
Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

Design Document for 3D Neural Activity Mapping

Architecture:

This project will provide both an ImageJ Plugin and Macro that follow the data flow
design architecture. The actual design is detailed in the flow diagram on page 13 of this
document. The ImageJ plugin will be written in Java and use classes documented in the ImageJ
API, as well as the other ImageJ plugins indicated below. The ImageJ macro will use ImageJ’s
built-in macro language and the ImageJ plugins indicated below.

Both the plugin and the macro will have the same functionality and will follow the flow
diagram on page 13. The basic functionality allows users to load a sequence of images, mask
them, align them using either TurboReg or a saved transformation file, and finally export this
alignment in a SPM-recognizable format. In order to run either the Plugin or the Macro the user
needs to load the following software and ImageJ plugins. The plugin will have a more elegant
and intuitive interface, while the macro will run faster during the masking, import and other
procedures native to the ImageJ built-in macro language. The plugin is intended for most users,
especially those new to the process, while the macro is intended for more experienced users
running a large batch of images.

The following are ImageJ plugins used in our project:
 Used to allow alignment of the imported image sequences:

TurboReg: http://bigwww.epfl.ch/thevenaz/turboreg/
***MultiStackReg: http://www.stanford.edu/~bbusse/work/downloads.html

 Used to export image sequence in a SPM readable format:
NIfTi: http://rsb.info.nih.gov/ij/plugins/nifti.html

ImageJ general information, downloads and documentation:
 Main information page: http://rsb.info.nih.gov/ij/
 Documentation on ImageJ Developer’s Resources:

API: http://rsb.info.nih.gov/ij/developer/api/index.html
Built-In Macro Functions: http://rsb.info.nih.gov/ij/developer/macro/functions.html

Statistical Parametric Mapping Software:
 SPM software: http://www.fil.ion.ucl.ac.uk/spm/

***MultiStackReg was not directly used. It was revised and named “MultiStackRegFix” and
allows the following “additional” functionality:

1. Error checking to guarantee that the alignment plugin, MultiStackRegFix, ran to
completion

2. Error checking to guarantee that if a saved Transformation file is used for alignment, the
alignment will only occur if the image sequence to be aligned has the same number of
images and the same dimensions as the image sequence that originally generated the
saved Transformation file.

3. Modified to allow only three types of alignments when run in batch mode from a plugin
or macro.

1

http://www.fil.ion.ucl.ac.uk/spm/
http://rsb.info.nih.gov/ij/developer/macro/functions.html
http://rsb.info.nih.gov/ij/developer/api/index.html
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/plugins/nifti.html
http://www.stanford.edu/~bbusse/work/downloads.html
http://bigwww.epfl.ch/thevenaz/turboreg/

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

a. Rigid body alignments that save a Transformation file.
b. Alignments using a saved Transformation file.
c. Alignment using a saved Transformation file. Same as b. except the program

does not prompt the user to select where the saved Transformation file can be
found.

4. Modified to prevent warning messages from closing the macro if they appear during
execution of the MultiStackRegFix plugin.

5. Allows rigid body alignment and alignment from saved transforms for color images
(previously one could only align grayscale images in this way).

Decomposition:

We will have a plugin and a macro with similar functionality. They will both go through the set
of screens as specified in the flow diagram on page 13, with the only difference being that the
macro runs faster, while the plugin has a more elegant user friendly interface. The macro is
mainly for the experienced users that need more speed with their alignments.

AlignWiz Plugin:

The plugin consists of a single .java file with a main class and its subclasses and functions. The
plugin is written in Java and uses the Swing library for its interface. The interface consists of a
single Swing JFrame object, with JPanels which are added and removed between each panel in
the diagram.

1. Main class that calls the first JPanel.
2. Subclasses that create JPanels as specified by flow diagram. There is one class for each

JPanel, each with a constructor which adds a new panel to the main JFrame. Each of the
subclasses implement ActionListener and include an ActionPerformed() function to
process events that happen on its own JPanel buttons.

