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Abstract

A Parallel Software-Only Video E�ects Processing System

by

Ketan Dasharath Mayer-Patel

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Lawrence A. Rowe, Chair

Video is playing an increasingly important role as an Internet media data type.

Internet video use, however, typically means streaming live or on-demand material with-

out manipulation. One important class of operations is video e�ects processing such as

titling, compositing, and blending. Experience from the television, video, and �lm indus-

tries shows that video e�ects are an important tool for communicating information and

maintaining audience interest. In most applications, video is created in traditional studio

settings, edited with special purpose hardware, and �nally digitized and compressed for

Internet streaming.

We envision that streaming video on the Internet will become a �rst-class data

type that can be manipulated in real-time. As such, a network-based model centered

around a compressed packet stream representation is needed instead of the traditional

model centered around an uncompressed synchronous stream representation. In this new

model, video sources will be compressed packet video streaming across a network from

cameras connected to computers and video-on-demand archives. The destination of the

processed video will include archival systems, content indexing systems, and viewers watch-

ing the video. In this way, video e�ects processing will be incorporated into a variety of

applications including distance learning, collaborative virtual meetings, remote training,

news and entertainment.

This dissertation describes a software-only video e�ects processing system de-

signed for the compressed packet video environment. We call this system the Parallel

Software-only Video E�ects Processing system (PSVP). A software-only solution using
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commodity hardware provides the exibility required to handle compressed video sources.

Variable frame rates, packet loss, and jitter which are attributes of Internet video can

be handled gracefully with dynamic adaptation. A software solution provides exibility

to adapt to new video formats and communication protocols and bene�t from continuing

improvements in processor and networking technology.

The key to a software solution is exploiting parallelism. Currently, a single pro-

cessor cannot produce a wide variety of real-time video e�ects which is why conventional

systems and early research systems use custom-designed hardware. Even as processors

become faster, the demand for more complicated e�ects, larger images, and higher quality

will increase the video e�ects processing requirements. A scalable software solution is

required to meet these growing application demands. The quality of video used on the

Internet today is quite poor and is unlike CD quality audio which is near the limits of

human perception. PSVP is a parallel solution that can incorporate additional computing

resources to meet increased demands for higher quality.

Fortunately, video processing algorithms contain a high degree of parallelism.

Three types of parallelism can be exploited when implementing these algorithms: func-

tional, temporal, and spatial. Functional parallelism can be exploited by decomposing the

video e�ect task into smaller subtasks and mapping these subtasks onto di�erent compu-

tational resources. Temporal parallelism can be exploited by demultiplexing the stream of

video frames to di�erent processors and multiplexing the processed output. For example,

one processor may deal with all odd numbered frames while another deals with all even

numbered frames. Spatial parallelism can be exploited by assigning regions of the video

stream to di�erent processors. For example, one processor may process the left half of all

video frames while another deals with the right half.

Taking advantage of these types of parallelism requires the solution of di�erent

problems. This dissertation describes our solution to some of these problems. Speci�cally:

� A framework was developed to explore and implement parallel video e�ects using a

network of workstations distributed computing system.

� Mechanisms were developed to exploit temporal and spatial parallelism.

� A distributed control protocol was developed that provides per-message, receiver-

driven reliability semantics.
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Another problem encountered during this research is that video compression formats were

designed for storage and transmission and not for manipulation. Transport protocols

for packet video often assume that a video source originates from a single point in the

network. These assumptions conict with how a distributed software system, such as

PSVP, might produce the video stream. The design choices made in building PSVP were

heavily inuenced and sometimes constrained by the earlier design choices made by those

who developed these standards and protocols. The dissertation describes these inuences

and constraints. The overall lesson learned from developing PSVP is that video formats

and protocols developed with transmission and storage as the primary applications create

arti�cial constraints for applications that manipulate packet video data.

Professor Lawrence A. Rowe

Dissertation Committee Chair
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Chapter 1

Introduction

Video is playing an increasingly important role as an Internet multimedia data

type. The growth of the World Wide Web (WWW) has given rise to a market for network

technologies that provide high-speed access to the home. These technologies include ISDN,

xDSL, and cable modems. As more homes have high-speed access, the importance of video

increases. Even in the absence of high-speed access, low bit-rate encodings of video are

prevalent. The emergence of video as a data type has also been caused by the creation of

standardized compression schemes and transport protocols in combination with advances

in processor technology that make software-only video decoding possible.

Today, the uses of video as a data type on the Internet are many and varied.

These uses include:

� Information. Television news stories from CNN, MSNBC, PBS, and other major

television networks are available on a video-on-demand basis. Some television sta-

tions are beginning live broadcasts of news programs as well [15].

� Entertainment. Movies, non-news television shows, and other forms of entertainment

are available both on a subscriber basis and on an advertising supported basis.

Broadcast.com, for example, provides free access to hundreds of movies, pre-recorded

television shows, and live sporting events.

� Promotion. Advertisements for products are freely available for viewing through the

companies that produce them. Most movie production companies provide access to

previews and trailers for newly released and upcoming movies.
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CompositingTransition EffectTitling

Figure 1.1: Sample Video E�ects

� Distance Learning. Several major universities are experimenting with distance learn-

ing by providing lecture material over the Internet. For example, the Berkeley Multi-

media Research Center at the University of California produces broadcasts of several

di�erent classes. These classes can be viewed live and can also be accessed through

an archive system for on-demand replay [10, 59].

� Video Conferencing. The Multicast Backbone (MBone) conferencing tools vic and

vat as well as NetMeeting from Microsoft and ProShare from Intel are examples of

Internet packet video conferencing tools.

Use of video on the Internet, however, has not yet included manipulation of video

data. In most of the above application areas, video is created in traditional studio settings,

edited with special purpose hardware, and �nally digitized and compressed for Internet

streaming purposes. Typically, the video data was not originally produced for Internet

streaming purposes. For example, most on-line video content available from the major

television networks and from services like Broadcast.com are subsampled and digitized

versions of video originally transmitted for television. Video conferencing and distance

learning are notable exceptions. In these cases, raw video (i.e., unedited) is transmitted

directly from a camera.

