras posi-
tioned on either side of the screen to determine the
user’s head position. The position of the cameras
can be calibrated with four points by a homography

666



Figure 5: Left : Picture of the user as seen by the
pan-tilt-zoom camera.Right: The according binary
image after segmentation.

between the interaction floor and the camera image
plane. In addition, we have to consider the degrees
of freedom (pan, tilt, zoom) of the cameras.

In order to obtain information for 3D triangula-
tion two tasks have to be solved:
• The position of the user’s head within the im-

age has to be determined.
• If the user’s head is not within the image, ini-

tialization angles have to be computed.
For the first task, we use a color based algo-

rithm instead of face recognition which utilises a
self-adapting bounding box in the HSV color space.
This choice is motivated by the fact that proper
face recognition is often computationally expen-
sive. The self-adaption form the detected blobs in
the previous images makes it feasible to use the
color based face detection in our dark room. Af-
ter segmentation according to the bounding box and
employing morphological operations one or several
binary blobs are determined from the image (see
fig 5). The mean hue and saturation of the biggest
blob is calculated and used as the new center of the
bounding box in the next processing step. To avoid
the bounding box from moving to a complete dif-
ferent color if no appropriate blob is found (e.g. if
there is no head in the image at all), some upper
bounds for the distance between the new bounding
box and the initial user given values are used. This
approach assumes a background color which sig-
nificantly differs from color of human skin. We use
dark blue curtains to separate the interaction area.
Obviously this is a “single user” algorithm. As soon
as more than one user appears in the image, it is
no longer determined which user is been tracked.
However, just changing the initial values determin-
ing the bounding box, any other color (e.g. a spe-
cific marker on thecontrol user) or all skin coloured
blobs can be tracked.

Since the maximal field of view of the two cam-
eras does not allow us to view the whole interac-

optical axis

Φ
C

x
pan tilt zoom camera

virtual camera

O

Figure 6: Relationship between the virtual and the
real camera: The projection centers of the two cam-
eras coincide with the center of rotation of the pan-
tilt-zoom camera in the pointC. Any ObjectO on
the optical axis of the real camera projects to the
pixel position(x = cosφ, y = cos θ)T in the vir-
tual camera, whereφ andθ are the pan and tilt an-
gles of the real camera. For simplicity only the one
dimensional case is shown in this figure.

tion area at once, an initial guess for the pan and tilt
angles is needed. The position of the users feet -
as determined by the overhead camera - is used for
initialization.

This leaves us with the following problem: Given
a position on the floor of the interaction area, cal-
culate the according pan and tilt angles in order to
initially find the users head.

As a solution the concept of the virtual camera is
used:

A virtual camera with unit focal length is defined
for each pan tilt zoom camera. The center of projec-
tion of the virtual camera coincides with the center
of projection of the pan-tilt-zoom camera (being the
center of rotation at the same time) and its optical
axis coincides with the axis of the real camera if the
angles are both zero. Thus the pixel on the optical
axis of the pan-tilt-zoom camera will project to a lo-
cation(cosφ, cos θ)T in the virtual camera, withφ
andθ being the pan and tilt angles (see Fig. 6).

Given a position on the floor of the interaction
area, the homography is used to determine the pixel
position in the virtual camera. The according pan
angle is then calculated as thearccos of thex posi-
tion of the virtual camera. For the initial tilt angle a
fixed mean body height is assumed.

It is not neccessary to find the user’s head ex-
actly (in the image center) at first guess. It suffices
if the user’s head is visible somewhere in the im-
age. The exact pan and tilt angles are computed
from the deviation of the user’s head position to the

666



image center. As an additional advantage the pan
and tilt angles can be used for triangulation if the
user’s head is exactly centered in both pan-tilt-zoom
camera images. If one camera is not able to recog-
nize the face, it sets an invalid flag. These data are
sent to the interaction server that computes the final
3D head position based on the available estimates
from all cameras.

4.3 Sensor fusion with interaction server

The interaction server acts as a central communica-
tion platform between one or more sensors and the
visualization network.

The interaction server is connected to the root
node of the visualization network which uses the
netsync protocol to control visualization. The inter-
action server receives multicast messages contain-
ing the frame counter of the current render cycle.
In addition the interaction server sends interaction
data like viewpoint updates asynchronously to the
root node.

The interaction server accepts TCP connections
from arbitrary sensor clients, each implementing a
specialized interaction device. These clients send
their data, marked with the frame counter of the
time it was acquired, asynchronously to the inter-
action server. The frame counter of the sensor data
is used to maintain data consistency. The fusion of
the data from multiple sensors is done in the inter-
action server to assure a coherent status.