3. Functions of the main class:
• align()—calls MultiStackReg to align images
• maskSection()—masks brain section appropriately for either cells or grains.
• maskBrain()—masks an entire brain for both grayscale and colored cells. Grains

for entire brain are masked by simply importing the existing mask files.
• closeImage()—closes the image if it is open.
• deleteDirectory()—deletes a folder and all files contained in the folder.
• run()—main function that is called when ImageJ runs the plugin.

A detailed view of all subclasses, fields, and methods can be found in the JavaDoc here:

Class AlignWiz_

java.lang.Object
 AlignWiz_

2

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill
public class AlignWiz_
extends java.lang.Object

AlignWiz Class.

This class is a plugin intended for ImageJ. It allows the user to align and mask 2D slice images.
The user can select between aligning images of an entire brain or a brain section, and aligning
directly with TurboReg or using an existing transformation file. The output format of the aligned
images is a .nii file, which utilizes the NIfTi plugin and is intended for analysis with the
Statistical Parametric Mapping (SPM) software.

This plugin uses the Swing library to create Panels that lead the user through the process, and
each subclass of the main AlignWiz class creates a JPanel and sets appropriate actionListeners.

Plugins used:

-TurboReg plugin, written by PhillipeThevenaz (http://bigwww.epfl.ch/thevenaz/turboreg/)

-MultiStackReg plugin, originally written by Brad Busse
(http://www.stanford.edu/~bbusse/work/downloads.html), modified by Jennifer Staab and Ping
Fu (http://www.cs.unc.edu/Courses/comp523-s08/3D_Neural/home.html)

-NIfTi plugin, written by Guy Williams (http://rsb.info.nih.gov/ij/plugins/nifti.html) SPM
software for data analysis: http://www.fil.ion.ucl.ac.uk/spm/

Version:
1.0

Author:
Ping Fu (corresponding macro written by Jennifer Staab), UNC-Chapel Hill

Nested Class Summary
 class AlignWiz_.Gap

 Gaps for use in GridBagLayout (or any other).
private class AlignWiz_.GBHelper

 Keeps track of current position in GridBagLayout.
private class AlignWiz_.Panel0

 Sets up the initial panel with the back, next, and quit buttons
private class AlignWiz_.Panel1

 Starting panel. Allows user to select to align Entire Brain (grayscale),
Entire Brain (color), or Brain Section (grayscale)

private class AlignWiz_.Panel2
 Allows user to select to align with TurboReg or Transformation file

private class AlignWiz_.Panel3
 Allows user to import image sequence.

3

file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel3.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel2.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel1.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel0.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.GBHelper.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Gap.html
http://www.cs.unc.edu/Courses/comp523-s08/3D_Neural/home.html

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

private class AlignWiz_.Panel3A
 Lets user apply Rotations or Translations to stack
pre: useSavedTrans==false

private class AlignWiz_.Panel4A
 Masking for entire brain.

private class AlignWiz_.Panel4C
 Allows user to check masking and align
pre: useSavedTrans==true

private class AlignWiz_.Panel5A
 Allows user to check masking and align
pre: userSavedTrans==false

private class AlignWiz_.Panel5C
 Allows user to import transformation file and masks
pre: useSavedTrans==true

private class AlignWiz_.Panel6A
 Allows user to realign, save, view 3D projections, or start over

private class AlignWiz_.Panel7
 Allows user to import corresponding grains, start over, or exit

private class AlignWiz_.PopupListener
 ActionListener for popup window after 'Quit' is clicked;