One important subclass of video manipulation is video e�ects processing. Ex-

perience from the television, video, and �lm industries shows that special e�ects are an

important tool for communicating and maintaining audience interest [43]. Almost all

edited video contains some sort of video e�ect. Video e�ects are ubiquitous because they

are e�ective. Titling, for example, is used to identify speakers and topics in a video pre-

sentation. Compositing e�ects that combine two or more video images into one image
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Figure 1.2: A Video Production Switcher

are used to present simultaneous views of people or events at di�erent locations. Blends,

fades, and wipes are transition e�ects that ease viewers from one video source to another.

Figure 1.1 shows examples of some of these e�ects.

Traditionally, video e�ects are created using a video production switcher (VPS).

A VPS is a specialized hardware device that manipulates analog or digital video signals

to create video e�ects. It is usually operated by a technician or director at a VPS control

console. Figure 1.2 shows a Composium VPS produced by DF/X.

Figure 1.3 depicts a typical production model for creating a live video broadcast

with e�ects and the role of a VPS in that process. Live video sources are produced by

studio cameras, �eld cameras, or remote locations transmitted to the studio via satellite.

Stock footage, commercials, and other pre-recorded and edited material are accessed from

archival systems (e.g., video tape recorders). In this setting, video data travels between

components on specially designed analog or digital networks that are typically not packet

based. A director, possibly working with a team of production technicians and cameramen,

operates the VPS and other special-purpose hardware to create video e�ects and produce

the broadcast. The resulting video data may be compressed and transmitted on an internet

or intranet in a packet-based video format.

The role of packet-based video formats in this production model is strictly as

a transport for a �nished product. Manipulation of the video after being encoded in a

packet video format is rare. We envision that packet video data will become a �rst-class

multimedia data type that can be manipulated in real-time. As such, a network-based

packet video manipulation model is needed instead of a traditional broadcast or o�-line
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Figure 1.4: Network-based Packet Video Production Model

editing model centered around a special-purpose hardware VPS. In this new manipulation

model, video sources will be compressed packet video streaming across a network from

cameras connected to computers and video-on-demand archives.

Figure 1.4 shows the network-based packet video manipulation model that we

envision. Sources are compressed packet video streams generated either in the local envi-

ronment or from across the Internet. Pre-recorded and edited material is accessed from

video-on-demand archives. Software processes provide resource management and video

processing capabilities. Using this environment, we enable a number of new and inter-

esting applications using streaming compressed packet video. Distance learning environ-

ments can be enhanced with video e�ects to provide improved production quality. Multiple

streams can be composited into new streams. For example, a stream showing a professor

can be inset using a picture-in-picture e�ect within a stream showing the contents of a

whiteboard or other instructional material. Another application might manipulate and

process video streams from a set of security cameras to recognize interesting \events"

(i.e., excessive motion, sudden change in lighting, etc.) and bring them to the attention

of a security guard. A third application might be internationalization of video-on-demand
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service by automatically inserting subtitles in a number of di�erent languages depending

on user preference. Instead of storing multiple copies of the video stream, each with sub-

titles already produced, the subtitles and information on when they appear can be stored

compactly and separately from the video itself. When the user accesses the video, subtitles

can be inserted into the stream as needed.

One way to create a compressed packet video production system is to simply

convert the compressed streams into a traditional video signal, use a VPS to manipulate

the video, and recompress the resulting output. A conventional VPS, however, is not well

matched for the packet video environment. An analog VPS requires signals with very

tight timing constraints which are not present with compressed packet video. A digital

VPS requires uncompressed signals and uses communication protocols not suitable for

the Internet. Moreover, hardware VPS solutions can be very expensive. A VPS can cost

anywhere from $1000 for a low-end model with very limited capabilities to $250,000 for a

full-featured digital VPS like the Composium pictured in Figure 1.2. Compressed packet

video is characterized by variable frame rates, bit rates, and jitter. Traditional hardware,

whether analog or digital, depends on constant frame rates, constant bit rates, and tightly

synchronized signaling.

The goal of the work reported in this dissertation is to develop a software-only

video e�ects processing system designed for the compressed packet video environment. We

call this system the Parallel Software-only Video E�ects Processing system (PSVP). A

software-only solution using commodity hardware provides the exibility required to han-

dle compressed video sources. Variable frame rates, packet loss, and jitter can be handled

gracefully with dynamic adaptation. A software system can be written to handle com-

pressed video formats already in use and extended for new formats as they are developed.

And, standard multicast communication protocols (e.g., RTP [49]) can be used. Using

general-purpose processors allows the system to bene�t from continuous improvements in

processor and networking technology.

The key to a software solution is exploiting parallelism. Currently, a single pro-

cessor cannot produce a variety of real-time video e�ects which is why conventional VPS

systems and early research systems (e.g., Cheops [8]) use custom-designed hardware. Even

as processors become faster, the demand for more complicated e�ects, larger images (e.g.,

HDTV), and higher quality will raise the bar for performance expected of a commodity

hardware solution. The complexity of video e�ects processing is arbitrary because the
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number, size, data rate, and quality of video streams is variable. Unlike CD quality audio,

which is near the limits of human perception, the quality of video used on the Internet

is quite poor. Improvements in processor and networking technology will be met with

greater application demands.

Fortunately, video processing contains a high degree of parallelism that can be

exploited to solve this problem. Three types of parallelism can be used for video e�ects

processing: functional, temporal, and spatial. Functional parallelism decomposes a video

e�ect task into smaller subtasks and maps these subtasks onto the available computational

resources. Temporal parallelism can be exploited by demultiplexing the stream of video

frames to di�erent processors and multiplexing the processed output. For example, one

processor may deal with all odd numbered frames while another deals with all even num-

bered frames. Spatial parallelism can be exploited by assigning regions of the video frame

image to di�erent processors. For example, one processor may process the left half of all

video frames while another deals with the right half.

Taking advantage of these types of parallelism requires the solution of di�er-

ent problems. Exploiting functional parallelism requires the application of compilation

techniques to produce an e�cient decomposition of the processing task into smaller com-

ponents. Temporal and spatial parallelism require mechanisms for distributing input video

streams to the appropriate processor and recombining the resulting output stream.

Another problem is caused by the fact that video compression formats were

designed for storage and transmission and not for manipulation. Transport protocols for

packet video often assume that a video source originates from a single point in the network.