If new data from any sensor client arrives, the
current state (in this case position of the user’s head)
is recalculated based on the known data of other
sensor clients and the newly received data.

The sensor clients are also allowed to request
data from other sensors. These requests are handled
by the interaction server to avoid network traffic
between individual sensor clients and again to as-
sure coherence. For example the sensor client con-
trolling the pan-tilt-zoom cameras for face tracking
uses this mechanism to initially query the 2D user
position from the overhead camera.

The concept of sensor fusion with the interaction
server is general. As an example we will describe
3D head position estimation from our multi camera
setup. Three cameras are used to observe the inter-
action area: one overhead camera and two pan-tilt-
zoom cameras. Therefore we achieve a more robust
pose estimation in the case of one user and we are

also able to select the control user in case of multi-
ple users.

For a 3D tracking of the user the overhead cam-
era and one pan-tilt-zoom camera is sufficient. Al-
ternatively we can also use only the two pan-tilt-
zoom cameras to estimate the 3D position of the
users head. Knowing the position of the two pan-
tilt-zoom cameras, the interaction server receives
the orientation from each pan-tilt-zoom camera and
calculates the intersection of the two rays originat-
ing from the cameras. In the general case these two
rays do not intersect due to the problems of wide
base line stereo position estimation. Therefore the
point which has the minimimal distance to each ray
is used as users head position.

Now we can use every pair of two cameras to
compute additional pose estimations. It is then pos-
sible to compute a mean value of the positions as a
more robust estimation of the users head position.

If only the overhead camera is available it is pos-
sible to track the users position in 2D on the floor.
In addition we can extend the foot position received
from the overhead camera to a 3D position by as-
suming a fixed height of the head above the floor.

If both pan-tilt-zoom cameras are tracking and
the overhead camera does not work properly, this
does not affect the user tracking, as long as there is
only one single user in the interaction area.

If there is more than one face visible for the pan-
tilt-zoom cameras, it has to be decided which one
should be tracked. In this case pan and tilt angles
for all faces seen from both pan-tilt-zoom cameras
can be used to compute a 3D position for each visi-
ble face. The one which is the nearest to the display
is chosen to be thecontrol user. Using this con-
trol user’s position, the matching blob in the over-
head cameras image is selected and the two redun-
dant positions from overhead camera and one pan-
tilt-zoom camera are calculated. Finally, the mean
value of all three positions is taken as the user posi-
tion.

The calculated 3D user position in world coordi-
nates is transformed to a coordinate system appro-
priate to the visualization subsystem and transmit-
ted to the root node of the visualization subsystem.

4.4 Synchronized 3D scene rendering

The users head position which has been computed
by the interaction server is now sent to the stereo

666



Figure 7: A view of the interaction area with a user
wearing polarized glasses. The pan-tilt-zoom cam-
eras can be seen on the left and right side of the
display.

visualization subsystem. The visualization is ren-
dered onto a3m × 2m stereo backprojection sys-
tem. Two projectors equipped with polarization fil-
ters produce stereoscopic images visible with polar-
ized glasses. Each projector is driven by one stan-
dard Linux PC equipped with modern consumer 3D
accelerator graphics hardware. Figure 7 shows the
view of the interaction area with display and cam-
eras.

A method called “parallel axis asymmetric frus-
tum perspective projection” as described in [1] is
used to generate the stereo views for the projection
system. Assuming the distance between the view-
ers eyes is approximatly 7cm, the virtual camera
for the left eye is moved 3.5cm to the left, and the
virtual camera for the right eye is moved 3.5cm to
the right. Now both viewing frustums must be dis-
torted to view the same projection plane like shown
in figure 8.

The user can explore the scene by walking
around the interaction area. These movements are
captured by the previously described system which
modifies the position and orientation of the virtual
camera. Moving forward lets the virtual camera
move in the same direction, which lets the user ap-
proach the scene. Moving backward, the virtual
camera is retracted, so the user sees the scene from
an increasing distance. Moving sideways lets the
virtual camera move on a circular trajectory in the
opposite direction, which is equivalent to rotating
the scene on a virtual turntable around an axis in
front of the user. This method allows the user to
inspect objects using natural movements. To look
at the scene more from the right, some steps to the
right let the scene rotate clockwise and vice-versa.
We don’t use the direction where the user looks at
to control the viewpoint to enable the user to look
around at the displayed scene. The area of explo-

projection plane

eye separation

Figure 8: “parallel axis asymmetric frustum per-
spective projection”: The cameras are separated and
the frustums are distorted asymmetrically.

ration is limited to the size of the interaction area,
so that additional controls have to be used to navi-
gate in larger scenes.