Field Summary
(package private)

 javax.swing.JButton
bt01
 The 'back' button

(package private)
 javax.swing.JButton

bt02
 The 'next' button

(package private)
 javax.swing.JButton

bt03
 The 'quit' button

private boolean color
 True if images are of colored brain

private java.lang.String contains
 tring contained in the file names in the image
sequence

private int endNum
 Number of last image in the loaded sequence

private boolean entireBrain
 True if images are of entire brain in grayscale or
color, false if images are of brain section

private javax.swing.JFrame f
 Main frame that hold all labels and panels

private int inc

4

file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#inc
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#f
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#entireBrain
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#endNum
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#contains
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#color
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#bt03
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#bt02
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#bt01
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.PopupListener.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel7.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel6A.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel5C.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel5A.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel4C.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel4A.html
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.Panel3A.html

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

 Increment between image numbers in sequence
private boolean isGrains

 True only after user chooses to align corresponding
grains images

private javax.swing.JLabel lbl
 Main label with directions for each panel

private java.lang.String loadPathAndFileName
 Path and file name of the first loaded cells image

private java.lang.String loadPathC
 Path from where cells images were loaded

private java.lang.String loadPathG
 Path from where grains images were loaded

private int numImg
 Number of images in the loaded sequence

private javax.swing.JPanel p
 JPanel containing back, next, and quit buttons

private boolean popupOpen
 True if popup window is already open

private int scale
 Percentage of scale of images from original size

private java.lang.String slash
 File delimiter, either '\' or '/' depending on OS

private int startNum
 Number of first image in the loaded sequence

private java.io.File tempDir
 Temporary directory, deleted if user exits by clicking
'exit' at the end of the process

private java.lang.String transformationPath
 Path where transformation file is loaded from

private boolean useSavedTrans
 True if using saved transformation file, false if
aligning with TurboReg

Constructor Summary
AlignWiz_()

5

file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#AlignWiz_()
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#useSavedTrans
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#transformationPath
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#tempDir
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#startNum
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#slash
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#scale
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#popupOpen
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#p
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#numImg
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#loadPathG
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#loadPathC
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#loadPathAndFileName
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#lbl
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#isGrains

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

 Method Summary
private boolean align()

 Aligns stack by calling MultiStackRegFix, also checks if alignment
was successful

private void closeImage()
 Closes the image if there is an image currently open

static boolean deleteDirectory(java.io.File path)
 Deletes all files in a directory

private void maskBrain(ImagePlus threshIm, int iteration)
 Masking for entire brain pre: entireBrain==true

private void maskSection(ImagePlus image)
 Masking for brain section pre: entireBrain==false

 void run(java.lang.String arg)
 Main function that runs in ImageJ when plugin is called.

 Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Method Detail

run

public void run(java.lang.String arg)
Main function that runs in ImageJ when plugin is called. It sets the file delimiter 'slash,'
and creates the initial panel with Panel0()

closeImage

private void closeImage()
Closes the image if there is an image currently open

deleteDirectory

public static boolean deleteDirectory(java.io.File path)
Deletes all files in a directory
Parameters:
path - Path of the directory

align

6

file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#run(java.lang.String)
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#maskSection(ImagePlus)
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#maskBrain(ImagePlus, int)
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#deleteDirectory(java.io.File)
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#closeImage()
file:///C:/Documents and Settings/jstaab/Desktop/AlignWiz_.html#align()

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

private boolean align()
Aligns stack by calling MultiStackRegFix, also checks if alignment was successful
Returns:
True if alignment was successful, False if not

maskSection

private void maskSection(ImagePlus image)
Masking for brain section pre: entireBrain==false
Parameters:
image - Image to be masked

maskBrain

private void maskBrain(ImagePlus threshIm,
 int iteration)

Masking for entire brain pre: entireBrain==true
Parameters:
threshIm - Thresholded image that is about to be masked
iteration - Either 1 or 2. 1 is a rough first masking, 2 is a finer masking which gets the
finer details.

Macro:

 The macro is made up of multiple functions that allow the programmer a level of abstraction
so that they can write a while loop which will drive the primary functionality of the macro. The
while loop allows the user to choose one of the 4 different use cases depicted in the functional
specifications documentation, performs the selected use case operations for image alignment and
loop back to the start to inquire the user’s next selection. This allows the user the ability to align
multiple animal brains from different use case scenarios in one session.