This assumption conicts with how a distributed software system might produce the video

data stream. The design choices we made in building our system were heavily inuenced

and sometimes constrained by earlier design choices made by groups that developed these

standards and protocols.

The major contributions of our work are:

� A framework was developed for exploring and implementing parallel video e�ects us-

ing a network of workstations.

We integrated work done in multimedia toolkits, network-of-workstation parallel

computing environments, and video manipulation languages into a system (i.e.,

PSVP) capable of expressing and executing complex video transformations. We
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believe this system will serve as a basis for future research into how video can be

manipulated and used as a �rst class data type.

� A framework was developed for expressing video e�ect tasks as a directed acyclic

graph of operators.

We developed a notation for expressing video e�ects as directed graphs of operators.

These operators can be composed in di�erent ways to create new e�ects. Given this

graph notation, we have implemented a \compiler" that can generate an implemen-

tation of the e�ect that executes on our system. Although our compilation of an

e�ect implementation is currently done in a straightforward and simple manner, the

notation was designed to allow future research that can bring to bear optimization

strategies that incorporate cost models for automatically and dynamically paralleliz-

ing video e�ect implementations.

� Mechanisms were developed for exploiting temporal parallelism with support for media

speci�c temporal dependencies.

We show how the design of these temporal parallelism mechanisms are inuenced

and constrained by the design of media transport protocols and compression formats

that did not foresee the need to pull apart, manipulate, and create video streams.

In particular, we developed an adaptive bu�er management algorithm that allows a

trade-o� between bu�er latency and frame rate to be e�ectively managed.

� Mechanisms were developed for exploiting spatial parallelism.

As with the temporal mechanisms, we show how the design of spatial parallelism

mechanisms are inuenced and constrained by current standards. We motivate and

describe our development of a new compressed packet video format designed to allow

several streams to describe spatially di�erent areas of the same video stream. This

new format was designed speci�cally to facilitate integrating multiple partial streams

(e.g., a stream describing the left half of a video frame and a stream describing the

right half of a video stream) into one coherent stream. In particular, we show

how techniques found in nearly every packet video standard complicate this type of

manipulation and must be avoided.

� A distributed control protocol was constructed based on IP-Multicast using scalable

reliable multicast technologies.
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To support dynamic recon�guration of video e�ect implementations, we deliberately

chose a network technology that provides an abstraction between the communica-

tion channel and the location of participants (i.e., IP-Multicast). Delivering control

messages with varying degrees of reliability in such an environment is problematic.

We developed a control protocol on top of scalable reliable multicast technologies

that provides a lightweight, highly exible solution.

The remainder of this dissertation is organized as follows. Chapter 2 reviews

related background work in a number of di�erent areas including parallel processing, mul-

ticast protocols, video compression, video processing, and distributed multimedia toolkits.

Chapter 3 describes the overall design of the PSVP system and each of its components. In

Chapter 4, we describe speci�c implementation details about some of these components.

These details are necessary to understand how the design of the system was inuenced

by the environment in which it was implemented. Chapter 5 describes the design and

implementation of mechanisms used to exploit temporal parallelism, and Chapter 6 de-

scribes the design and implementation of mechanisms used to exploit spatial parallelism.

Chapter 7 addresses the problem of distributing control messages using multicast technolo-

gies. Finally, Chapter 8 summarizes the dissertation and discusses a variety of interesting

research areas and problems that remain to be studied using our system.
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Chapter 2

Background

The PSVP system incorporates ideas from numerous technologies including: par-

allel processing, multicast protocols, video compression and processing, and distributed

multimedia toolkits. In this chapter, we review relevant work in each of these areas to

provide a background for the rest of the dissertation.

2.1 Parallel Processing

Parallel processing occurs when a collection of processing elements cooperatively

operate on parts of a problem at the same time. In our case, the problem is computing

video e�ects in real-time. Researchers have explored how parallel processing elements

can be organized and programmed for more than thirty years. Recently, di�erent parallel

processing architectures have converged. This section introduces a taxonomy useful for

describing parallel processing architectures, discusses the recent convergence of di�erent

architectures, and describes the Network-of-Workstations (NOW) architecture used by the

PSVP system.

Flynn developed a taxonomy for categorizing di�erent parallel architectures in

1972 [25]. In his taxonomy, parallel architectures are distinguished by the number of

di�erent instructions performed and the number of data elements manipulated. A tradi-

tional processor that sequentially performs a single instruction on a single data element

is classi�ed as SISD (Single Instruction, Single Data). Parallel architectures are gen-

erally classi�ed as either SIMD (Single Instruction, Multiple Data) or MIMD (Multiple

Instruction, Multiple Data) architectures. Shared memory processors and message-passing
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machines are two examples of MIMD parallel architectures. Data parallel machines and

vector processors are categorized as SIMD architectures.

Parallel machine architectures are converging to a generic MIMD architecture.

The generic architecture is comprised of a collection of processors coupled with local mem-

ory and interconnected by a high-speed, low-latency communications network. Culler and

Singh trace the history of this convergence and highlight the technological and economic

pressures that caused it [17].

In the PSVP system, the \cooperating processing elements" are independent soft-

ware components which communicate by transmitting streams of video data and control

signals to each other. In this respect, the PSVP system is well suited for a generic MIMD

architecture.

Culler proposes that technological advances in network and processor technology

allow high-performance parallel computers to be built from a collection of desktop ma-

chines [16]. Because the volume of desktop computers sold worldwide is large, the costs for

development and innovation for desktop computers is smaller on a per unit basis than for

tightly integrated massively parallel processors (MPP). Given smaller per unit innovation

costs, the rate of improvement is faster for desktop machines. Constructing parallel com-

puters from desktop machines capitalizes on this rate of innovation. The fruition of this

work was the Berkeley Network-Of-Workstations (NOW) system [16]. The Berkeley NOW

is a collection of 128 Sun UltraSPARC-1 workstations connected by a switched 10Mb/s

Ethernet and a 160 MB/s Myrinet. The Ethernet network provides general connectivity

among the workstations and to the rest of the Internet, while the Myrinet provides a high-

speed, low-latency experimental network. Processing resources are managed on the NOW

through a layer of software called the Global Layer UNIX (GLUnix) [26]. The PSVP

system was built using GLUnix on the Berkeley NOW.