The two graphics nodes are synchronized as de-
scribed in section 3.1. In this case the binary
synchronization tree is degraded to two connected
nodes. The root node listens for a connection from
the interaction server. Once connected, the interac-
tion server sends updates of the data describing the
virtual camera (position and orientation of the user)
to the root node, which distributes this update with
the next synchronization cycle. Each of the nodes
receives this data and recalculates and resets the pa-
rameters of its virtual camera accordingly.

5 Evaluation

We have evaluated the system under a variety of
scenarios. We use two Linux PCs with an Athlon
1GHz CPU and GeForce3 graphics engine for the
visualization. Each camera is also supported by a
PC with an Athlon 1GHz CPU. The pan-tilt-zoom
cameras have a frame rate of 25Hz with resolution
360×288 and the overhead camera has a frame rate
of 30Hz with resolution640× 480.

The algorithm used to estimate the 2D position
from the overhead camera needs 10 ms to estimate
the position of the user on the floor. Each pan-tilt-
zoom camera needs 35ms to detect the face of the
user. To compute and transmit all these data to the
visualization network we need approximately 3ms.
Therefore the amount of time for these computa-
tions is small enough to perform a complete user
position estimation at full frame rate of the cameras.

We tested the system with different virtual scene
models. The performance for two of these models
in our framework will be discussed here. The first
model is thecastleshown in figure 5 (a). It contains
6131 triangles and a 1.3 MB texture. As second

666



model we choose thetemplemodel shown in fig-
ure 5(b). This model contains 48893 triangles and a
5.8MB texture.

(a)castlemodel (b) templemodel

Figure 9: Screen shots of virtual scene models
Hardware accelerated full scene anti aliasing

(2x2) was used to enhance the quality of the ren-
dered images. Thetemplemodel is rendered with
34,3 frames per second, thecastleis rendered with
97 frames per second. This difference in rendering
time is caused by the number of triangles because
these consumer graphics engines are optimized for
texture mapping but not for geometry. In both cases
the interaction to explore the models is very natural
and there are no noticeable delays in interaction for
the user.

6 Future work

The described system is currently under develop-
ment, hence there are many tasks for future work.

One problem of the position estimation by the
overhead camera is that the estimated foot position
switches between position of the right and the left
foot if the user is walking. To avoid such uncertain-
ties we will implement a kalman filter which tracks
the left and the right foot separately. Then it will
be possible to estimate the position on the floor by
any linear combination of those positions. Another
approach to overcome this problem is the use of a
human model.

The color based face tracking of the pan-tilt cam-
eras also has to be improved because still there are
problems with skin colored clothes. A refined ap-
proach will use also structural information of the
human face, like presented in [3].

To extend the navigation in the scene it is re-
quired that the user can control the system with ges-
tures to push the degrees of freedom in navigation

like long distance movements. We are looking at
humanoid models to incorporate gesture navigation
by pointing.

References

[1] Paul Bourke. 3D Stereo Rendering Using
OpenGL (and GLUT).

[2] T. Darrel, P. Maes, B. Blumenberg, and
A. Pentland. A novel enviroment for situated
vision and behavior. InProc. CVPR-94 Work-
shop for Visual Behaviors.

[3] S. Z. Li et. al. Statistical learning of multi-
view face detection. InProceeding of ECCV
2002.

[4] J.-M. Frahm, J.-F. Evers-Senne, and R. Koch.
Network protocol for interaction and scalable
distributed visualization. InIEEE Proc. of 3D
Data Processing Visualization Transmission,
2002.

[5] Richard Lee Holloway. Registration errors in
augmented reality systems. Technical Report
TR95-016, 1, 1995.

[6] R. E. Kahn and M.J Swain. Understanding
people pointing: The perseus system. InProc.
IEEE Int. Symp. on Computer Vision 95.

[7] M. Kolesnik and T. Kuleßa. Detecting, track-
ing and interpretation of a pointing gesture by
an overhead view camera. In B.Radig, editor,
LNCS: Pattern Recognition, 2001.

[8] Network Time Synchronization Project. NTP.
www.ntp.org.

[9] S. C. A. Thomopoulos, R. Viswanathan, and
D. K. Bougoulias. Optimal distributed deci-
sion fusion. InIEEE Trans. Aerospace Elect.
Syst., volume 25, pages 761–765, September
1989.

[10] J. N. Tsistsiklis. Decentralized detection.
In Advances in Statistical Signal Processing,
Signal Detection, volume 2, 1993.

[11] R. Viswanathan and P. K. Varshney. Dis-
tributed detection with multiple sensors: Part
I - fundamentals. InProceedings of the IEEE,
volume 85, pages 54–63, 1997.

666