 ImageJ’s built-in macro language is rather limited in its scope and user friendliness. Thus a
naïve user is encouraged to use the Plugin over the macro as to prevent mistakes in using these
tools. Global variables had to be used to allow for the passing of variables between the
functions used to create the macro. An example of the limited nature of the macro language is
that if the user clicks on the ‘cancel’ button in any of the dialog windows use in the macro; the
macro will be immediately aborted due to the limitations of the macro language.

Below are the details of each of the functions used in the macro:

Global Variables:
The following global variables are set using cells and grains imports as to allow the functions
that are used to align these images access to variables. This access is necessary with regards to

7

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

masking the imaging and error checking to be certain that the dimensions and number of images
match between corresponding cells and grains images. Global variables defined in the ImageJ
macro language are designated by the keyword ‘var’ when they are first defined.

Global variables with default values in parentheses:
Imports Cells:
• Number of Cells Images: numImgCells(1)
• Number of First Image in the Cells Sequence: startNumCells(1)
• Number of last Image in the Cells Sequence: endNumCells(2)
• Increment between adjacent Imported Cells Images: incCells(1)
• Reduction scale of the dimensions of the imported cells image sequence: scaleCells(100)

* where 100= no reduction in dimensions and 80 = 80% reduction in dimensions of
images

• String Common to all the file names of the imported cells image sequence:
containsCells("")

• Path of place where the cells image sequence was imported from including the filename
of one of the imported images: pathCells("")

• Path including the foldername of the directory that cells image sequences were imported
from within: folderCells("")

• Height dimension of imported cells image sequence: heightCells(0)
• Width dimenstion of imported cells image sequence: widthCells(0)
• Global variable for imported cell image sequence ID: outImageID(0)

Imports Grains:
• Number of Grains Images: numImgGrains(1)
• Number of First Image in the Grains Sequence: startNumGrains(1)
• Number of last Image in the Grains Sequence: endNumGrains(2)
• Increment between adjacent Imported Grains Images: incGrains(1)
• Reduction scale of the dimensions of the imported Grains image sequence:

scaleGrains(100)
* where 100= no reduction in dimensions and 80 = 80% reduction in dimensions of
images

• String Common to all the file names of the imported Grains image sequence:
containsGrains("")

• Path of place where the Grains image sequence was imported from including the
filename of one of the imported images: pathGrains("")

• Path including the foldername of the directory that Grains image sequences were
imported from within: folderGrains("")

• Height dimension of imported Grains image sequence: heightGrains(0)
• Width dimenstion of imported Grains image sequence: widthGrains(0)
General Global Variables:
• Global variable that defined either forward or backward slash to be used when creating

paths based on the operating system (Windows=’\’ and Mac=’/’): rSlash(“”)
• Global variable defined to indicate that the one needs to return to the ‘start’ of the

program after receiving a ‘Start Over’ command or some sort of error that requires a start
over: restart(true)

8

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

Functions:
The following functions were create in the ImageJ macro program to ease the ability of the
program to run in a more flexible format than running as straightforward non-branching script.
Using functions allowed the programmer to add in error checking and make program more
flexible with functionality similar to the plugin alignment wizard. ** Double star indicates the
function was used in the primary while loop.

Functions:
• **startMenuBrain() – Ask the user what type of alignment they are doing Entire Brain

(Grayscale), Entire Brain (Color) or Brain Section.
No input variables
Returns the user selection.

• **resetGlobals() – Resets global all variables used in the macro (as defined above) to
their default values.
No input variables
Returns Nothing.

• resetGlobalCells() – Resets global ‘cells’ variables as define above to their default
values.
No input variables
Returns Nothing.

• resetGlobalGrains() – Resets global ‘grains’ variables as define above to their default
values.
No input variables
Returns Nothing.