2.2 Multicast Protocols

The software components of the PSVP system transmit video streams and con-

trol signals to each other as they cooperate to compute video e�ects. Because the same

video and control data is often required by two or more components, the system uses

communication protocols based on IP-Multicast. In this section, we review IP-Multicast

and the IP-Multicast based protocols used by PSVP.
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2.2.1 IP-Multicast

The Internet Protocol (IP) is the basis for delivering packets of data on the

Internet. The IP service model provides no guarantee of delivery. In addition, packets

may arrive out of order. Packets are routed from source to destination based on the 32-bit

destination IP address speci�ed in the packet header. All possible sources and destinations

have a unique IP address. This simple model is the basis for other protocols which provide

additional services. The Transmission Control Protocol (TCP), for example, provides a

reliable, congestion-controlled, byte-stream communication protocol that is implemented

using IP. The User Datagram Protocol (UDP) provides a connectionless, datagram delivery

protocol with error checking that is also implemented using IP.

The IP-Multicast model, �rst proposed by Deering [18], extends the traditional

IP service model to deliver packets to multiple destinations e�ciently. Similar to IP,

IP-Multicast makes no delivery guarantee. Any subset of the group may receive any

given data packet. Order is also not guaranteed. The IP-Multicast delivery mechanism is

e�cient because packets are replicated in the network as necessary to reach members of

the group. Thus, the sender of a multicast packet transmits only one copy of the data and

does not need to know how large the group is nor where the group members are located.

The network is responsible for delivering packets to group members no matter where they

are located. Groups are identi�ed by an IP-Multicast address. These addresses represent

a communication session which users can join or leave at any time. IP-Multicast addresses

are dynamically allocated from a reserved range of IP addresses.

2.2.2 Real-Time Transport Protocol

The Real-Time Transport Protocol (RTP) is an Internet Engineering Task Force

(IETF) standard for streaming transmission of media data [49]. Although independent

of the underlying network technology, PSVP uses RTP with UDP and IP-Multicast to

send and receive video data. Each RTP packet is comprised of an RTP header followed

by a format speci�c payload. The RTP header provides basic information about the data

including the format of the payload, a media speci�c timestamp for synchronization, a

packet sequence number for detecting lost or duplicate packets, and a source identi�er to

distinguish between di�erent sources. The RTP protocol is discussed in more detail later

in this dissertation.
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2.2.3 Reliable Multicast Protocols

The Scalable ReliableMulticast (SRM) protocol provides reliable multicast packet

delivery and is implemented using IP-Multicast [24]. PSVP uses SRM to receive and

transmit control messages. SRM is a receiver-based protocol. Receivers detect lost pack-

ets and request repairs using negative acknowledgments (NACKs). Receivers listen for

other NACKs and limit NACK transmission based on timers to avoid NACK implosion

(i.e., all receivers transmitting a NACK) caused by a packet lost close to the source.

The PSVP control protocol described later in this dissertation requires more than

just reliable delivery. The system needs a way to send a control message to processing

elements without knowing what elements might want to receive the message. To build

message-speci�c mechanisms, such as selective reliability and predicated delivery (i.e.,

message delivery based on the receipt of a previous message), PSVP uses the Scalable

Naming and Announcement Protocol (SNAP) [45]. SNAP provides a general mechanism

for hierarchically naming application data units (in our case, control messages) and allow-

ing di�erent reliability and delivery semantics to be associated with these units. SNAP is

implemented on SRM.

2.3 Video Compression and Transmission

The PSVP system is designed to manipulate and produce compressed video

streams in standard Internet formats. Many of these formats use similar compression

techniques which inuenced the design of the PSVP data structures. In this section, we

review common compression techniques found in these formats. Although there are numer-

ous video formats available on the Internet, we concentrate our discussion of compression

techniques to three speci�c formats: a variant of the Joint Pictures Expert Group (M-

JPEG) format, a variant of the ITU H.261 standard (Intra-H.261) format, and the Motion

Pictures Expert Group (MPEG-1) format.

2.3.1 Color Representation

In this subsection, we briey review terminology used to describe a video frame.

A video frame is a 2D array of color pixel values. Each pixel has three components: Y,

U, and V. The Y component of a pixel represents its luminance value and the U and
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V components contain color information. All three formats represent a video frame as

three separate planes of pixel components (i.e., one plane each for Y, U, and V). Since

the human visual system is less sensitive to changes in chrominance than to changes in

luminosity, all three formats subsample the U and V planes to some degree, typically a

factor of two in one or both dimensions.

2.3.2 Discrete Cosine Transform

At the center of these compression standards is the Discrete Cosine Transform

(DCT). The DCT approximates the Karhunen-Loeve transform that produces optimally

decorrelated coe�cients for continuous tone images [47]. The coe�cients of the DCT can

then be quantized independently. The quantization of the DCT coe�cients controls the

tradeo� between compression and error.

All three formats use an 8x8 2D DCT. In other words, at some level each plane

of the video frame is decomposed into 8x8 pixel blocks, and the DCT is applied to each

block. For each block, 64 DCT coe�cients are produced. The coe�cients are quantized,

run-length encoded to remove coe�cients with a value of 0, and �nally the run-length

encoded coe�cients are entropy encoded. Figure 2.1 illustrates this process.

One characteristic of the DCT coe�cients is that lower frequency coe�cients are

visually more signi�cant than higher frequency coe�cients. By quantizing the coe�cients

based on position, higher frequency coe�cients are more heavily quantized resulting in

greater compression with less visual distortion.

2.3.3 Intercoding

Another compression technique is interframe coding or intercoding. Intercoding

techniques use information from one frame of video data to encode a di�erent frame of

video data. These techniques create a dependency between frames. In this subsection,

we review the intercoding techniques used by Intra-H.261 and MPEG-1. The M-JPEG

standard uses no intercoding techniques of any kind. Each frame of video is encoded

independently.

Intra-H.261 uses a variant of intercoding called \conditional replenishment." The

video frame is dissected into 16x16 pixel regions. Each region is encoded as 4 8x8 luminance

blocks and 2 8x8 chrominance blocks. These encoded blocks are sent as part of the video
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Figure 2.2: MPEG Interframe Dependencies

frame only if the region signi�cantly di�ers from the last time the region was sent. The

standard requires a region to be encoded and transmitted at least every 31 frames. The

conditional replenishment scheme creates dependencies between video frames because not

all regions are encoded in each frame.

