Mini-Project

Kyle Moore

COMP 740

April, 23 2007

My original goal was to take a white-box approach to this project. I was going to examine the code for the Go game and see if I could find hazards that inhibited performance. Unfortunately, I was not able to decipher the go.ss file, and quickly abandoned this approach. I then treated the program as a black-box and simply made conjectures about what was going on inside from its results. The decisions I made based on the data I gathered were typically economically driven.
Going into this I realized that an optimal solution would not be impossible to find. A rather brainless brute-force search would have been fairly easy to set up. However, given the set of upgrades, there are 1,049,760 possible system configurations. A large number of these configurations are invalid due to the price, thus the search space can be trimmed. Also, there are many configurations that come in well under $100. I did not take the time to determine how many different viable combinations this is, but if each combination takes 10 minutes to test, I felt as though this would take too long. If this was for an actual business instead of a class assignment, I probably would have set up a test script that tried all these combinations. Since it is not, I used a simpler tactic.

I began by running the simulation with the given system specifications. I then tried each possible upgrade individually, to get a feeling for where improvements were need and where they would offer no help at all. Improvements to the caches resulted in speedups across the board. The ul2 cache (Figure 3) showed the most promise for speedups and the il1 cache (Figure 1) was in second. The dl1 cache (Figure 2) showed performance improvements but not as much as the others did.

	Upgrade
	Cost
	CPI
	il1 miss_rate
	CPI SpeedUp
	miss_rate SpeedUp
	CPI SpeedUp per $
	miss_rate SpeedUp per $

	8k, 1 way
	$0
	1.8874
	0.0628
	-
	 -
	-
	-

	8k, 2 way
	$5
	1.8524
	0.0524
	0.01854
	0.16561
	0.003709
	0.033121

	8k, 4 way
	$15
	1.8379
	0.0488
	0.02623
	0.22293
	0.001748
	0.014862

	16k, 1 way
	$10
	1.8224
	0.0476
	0.03444
	0.24204
	0.003444
	0.024204

	16k, 2 way
	$15
	1.7706
	0.0368
	0.06188
	0.41401
	0.004126
	0.027601

	16k, 4 way
	$25
	1.7445
	0.0337
	0.07571
	0.46338
	0.003029
	0.018535

	32k, 1 way
	$20
	1.7627
	0.0334
	0.06607
	0.46815
	0.003303
	0.023408

	32k, 2 way
	$30
	1.7021
	0.0267
	0.09818
	0.57484
	0.003273
	0.019161

	32k, 4 way
	$50
	1.636
	0.0217
	0.1332
	0.65446
	0.002664
	0.013089

Figure 1: il1 cache upgrades

Adding integer ALUs also helped significantly, but only up to four ALUs (Figure 4). This makes sense because the CPU core is 4-wide meaning it can fetch, decode, issue and commit four instructions at a time. Thus, it can take advantage of 4 ALUs but no more.

	Upgrade
	Cost
	CPI
	dl1 miss_rate
	CPI SpeedUp
	miss_rate SpeedUp
	CPI SpeedUp per $
	miss_rate SpeedUp per $

	8k, 1 way
	$0
	1.8874
	0.112
	-
	-
	-
	-

	8k, 2 way
	$5
	1.859
	0.0653
	0.01505
	0.41696
	0.003009
	0.083393

	8k, 4 way
	$12
	1.8454
	0.0482
	0.02225
	0.56964
	0.001854
	0.04747

	16k, 1 way
	$10
	1.8428
	0.055
	0.02363
	0.50892
	0.002363
	0.050893

	16k, 2 way
	$14
	1.8263
	0.0358
	0.03237
	0.68035
	0.002312
	0.048597

	16k, 4 way
	$22
	1.7987
	0.0205
	0.047
	0.81696
	0.002136
	0.037135

	32k, 1 way
	$20
	1.815
	0.0283
	0.03836
	0.74732
	0.001918
	0.037366

	32k, 2 way
	$28
	1.7767
	0.0112
	0.05865
	0.9
	0.002095
	0.032143

	32k, 4 way
	$45
	1.7692
	0.0086
	0.06263
	0.92321
	0.001392
	0.020516

Figure 2: dl1 cache upgrades

	Upgrade
	Cost
	CPI
	ul2 miss_rate
	CPI SpeedUp
	miss_rate SpeedUp
	CPI SpeedUp per $
	miss_rate SpeedUp per $