• **startMenuTransform() – Ask the user if they are aligning using Saved Transforms or
using TurboReg.
No input variables
Returns user selection.

• **importSequence() – Imports cells image sequence into ImageJ and set global
variables pertaining to the cells images. Does error checking for real values, negative
values, and impossible startNumCells, endNumCells and incCells combinations. Set
global variables based on user input. Will keep asking for import until user enters in
acceptable inputs into the import window.
No input variables
Returns imported Image Sequence ID

• failImportWarning(errText) – code for displaying an error message for errors in the
Sequence Imports.
Input variables: errText = error message to be viewed by user.
Returns nothing

• importSequenceGrains(xGlobals) – Imports grains image sequence into ImageJ and set
global variables pertaining to the grains images. Does error checking for real values,
negative values, and impossible startNumGrains, endNumGrains and incGrains
combinations. Will also check to make sure imported Grains matches existing imported
Cells in dimension and number if imported corresponding cells previous to the grains

9

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

images. Sets global variables based on user input. Will keep asking for import until user
enters in acceptable inputs into the import window.
Input variables: xGlobals = that inquires whether or not the program should check cells
and grains image compatibility.
Returns: Grains Image ID

• importSequenceSaveTrans() – imports grains sequence for grains imported when the
user will align using a Saved Transformation file. Use function above and findMaskDir()
function to import the grains sequence (xGlobals==false) because no existing grains file.
No input variables
Returns: Grains Image ID

• **checkOS() – determine which types of slashes are use (back or forward) dependent on
the operating system. Sets global variable rSlash appropriately
No input variables
Returns Nothing.

• **blurAndThreshold() – creates masks based on the imported cell sequence using
Gaussian blur and threshold tools of ImageJ. These masks, mask out the background in
the imported sequence.
No input variables
Returns: Image Id of image that contains the initial masks.

• **createMasks(inImageID,inFolder,inrSlash,inStart,inInc) – creates and saves the
masks as individual mask*.tif files for each of the images in the mask image sequence.
Properly increments masks if the global increment value is not 1 or starts from a number
greater than one.
Input variables: inImageID = input sequence of masks,
 inFolder= folder where masks should be saved
 inrSlash=correct slash given OS,
 inStart=input image sequence start number
 inInc=input image increment value.
Returns: nothing but has the side effect of creating the masks.

• **maskOutBackground(inPath,inFolder,inNum,inStart,inInc,inScale,inContains,inr
Slash) – masks out the background of the imported cells sequence images using the
masks created and saved in the previous steps.
Input variables: inPath=path of input sequence
 inFolder= folder where masks were saved
 inNum= number of input images in the sequence
 inStart=input image sequence start number
 inInc=input image increment value
 inScale=Scale of input sequence
 inContains= the common string in the input sequence if any exists
 inrSlash=correct slash given OS.
Returns: image ID of masked images.

• **xAndFixMasks(inImageID,inrSlash,inFolder,inStart,inInc,isColorBrain) – allows
the user to check the masking and fix the masks using the brush tool if necessary
Input variables: inImageID=input image sequence whose masking to be checked
 inrSlash=correct slash given OS.
 inFolder= folder where masks were saved

10

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

 inStart=input image sequence start number
 inInc=input image increment value
 isColorBrain=1 if input image sequence is of a color brain.
Returns: Nothing

• maskColoredImages(inPathSeq,inFolderMask,inNum,inStart,inInc,inScale,inConta
ins,isGrains,isSavedTransform,RA_Out) – masked colored images in the proper
manner handling the fact that the client prefers a white background.
Input variables: inPathSeq=path of input image sequence
 inFolderMask= folder where masks were saved
 inNum= number of input images in the sequence
 inStart=input image sequence start number
 inInc=input image increment value
 inScale=Scale of input sequence
 inContains= the common string in the imput sequence if any exists,
 isGrains=1 if the input image is a grains image
 isSavedTransform=1 if the input image is to be aligned with saved
 transforms
 RA_Out= number of times user incremented through realignment if one
 previously aligned a cells image sequence.
Returns: Image ID of masked Image Sequence