MPEG-1 uses a more complicated intercoding technique. Each MPEG-1 frame

is one of three types: I, P, or B. Each frame is dissected into 16x16 pixel macroblocks

consisting of 4 8x8 luminance blocks and either 2 or 4 8x8 chrominance blocks depending

on the chrominance subsampling factor. I frames use no intercoding techniques so all mac-

roblocks are encoded independently. Macroblocks in P frames can be encoded in one of

two ways. The P frame macroblock is either encoded independently as with macroblocks

in I frames, or the di�erence between the macroblock pixel values and the pixel values of

a macroblock-sized region in the previous I or P frame is encoded. If only the di�erence is

encoded, the region position used for di�erencing is also encoded with the macroblock as

a motion vector. Macroblocks in B frames can be encoded in one of four ways: indepen-

dently; as a di�erence from a region in the previous I or P frame; as a di�erence from a

region in the next I or P frame; or as a di�erence with the average of two regions, one each

from the previous I or P frame and the next I or P frame. Because B frame macroblocks

can use regions from the next I or P frame as a base for di�erencing, the transmission

order of frames is di�erent than the display order. Figure 2.2 illustrates the relationship

between I, P, and B frames and how transmission order di�ers from display order.
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2.3.4 Entropy Coding

After applying intercoding techniques and the DCT, the encoded coe�cients for

each transmitted block of video are entropy encoded. All three formats use a di�erent

predetermined Hu�man code. MPEG-1 allows a di�erent Hu�man code to be speci�ed

within the data stream, but this feature is rarely used. Since the Hu�man codes vary

in bit length, the encoded coe�cients are rarely byte aligned and distinguishing between

coe�cients requires decoding the Hu�man codes. Consequently, locating the coe�cients

of a particular region within the video frame is di�cult.

2.4 Video Processing Hardware

In this section we review several hardware video processing systems. First, we

describe a typical video production switcher used in a studio setting to generate video

e�ects on analog and uncompressed digital signals. Several parallel digital signal processing

systems are then described.

Traditionally, video e�ects are created using a video production switcher (VPS).

A VPS is a specialized hardware device that manipulates analog or digital video signals

to create video e�ects, usually operated by a technician or director at a control console.

A Composium VPS is shown in Figure 1.2 of Chapter 1.

A VPS is built with special purpose hardware designed speci�cally for the studio

environment. The number and format of video signals that a VPS can manipulate is

limited by the number of physical connections provided by the hardware. The capabilities

of the VPS (i.e., the number and type of e�ects generated) is similarly predetermined.

High-end VPS's provide extensive programmatic control over e�ect parameters.

The cost of VPS hardware is related to its capabilities. A low-end VPS that

provides a small set of precon�gured e�ects on two analog video signals costs around

$1000. A high-end VPS capable of manipulating up to four uncompressed digital signals

with a full set of programmable e�ects costs around $100,000.

Although a VPS can create the type of e�ects we want to apply to Internet

video sources, they are ill-suited for the Internet packet video environment. A VPS re-

quires tightly synchronized uncompressed video signals. Packet video on the Internet is

compressed and loosely synchronized.



18

Many researchers have built parallel digital signal processing systems using special-

purpose hardware to experiment with creating and manipulating compressed video signals.

Work by Dutta et al. [19], De Greef et al. [27], and Evans and Yates [23] all discuss various

aspects of video processing circuitry design including datapath design, cache architectures,

and parallel ALU design. Numerous projects built hardware systems for speci�c video

compression schemes [1, 4, 20, 32, 33, 58, 60].

Most systems exploited parallelism by utilizing pipelined architectures and in-

terconnecting simple homogenous processing elements. Enomoto et al. [20], for example,

interconnected 36 identical custom-designed video signal processors to compress video for

a teleconferencing system. Lai et al. [32] designed parallel circuitry usable for any DCT-

based and/or motion compensated image or video compression scheme. Lee et al. [33] and

Yagi et al. [60] both created high-de�nition television (HDTV) video codecs by intercon-

necting multiple hardware video processors.

Programmable video processing systems for creating video-e�ects have been built,

amongst others, by Bove et al. [9], Chin et al. [12], Epstein et al. [21], and Ikedo [30].

The Princeton Engine developed by Chin et al. [12] interconnects up to 2048 custom-

designed processing elements in a SIMD architecture. The design of the processing element

focused on specialized instructions speci�cally for video processing. The GVIP graphics

processor developed by Ikedo [30] uses multiple custom-designed hardware modules. Each

module has its own specialized function. The basic GVIP system includes three custom

designed chips. The largest of these chips integrates many di�erent types of processing

circuitry interconnected in a tree topology. This chip includes a general-purpose 32 bit

RISC processor, shading and texture mapping circuitry, anti-aliasing circuitry, and other

image-processing-speci�c circuitry. The Cheops system developed by Bove et al. [9, 6, 7]

interconnects small function-speci�c hardware processors built from commercially available

chips. The system includes processors for transposing memory, executing a discrete cosine

transform, motion estimation, color space conversion, superpositioning, and �ltering.

The IBM Power Visualization System (PVS) described by Epstein et al. [21] is

worth special attention because it comes very close to being an extensible software solu-

tion. A PVS is composed of up to 32 Intel i860XR processors connected by a 1.28 GB/s

global bus. In all respects, PVS is a general-purpose parallel computer though speci�cally

designed for video processing. The IBM EFX video editing and e�ects software described

by Alpert [2] provides a post-production video editing environment. EFX also provides
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a high-level e�ects speci�cation language for the creation of new e�ects. Although the

EFX software coupled with the PVS system seems to meet the functional requirements

of a software-only parallel video-e�ects processor, there are several drawbacks. First, the

system is proprietary. How e�ects are actually implemented on the PVS is unknown and

uncontrollable. Thus, the PVS cannot be used as a research infrastructure for exploring

the issues of exploiting di�erent types of parallelism and compressed domain processing.