	64k, 64b, 2w
	$0
	1.8874
	0.1716
	-
	 -
	-
	 -

	64k, 64b, 4w
	$11
	1.7927
	0.1339
	0.05017
	0.219697
	0.004561
	0.019972

	64k, 128b, 2w
	$3
	1.8918
	0.11
	-0.0023
	0.358974
	-0.00078
	0.119658

	64k, 128b, 4w
	$16
	1.7779
	0.0813
	0.05802
	0.526224
	0.003626
	0.032889

	128k, 64b, 2w
	$10
	1.6997
	0.1005
	0.09945
	0.414336
	0.009945
	0.041434

	128k, 64b, 4w
	$21
	1.6896
	0.0929
	0.1048
	0.458625
	0.00499
	0.021839

	128k, 128b, 2w
	$14
	1.6945
	0.0617
	0.1022
	0.640443
	0.0073
	0.045746

	128k, 128b, 4w
	$27
	1.6721
	0.0541
	0.11407
	0.684732
	0.004225
	0.02536

	256k, 128b, 2w
	$30
	1.5363
	0.025
	0.18602
	0.854312
	0.006201
	0.028477

	256k, 128b, 4w
	$55
	1.5259
	0.022
	0.19153
	0.871795
	0.003482
	0.015851

Figure 3: ul2 cache upgrades
	ALUs
	Cost
	CPI
	SpeedUp
	SpeedUp per $

	1
	$0
	1.8874
	 -
	 -

	2
	$8
	1.6723
	0.11397
	0.01425

	3
	$18
	1.6482
	0.12674
	0.00704

	4
	$30
	1.6456
	0.12811
	0.00427

	5
	$45
	1.6456
	0.12811
	0.00285

	6
	$60
	1.6456
	0.12811
	0.00214

Figure 4: ALU upgrades
Adding integer MULTs, had no effect on performance. This led me to conclude that there were little to no multiplications in the Go application. I decided not to test the MULT upgrades any further and did not use any of the upgrades in my final configuration. Memory port upgrades also had little effect. Upgrading from one memory port to two memory ports had an effect on performance, albeit very small. No other upgrades had any effect on performance. Given different cache specifications, I could imagine that this may change. As it was only $5, I decided to take the two memory port upgrade, hoping it would give me more benefits as I changed the caches. I based the rest of my tests on this assumption, and thus became somewhat stuck with it. In retrospect, I think the improved caches would only make this upgrade less valuable as a decrease in cache misses will lead to a decrease in memory accesses. I did not want to redo all my tests so I simply lived with my decision.
After this initial round of testing was done, I calculated the speedup each upgrade yielded, and the value of that upgrade (calculated as speedup per dollar). The most economical upgrades are highlighted in Figures 1 through 4. I then chose several upgrades at once to serve as my new baseline. This was done to trim the search space and limit the amount of further testing I needed to do. This configuration included the 16k, 32 byte, 2-way il1 cache upgrade, the 8k, 32 byte, 2-way dl1 cache upgrade, the 128k, 64 byte, 2-way ul2 cache upgrade, the two ALU upgrade, and the two memory port upgrade. Although this configuration costs $43, I named it “go_50” because the price was $50 with a 110MHz upgrade. I was originally going to take the 110MHz upgrade and stick with that because it seemed to be the most economical. Later, I realized that I can test the clock frequency upgrades without running the simulator, and thus should leave that to last. All log files where this configuration is used as a baseline are named “go_50*.log”.
The next round of simulations involved adding individual upgrades to the “go_50” configuration. I tried ALU upgrades and upgrades for all the caches. The results can be seen in Figure 5. The highlighted values are the most economical upgrades.
	Upgrade
	Cost
	CPI
	SpeedUp
	SpeedUp per $