• transformMenu(titleText,messText)— Creates dialog box that disappears when ‘Ok’ is
selected. This dialog box will either prompt the user to load or save transforms
 Input variables: titleText=title of dialog window (should be Load or Save)
 messText=text message of dialog window (should be Load or Save)
Returns: Nothing

• alignWithStackReg(inrSlash,inFolder,isColorBrain) – Aligns input image sequence
using TurboReg, aligns correctly if brain image is color brain where inverts before and
after alignment. Also checks that MultiStackRegFix ran to completion by checking for 1
in xAlign.txt file.
 Input variables: inFolder= folder where cells images were imported (xAlign.txt file
 saved)
 inrSlash=correct slash given OS
 isColorBrain=1 if image to be aligned is a color image sequence.
Returns: returns whether or not the images were aligned (e.g. multiStackRegFix ran to
 Completion)

• checkAlignment(inImageID,isBrainRegion,isColorBrain) – Prompts user to check the
alignment to see that it was successful. Shows 3D projections in correct manner (correct
for color brains) if the images are entire brains, does not give 3D projections of brain
sections.
Input variables: inImageID= sequence of images to have their alignment checked
 isBrainRegion=1 if the sequence of images is a brain section
 ,isColorBrain=1 if sequence of input images I a color brian.
Returns: returns Image ID of sequence images that were checked

• **alignWithStackRegLoop(inrSlash,inFolder,isBrainRegion,isColorBrain) – aligns
cells images, saves the transforms from the alignment, allows user to check the alignment

11

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

and realign if necessary, saves the results from the alignment, and allows user to view
and save the 3D projections.
Input variables: inFolder= folder where images to be aligned are saved
 inrSlash=correct slash given OS
 isBrainRegion=1 if image sequence to be aligned is a brain section,
 isColorBrain=1 if image to be aligned is a color image sequence.
Returns: The number of times the cells images were re-aligned if any
**alignGrains() – Asks user if they would like to align corresponding images (grains).
No input variables
Returns: the user selection.

• saveProjections(inFolder,inrSlash,inImageID,isColorBrain)—
Asks User if they want to view 3D projections, if they say yes then asks if they want to
save 3D projections after the 3D projections are shown. Correctly treats color brain
images with inverting before and after 3D projection creation.
Input variables: inFolder= folder where aligned images 3D projects should be saved

 inrSlash=correct slash given OS
 inImageID=image ID of aligned image sequence results.
 isColorBrain=1 if image to be aligned is a color image sequence
 Returns: Nothing

• saveResultsAskProjections(inImageID,inFolder,inrSlash,isColorBrain)—
Asks User where to save the results of the image sequence alignment, saves the resulting
image there and then runs the saved projects function (above) that asks about viewing &
saving 3D projections. Correctly treats color brain images with inverting before and after
3D projection creation.
Input variables: inImageID=image ID of aligned image sequence results.
 inFolder= folder where the aligned images to be aligned are saved
 inrSlash=correct slash given OS
 isColorBrain=1 if image to be aligned is a color image sequence
Returns: Nothing

• xDimensions() – checks the dimensions of the grains images as compared to the cells
images and if off displays a error message that asks what action the user wants to take
next Import Grains again, restart or quit
No input variables
Returns: the result of the user selection

• **importMaskGrains(inCellsFolder,inrSlash,inNum,inStart,inInc,inScale,inContain
s,isBrainRegion,isSavedTransform,isColorBrain,RA_Out) – imports the
corresponding images (grains images) and masks them.
Input variables: inCellsFolder=path of input cells sequence(or masks location)
 inrSlash= correct slash given OS
 inNum= number of input grains images in the sequence
 inStart=input grains image sequence start number
 inInc=input grains image increment value
 inScale=Scale of input grains sequence
 inContains= the common string in the input grains sequence if any exists,
 isBrainRegion=1 if input grains image is a brain section
 isSavedTransform=1 if the input grains image is to be aligned with saved