Second, the video processing software is tightly integrated with the post-production appli-

cation. The system described in this dissertation separates the functionality of the software

video processor from the application requiring video e�ects processing. Finally, the par-

allel programming libraries utilized by the EFX software depend on a special-purpose

operating system written speci�cally for the PVS. This dependency does not allow EFX

to exploit improvements made in general-purpose computers. As processor and network

speeds increase, the EFX software will have to be changed to take advantage of these

advances. In the worst case, it might have to be re-implemented from scratch.

These hardware solutions will have to be reengineered to accommodate new video

formats and streaming network protocols. Although some of these systems are highly

programmable and could be extended at the software level, none can take immediate

advantage of processor improvements. The economics of redesigning and reengineering

these special-purpose hardware solutions are similar to the economics of developing new

tightly integrated parallel processors. The same economic pressures that caused the con-

vergence of parallel architectures and motivates the development of the Berkeley NOW,

points to a software-only video processing solution decoupled from any speci�c parallel

video processing hardware.

2.5 Video Processing Software

In this section, we review related work in software video processing. We begin

by examining language and development tools designed to facilitate the development of

multimedia applications. Next, we describe a parallel MPEG-1 decoder that exploits both

spatial and temporal parallelism. Finally, we describe a parallel media processing system

being developed at MIT with similar goals to our own.
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2.5.1 Language and Development Tools

The Resolution Independent Video Language (RIVL) is a high-level language

for describing video e�ects irrespective of format and resolution developed by Smith [54].

RIVL is a set of extensions to Tcl that incorporates video, audio, and images as �rst class

data types. The central idea is to provide high-level operators to manipulate these data

types independent of their actual format and resolution. The RIVL interpreter executes

these operations and resolves any format- and resolution-speci�c issues. While RIVL is

useful for expressing video processing algorithms at a high level, its implementation is

extremely complex. Extending and debugging RIVL is di�cult.

Based on the RIVL experience, Smith developed Dali which is a programming

language, a compiler, and a virtual machine [52]. The compiler reads a Dali program

and produces Dali Virtual Machine (DVM) code. An implementation of the Dali Virtual

Machine executes the code. The DVM provides low-level, high-performance primitives for

manipulating video, audio, and media data that are format speci�c. The intention of Dali

is to serve as an underlying \assembly language" for higher level languages like RIVL.

The current implementation of Dali is a set of extensions to Tcl/Tk. PSVP uses Dali to

manipulate video data and implement video e�ects.

To support the development of networked multimedia applications, researchers

have built toolkits with reusable and extensible software components. Examples of these

toolkits include: DAVE [44], SCOOT [11], DirectX [31], VuSystem [34], CMT [37], and

MASH [41]. In general, multimedia toolkits provide task speci�c objects that are con�g-

ured and linked together to implement multimedia applications. For example, a toolkit

may provide objects for sending and receiving data on a network, decoding and encoding

video data, and synchronizing multiple media streams. PSVP uses the MASH toolkit

because it provides comprehensive support for IP-Multicast and protocols based on IP-

Multicast (e.g., RTP, SRM, SNAP, etc.).

The MASH toolkit was the result of continuing development of the MBone tools

vic and vat [42]. MASH extends Tcl/Tk using OTcl and C++ to provide the programmer

with a split object architecture. Each object in the MASH toolkit has both a C++ and

OTcl component. Object methods written in C++ can be invoked through OTcl and ob-

ject methods in OTcl can be invoked through C++. The split object architecture allows

object functionality to be developed quickly at the OTcl level and moved to C++ for
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performance if necessary. Applications are implemented using MASH scripts that create,

con�gure, and link task-speci�c objects together. Unlike previous toolkits that provided

course heavy-weight objects, MASH objects are thin. For example, CMT provided a single

object for decoding and displaying M-JPEG frames, while the same functionality in MASH

is implemented by four separate objects which handle defragmentation, decoding, dither-

ing, and rendering independently. Although thinner objects create additional complexity

for the programmer, the system is more exible.

2.5.2 Parallel Video Processing Software

In the previous section we reviewed the multimedia toolkit and language tools

that PSVP uses. This section reviews research that takes similar approaches to the prob-

lem of parallel video processing. First we review early software decoder research that

explored the interplay between exploiting both spatial and temporal parallelism. Second,

we describe a general media processing system with goals similar to PSVP.

Bilas, Fritts, and Singh implemented an MPEG-2 decoder on an SGI Challenge

shared memory multiprocessor comparing the use of temporal parallelism with the use of

spatial parallelism [5]. They achieved excellent speedup with temporal parallelism while

spatial parallelism led to slight load imbalances. The load imbalances encountered with

spatial parallelism were mostly due to the granularity of the spatial subdivision. Shen

and Delp implemented an MPEG-1 encoder on an Intel Paragon exploiting both temporal

and spatial parallelism simultaneously [50]. In this implementation, groups of processors

were given subsequences of the video to encode. Within each group of processors, the

video frame was subdivided spatially into slices that were compressed by each processor,

reassembled into a single compressed frame, and written to disk. Two di�erent strategies

for interprocess communication within a processor group were compared. One strategy

dedicated a processor within a processor group to I/O while the other strategy allowed

all processors within a group to perform computation and I/O tasks. The dedicated

I/O processor strategy achieved nearly linear speedup as the number of total processors

increased from 16 to 512. The second strategy resulted in progressively smaller speedups

as the number of processors increased past 64. The spatio-temporal approach combined

with the �rst I/O strategy overcame the limiting performance factor of previous work done

by the same group that exploited only temporal parallelism [51].
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More recent work by Bove and Watlington describes a general system for ab-

stractly describing media streams and processing algorithms that can be mapped to a

set of networked hardware resources [56]. In this system, hardware resources may be

special-purpose media processors or general-purpose processors. The system is centered

around an abstraction for media streams that describes any multi-dimensional array of

data elements. The system achieves parallelism by discovering overlaps in access patterns

and scheduling subtasks and data movement among processors to exploit them. The sys-

tem uses a general approach that is not speci�c to video or packet video formats and

that is independent of networking protocols. This research shares some of the same goals

and solutions that we are working toward. Our system is di�erent in that we are taking

advantage of representational structure present in compressed video formats, and we are

constrained to standard streaming protocols and formats for video on the Internet. We will

show that these protocols and formats directly inuence the design and implementation

of mechanisms for exploiting parallelism.