	-
	$43
	1.2721
	-
	-

	ALU3
	$53
	1.2323
	0.031287
	0.590318

	ALU4
	$65
	1.2277
	0.034903
	0.536968

	ALU5
	$80
	1.2277
	0.034903
	0.436286

	il1_25
	$53
	1.2531
	0.014936
	0.28181

	il1_20
	$48
	1.2504
	0.017058
	0.355383

	il1_30
	$58
	1.2058
	0.052119
	0.898596

	il1_50
	$78
	1.1717
	0.078925
	1.011854

	ul1_21
	$54
	1.2688
	0.002594
	0.04804

	ul1_14
	$47
	1.26
	0.009512
	0.202379

	ul1_27
	$60
	1.2495
	0.017766
	0.296098

	ul1_30
	$63
	1.1113
	0.126405
	2.006431

	ul1_55
	$88
	1.1014
	0.134188
	1.524859

	dl1_12
	$50
	1.2604
	0.009197
	0.183948

	dl1_10
	$48
	1.2622
	0.007782
	0.162133

	dl1_14
	$52
	1.2462
	0.02036
	0.391539

	dl1_22
	$60
	1.2301
	0.033016
	0.550271

	dl1_20
	$58
	1.2344
	0.029636
	0.510966

	dl1_28
	$66
	1.2079
	0.050468
	0.764663

	dl1_45
	$83
	1.2024
	0.054791
	0.660136

Figure 5: “go_50” configuration upgrades
After these tests had completed, I decided to pick single upgrades one at a time to add to the configuration. The 256k, 128 byte, 2-way ul2 cache upgrade seemed to have most value, so I chose that. I named this new configuration “go_63”, since its cost was $63. I then repeated the testing procedure as before, trying the ALU upgrades and upgrades to the il1 and dl1 caches. Results from these tests can be seen in Figure 6.
After this test was complete I calculated the runtime (in seconds) of each of the tested configurations given the available clock rates. This analysis can also be seen in Figure 6. Dashes indicate a configuration that yielded a price above $100. What this analysis basically shows are what the runtimes would be if you took one of the configurations below and then used the remainder of the money on clock upgrades. I will discuss the best runtime found here later.
	Upgrade
	Cost
	CPI
	SpeedUp
	SpeedUp per $
	Runtime @100MHz
	Runtime @110MHz
	Runtime @120MHz
	Runtime @130MHz

	 -
	$63
	1.1113
	 -
	 -
	1.4776167
	1.343288
	1.231347
	1.136628

	ALU3
	$73
	1.0714
	0.035904
	0.491834
	1.4246262
	1.295115
	1.187189
	-

	ALU4
	$85
	1.0668
	0.040043
	0.471096
	1.4184656
	1.289514
	-
	-

	il1_25
	$73
	1.0944
	0.015207
	0.208321
	1.4551515
	1.322865
	1.212626
	-

	il1_20
	$68
	1.0896
	0.019527
	0.287157
	1.4488554
	1.317141
	1.207379
	1.114504

	il1_30
	$78
	1.0502
	0.054981
	0.70488
	1.4776167
	1.343288
	1.231347
	-

	il1_50
	$98
	1.02
	0.082156
	0.838327
	1.3563179
	-
	-
	-

	dl1_14
	$72
	1.091
	0.018267
	0.253707
	1.4506628
	1.318784
	1.208886
	-

	dl1_22
	$80
	1.0808
	0.027445
	0.343067
	1.4370775
	1.306434
	1.197565
	-

	dl1_20
	$78
	1.078
	0.029965
	0.384165
	1.4334037
	1.303094
	1.194503
	-

	dl1_28
	$86
	1.0631
	0.043373
	0.504333
	1.4136407
	1.285128
	-
	-

	dl1_45
	$103
	1.0576
	0.048322
	0.469144
	-
	-
	-
	-

Figure 6: “go_63” configuration upgrades with clock upgrade analysis

After the “go_63” test, I decided to do one more round of testing, continuing as I had before. This time I chose to add the 32k, 32 byte, 2-way il1 cache upgrade to the baseline configuration. The 32k, 32 byte, 4-way il1 cache upgrade was actually the most economical, but the total price of this configuration was $98, which allowed no room for more upgrades and more tests. So I chose the next best in terms of value. I named this configuration “go_78” because its cost was $78. The results from this round of tests can be seen in Figure 7.
	Upgrade
	Cost
	CPI
	Runtime @100MHz
	Runtime @110MHz
	Runtime @120MHz

	 -
	$78
	1.0502
	1.47761672
	1.343288
	1.2313473

	ALU3
	$88
	1.0071
	1.33906335
	1.21733
	-

	ALU4
	$100
	1.002
	1.3323977
	-
	-

	dl1_14
	$87
	1.0288
	1.36800074
	1.243637
	-

	dl1_22
	$95
	1.0181
	1.35377583
	-
	-

	dl1_20
	$93
	1.0158
	1.35072296
	1.22793
	-

	dl1_28
	$101
	1.0007
	-
	-
	-

Figure 6: “go_78” configuration upgrades with clock upgrade analysis

After the “go_78” tests were complete, I again did the clock rate upgrade analysis. Interestingly, this round of tests did not yield the best overall runtime. Rather, the “go_63” configuration, with a 32k, 32 byte, 1-way il1 cache upgrade and a 130MHz clock upgrade yielded the best valid configuration, with a runtime of 1.11 seconds. Given more time, I would either remove the memory port upgrade and repeat the tests, or try to do a near exhaustive search. If you remove the MULT and memory upgrades entirely, and limit the ALU upgrade to one to four ALUs, then you can affectively cut the search down to 3,240 simulations. Some of those configurations would yield prices over $100 so you could trim that further. If each simulation takes 10 minutes then you will get an answer in under a month. We’ll save that exercise for another time though.
In conclusion, my system configuration is:

· 32k, 32 byte, 1-way il1 cache

· 8k, 32 byte, 2-way dl1 cache

· 256k, 128 byte, 2-way ul2 cache

· 2 ALUs
· 1 MULT

· 2 memory ports

· 130MHz clock
· Price: $100 exactly

Web Address for project: http://www.cs.unc.edu/~kjmoore/740/index.html

-5-