12

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

 transforms
 isColorBrain=1 if Brain is a color image
 RA_Out= number of times user incremented through realignment if one
 previously aligned a cells image sequence
Returns: the Image ID of the masked grains image or 9999 if function requires a restart

• allowForGrainsEdit(inImageID,inFolder,inrSlash,isSavedTransform) – allows the
user to adjust the corresponding image sequence (grains images) if they adjusted the cells
images prior to realignment.
Input Variables: inImageID=input Grains image ID
 inFolder = folder that contains cells image (or masks)
 inrSlash=correct slash given OS
 isSavedTransforms=1 if image is to be aligned with saved transforms.
Returns: the Image ID of the resulting edited Grains image

• **alignGrainsXAndSave(inImageID,inFolder,inGrainsFolder,inrSlash,isBrainRegio
n,isColorBrain) – aligns the corresponding (grains) images using saved transformation
file, save the results and prompts the user about viewing and saving 3D projections of the
alignment.
Input Variables: inImageID=input grains image ID,
 inFolder = folder that contains cells images (or masks)
 inGrainsFolder=folder that contains the grains images,
 inrSlash=correct slash given OS
 isBrainRegion=1 if is brain section
 isColorBrain=1 if is color brain.
Returns: Nothing

• createRegionMask(inImageStack,inrSlash)— Creates the correct masks for brain
regions and returns nothing.
Input Variables: inrSlash=correct slash given OS
 inImageStack=image ID of image sequence to be masked.
Returns: Nothing

• maskBrainRegion(inImageStack,inrSlash)— Using function above correctly masks
brain regions images and returns results.
Input Variables: inrSlash=correct slash given OS
 inImageStack=image ID of image sequence to be masked.
Returns: Image ID of the resulting masked brains image

• waitWindow(title,msg)—Creates a wait window with input title and msg, returns
nothing.
Input Variables: title = title of wait window
 msg=message text inside wait window
Returns: Nothing

13

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

14

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

Data:
Image input data that are valid must be files recognizable by ImageJ. A non-exhaustive

list of file formats supported by ImageJ can be found at < http://imagejdocu.tudor.lu/imagej-
documentation-wiki/faq/which-file-types-are-supported-by-imagej > (Valid as of February 7,
2008).

The 3D reconstruction output will have NIfTi data format, which is supported by the
SPM (Statistical Parametric Mapping) software. Details about the NIfTi file format can be found
at < http://nifti.nimh.nih.gov/nifti-1 > (Valid as of February 7, 2008).

User input:
Below are the typical inputs that are required of the user when running the macro and plugin
programs. The specific dialog windows for each of these inputs can be viewed in the User’s
Manual.

The user is required to give the following inputs:
1. Import Image (cells or grains) Sequence:

a. Requires the path of where the image sequence can be found
b. Requires Start Number of the first image in the sequence
c. End number of the last image in the sequence
d. Increment to be used to import the image sequence
e. Scale indicates the amount to reduce the scale of the image sequence (i.e. 100= no

scale reduction of the image sequence)
f. ‘Contains’ if the images sequence contains a common a common string (like

‘cells’ or ‘grains’).

2. User selects what type of brain images they are going to use
a. Brain (grayscale)
b. Brain (Color)
c. Brain Section

3. User selects what type of alignment they will perform
a. Align with TurboReg
b. Align using Save Transforms

4. Place to save the following output items:
a. Transformation file (that results from the alignment)
b. SPM readable format of the alignment results (both cells & grains)

5. Place to find (load) the following items:
a. Transformation file (so can align images with saved transforms)
b. Masks (when aligning with saved transforms)

6. User provides choices like ‘next’ or ‘back’ to move forward or backward in the plugin.
User provides ‘ok’ to proceed forward in the macro.