2.6 Summary

This chapter described a wide variety of related work ranging from parallel pro-

cessing architectures to video compression techniques. Our work is at the intersection of

these di�erent technologies. Our goal is to synthesize these technologies into a system

capable of manipulating compressed packet video streams in standardized video formats

using general-purpose processors and widely available network protocols. By taking this

approach, we expose the ways in which these di�erent technologies come together. In

some cases these technologies are leveraged to provide exibility and adaptability, while

in other cases the design of PSVP is constrained and limited by features of the underlying

building blocks that were developed without this application in mind.
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Chapter 3

System Design and Architecture

This chapter describes the high-level design of the PSVP system and de�nes

the resource, data, and control models upon which the design is based. We begin by

describing the intended environment for PSVP and identifying major components of the

system and their relationships to each other. Using the major design goals of the system

as a guide, we develop a target model for computational and network resources. With

this model in place, we describe the actual computing and networking environment used

to develop the system. Packet video data sources are characterized to model the system

inputs and outputs, and the speci�c video formats and transport protocols used by the

implementation are briey described.

Following this, the system architecture and each component of the architecture

are described. How video e�ects are expressed and realized strongly inuences the design

and implementation of the system and is described next. We describe how PSVP exploits

three di�erent types of parallelism and how they are incorporated into our video e�ect

representation. This representation naturally maps into a set of hierarchically organized

processes that implement the desired video e�ect. This strategy raises a number of issues

for how control information is exchanged between di�erent software components of the

system. We describe these issues and identify a set of requirements for the mechanism

used by PSVP for disseminating control information. Finally, we discuss evaluation metrics

for measuring system performance.
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Figure 3.1: PSVP System Architecture

3.1 System Components

The PSVP system is designed for environments where a set of general-purpose

computers are connected with a local network or intranetwork. We often �nd these en-

vironments at university campuses and within corporate intranetworks. These networked

computer resources may not primarily be intended for use as a distributed or parallel

computing environment (e.g., the individual computers on the desks of graduate students

and/or employees). Alternatively, these resources may be speci�cally organized to be used

for distributed and parallel computing. We designed the PSVP system to operate in ei-

ther environment. In this section, we describe the high-level components of PSVP without

regard to how the computing resources are organized and what their capabilities are. In

the next section we develop a resource model that characterizes the computing resources

required by the system.

Figure 3.1 shows a high level picture of the PSVP system components. The

ovals labeled \E�ects Server" and \E�ects Processor" represent components of the PSVP

system. Solid lines and arrows represent video data and dashed lines and arrows represent
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control information. Also represented are live Internet video sources and the resulting

processed video. The oval labeled \Video Archive Server" represents stored video data

that may be used as input to the system. The oval labeled \Application" represents a

software process that requires video e�ects processing { it is using the PSVP system. The

application and the video archive server are not part of the PSVP system. They represent

external applications that interact with the system. These components are executed by

software processes on a set of computers. The local network connecting these computers

is represented by the cloud in the center of the �gure. A cloud is used to represent

the network because we are not concerned with the details of how these computers are

connected although the network interconnect and message passing capabilities may impact

on system performance. We outline basic network resource requirements for the system

in the next section.

An example scenario for how PSVP might be used illustrates the roles of each of

the system components and their relationship to each other. Consider how PSVP might

be used for the production of a lecture in a distance learning application. A professor

is giving a lecture in a studio classroom. Some students attend remotely by receiving

streaming video and audio sources being generated in the classroom. There are three

cameras in the room. One camera is focused on the professor, a second is pointed at the

audience, and a third is capturing the professor's slides as he projects them onto a screen

(e.g., using an overhead document camera). We will refer to these video streams as Stream

P (for Professor), Stream A (for Audience), and Stream S (for Slides), respectively. Three

computers capture, digitize, and transmit these video sources onto the local network.

The video streams are transmitted using IP-multicast. Each stream is associated with a

di�erent multicast address. A director controls the lecture broadcast by using a software

application. We will refer to this application as the \Virtual Video Production Switcher"

(VVPS). Figure 3.2 illustrates this scenario. Figure 3.3 shows the user interface to the

VVPS.

The VVPS has two functions. First, it allows the director to control one or more

video e�ects that produce new video sources. These new sources are each multicast on a

unique multicast address. Second, the director uses the VVPS to select one video source

from the three original video streams and the streams produced by PSVP to multicast to

the remote participants. The remote participants join a well-known multicast group and

receive whichever stream is currently selected by the director. From their perspective, the
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transmission is only one video stream even though in reality this video stream is selected

by the director from a variety of sources. Relating this scenario to Figure 3.1, VVPS is

the \Application." VVPS uses the PSVP system to instantiate a video e�ect and create

new video streams as output using one or more video sources as input.

In our scenario, suppose the director has chosen the video source from Stream P.

If the director wants to cross-dissolve (i.e., slowly fade from one video source into another)

from Stream P to Stream S, he takes the following actions. First, he uses the VVPS to

select the cross-dissolve e�ect from the set of video e�ects that the VVPS can create. The

VVPS contacts the PSVP \E�ects Server" (see Figure 3.1) and speci�es that a fade e�ect

should be instantiated. The \E�ects Server" allocates a number of \E�ects Processors"

that are currently available for executing the e�ect. Processes are started on each of the

allocated processors. The processes coordinate with each other and exploit parallelism to

produce the desired e�ect in real-time. The \E�ects Server" returns a control address to

the VVPS.

The VVPS constructs a user interface for the director to control the e�ect. In

this case, the VVPS provides the director with commands to select which two sources to

use as inputs and a slider to control the e�ect. The slider control is shown in Figure 3.3.

When the slider is set to one end, the processed video is exactly the same as the �rst
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input video stream. As the slider is moved to the other end, the processed video is a

proportional blend of the two input streams. When the cross-dissolve slider is completely

to the other end, the processed video is exactly the same as the second input video stream.

Thus, the director can cross-dissolve from one stream to the other by slowly moving the

slider. In our example, the director selects Stream P as the �rst input and Stream S as the

second input and sets the slider to the left (i.e., the output video is Stream P). The VVPS

translates these interactions from the interface into control messages that it sends to the

control address provided by the \E�ects Server." These control messages are received by

the processes running on the \E�ects Processors." The resulting video stream appears

on the VVPS interface as a possible video source. We will refer to this video stream as

Stream C (for Cross-dissolve).

Until this point, the VVPS has been transmitting Stream P to the remote partic-

ipants. Now that the cross-dissolve e�ect is producing Stream C, the director can use the

VVPS to select Stream C as the video source to send to the remote participants. Since the

slider controlling the e�ect is set to the left, the remote participants do not see any visual

di�erence when this occurs because Stream C looks exactly the same as Stream P at this

point. The director moves the slider slowly to the other end which signals the processors

producing Stream C to make the video look more and more like Stream S. When the slider

is completely to the right, Stream C now looks exactly like Stream S. The director can

now switch to Stream S. VVPS can then send a command to terminate the e�ect to the

\E�ects Server" because the e�ect is over and Stream C is no longer needed. Stream C is

removed from the list of video sources on which VVPS can issue commands.

A more likely scenario is that the director will want to use and reuse several

di�erent e�ects over the course of the lecture. The procedure described above can be used

to instantiate and control each e�ect. Since the e�ects will be reused, the director may

choose not to destroy a particular e�ect but instead have several e�ects instantiated at all

times from which he can choose as required. Once instantiated, an e�ect may be reused

with di�erent inputs. For example, the fade e�ect may �rst be used to transition from

Stream P to Stream S as in our example and then later used to transition from Stream S

to Stream A. In some cases the results of one e�ect may be used as the input to another

e�ect.

The VVPS is only one example of an application that can use the PSVP system.

The example highlights the interactions between the \Application," \E�ects Server," and
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the \E�ects Processors" depicted in Figure 3.1. Speci�cally, the \E�ects Server" acts as

a manager of resources, instantiating processes on \E�ects Processors" to execute e�ects

on the behalf of the \Application." Once instantiated, the \Application" communicates

and controls the \E�ects Processors" directly.

This scenario raises a number of design issues that we must address.

1. How are e�ects represented by the \E�ects Server"?

2. How are \E�ects Processors" organized?

3. How does the \Application" communicate control information to the \E�ects Pro-

cessors"?

4. How do \E�ects Processors" coordinate themselves?

5. What types of parallelism can be exploited?

6. And, what mechanisms are required to implement these types of parallelism?

To answer these questions, we must develop a model for the computing and network

resources in our target environment.

3.2 Resource Model

This section describes the PSVP computing and network resources model. We

review basic design goals for the system, and from these develop a description of the

PSVP computing environment. The actual experimental environment in which PSVP was

developed is described and compared against this model. Finally, we discuss advanced

computing features that are not part of the model but may be present in some envi-

ronments. Because we do not want to preclude the use of these advanced features, we

determine additional goals and constraints for the design and implementation of PSVP.

One of the design goals for PSVP is to use general-purpose processors as com-

putational resources, in other words, commodity hardware. The motivation for this goal

stems from two arguments. First, the high demand for commodity processors amortizes

the cost of research and development for the next generation of processors. This argu-

ment is used by Culler and others to explain the consistent performance improvements
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of personal computers as compared to high performance tightly-coupled parallel proces-

sors, mainframes, and minicomputers. Second, general-purpose computing resources can

use exible software solutions that can be adapted to new video formats and streaming

technologies as well as di�erent application needs.

Another design goal for PSVP is to use standard Internet streaming video formats

and network protocols. As illustrated in the example scenario described in the previous

section, PSVP provides an application service, namely, the ability to combine and manip-

ulate packet video streams. In this respect, PSVP does not have direct control over the

streaming video sources themselves. These sources may or may not be generated within

the local PSVP environment. Because PSVP is positioned between applications requiring

video e�ects processing and applications producing video streams, PSVP must use stan-

dard formats and protocols. A primary research issue is how these protocols and formats

constrain and inuence the design of PSVP because streaming video formats and protocols

are designed for storage and transmission of video data and not for manipulation.

PSVP uses the Real-Time Protocol (RTP) which is an IETF standard for stream-

ing media. RTP packets can be encapsulated in unicast or multicast UDP packets.

Given these two basic design goals, we can construct a model for the resources

available to PSVP. This model includes:

� A possibly dynamic set of general-purpose computers.

� An IP-based packet network connecting this set of computers.

� IP-Multicast support so that all computers in this set can communicate with each

other.

� The ability to start a software process on any of these computers.

� Su�cient bandwidth between any two computers in this set to support multiple

video streams.

This resource model has several important characteristics that arise from its simplicity.

The model does not specify that the computers available need to be homogenous in type.

This means that the set of computers used by PSVP may have di�erent performance

characteristics. Because the number of computers available may change dynamically, the

set of computing resources may vary. The model assumes the computers can be shared
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with other applications although in practice a set of computers may be dedicated to PSVP

to guarantee resource availability during a real-time broadcast. In addition, no speci�c

real-time support is expected of the operating system. Network resource reservation is also

not part of the model, although su�cient bandwidth to support multiple video streams

is assumed. This last assumption reects the idea that these resources are expected to

be part of the same local environment (e.g., a university department) but not necessarily

all on the same local area network. This dissertation focuses on the mechanisms and

algorithms required to overcome the computational complexity of creating video e�ects

with streaming packet video sources. By assuming su�cient network resources between

the processors of the system, we free ourselves from the issues of bandwidth management

and network topology which are outside of our primary research interest.

PSVP was developed on the Berkeley Network-of-Workstations (NOW) system

because it provided an environment that matched this resource model. The �rst Berkeley

NOW is composed of 128 Sun UltraSPARC-1 computers, called the \SPARC-NOW."

These resources are shared by a variety of research projects. The computers all use Solaris

as their operating system. Although these resources happen to be homogenous, processing

load often varies from one machine to the next creating varied performance characteristics.

Load balancing and other resource allocation mechanisms are made available through a

set of software libraries and utilities called GLUnix [26].

Connecting the SPARC-NOW machines are two networks: a 10 Mb/s switched

Ethernet and a 160MB/s Myrinet. PSVP development and experimentation uses only the

Ethernet for data and control communication. Each of the NOW machines is capable of

communicating to all of the other machines using IP and IP-Multicast. Recently, a second

NOW system composed of dual processor Pentium computers has been built, called the

\Pentium-NOW". The Pentium-NOW uses a 100 