15

http://nifti.nimh.nih.gov/nifti-1
http://imagejdocu.tudor.lu/imagej-documentation-wiki/faq/which-file-types-are-supported-by-imagej
http://imagejdocu.tudor.lu/imagej-documentation-wiki/faq/which-file-types-are-supported-by-imagej

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

7. User helps with the masking of the ‘Brain’ images by selecting an appropriate Gaussian
blur (Gaussian blur is an ImageJ macro function) and Thresholding (threshold is an
ImageJ macro function) to mask out the background.

8. The user checks and fixes imperfections in the masking (i.e. uses the paint brush tool to
cover up imperfections with the background color as they use the image scrollbar to
process through the entire image sequence)

9. The user checks the alignment and decide whether or not they need to realign the image
sequence. If the user decides to re-align the images they are allowed to use the ‘rotate’
and ‘translate’ tools of ImageJ to attempt to make the image sequence more consistent
and centered between adjacent image slices as to improve the alignment that TurboReg
will produce.

10. The user decides whether or not to view 3D projections of the alignment and whether or
not they need to save these 3D projections.

Design decisions:

We decided to use TurboReg for alignment and the NifTI plugin for our I/O
requirements. The TurboReg algorithm can align images, color or grayscale, using a rigid body
transformation, where one image is rotated, translated vertically and/or translated horizontally to
align it to the other image. Specifically, we used a plugin named ‘MultiStackReg’ that uses
TurboReg to align a sequence of images and provides the transformation file from that
alignment. In addition, MultiStackReg will also align images using a previously output
Transformation file. To add some necessary functionality as outlined in the beginning of this
document we augmented MultiStackReg to create ‘MultiStackRegFix’ which is used to perform
the image sequence alignments for both the plugin and the macro. To output the aligned image
sequence, we use the plugin NifTI which outputs the aligned image sequence in a SPM readable
format. In addition, NifTI files can be imported directly into ImageJ, so the SPM readable
format provides a good way to store the aligned image sequence in a single file.

We made certain design decisions to make the final software product as flexible as
possible. Because there is so much variability in brain image sequences we attempted to add
features to the software as to enable it to be as robust as possible. Some of those features are to
allow the user input in the masking of the images so that the parameters chosen during masking
will fit all images in the image sequence. In addition, we allow the user the ability to check and
fix masking during the alignment process as to allow maximum flexibility for all types of brain
images. Moreover, we ask the user to check the alignment during the alignment process as to
allow the user the ability to edit the images and attempt a re-alignment if the first alignment fails
during the process. This increases user flexibility since the user doesn’t have continue the
process if the alignment fails. In addition, the user is allowed to adjust the images in the
software product to prevent the inconvenience of having to exit the software product to edit the
images and then re-start the software product to re-attempt another alignment.

16

Date: 04/26/2008 Version 06
Authors: Ping Fu and Jennifer Staab, UNC-Chapel Hill

To increase the flexibility of our software tool, we offer our software product as both an
ImageJ Plugin and an ImageJ macro that have similar functionality. The plugin is much more
elegant and user friendly since it is created as an alignment wizard. The plugin is suggested for
the naïve user. Due to the limitations of ImageJ’s macro language, the macro could not be
converted into an alignment wizard. The macro does offer the advantage of speed, the macro
runs much more quickly for certain functions that are native to the ImageJ macro language, like
masking and sequence import. Thus, for the experienced user the macro might be the optimal
choice because of its speed with regards to aligning large numbers of high resolution images.

 Finally we suggest that the user chose pixel resolution on the order of 512x512 pixels, due
to possible memory requirements in SPM, if the user plans to import the aligned images into
SPM for statistical analysis. Our program will produce output that can be recognized and
analyzed by SPM, but will not deal directly with the SPM software.

17

	Class AlignWiz_
	run
	closeImage
	deleteDirectory
	align
	maskSection
	maskBrain

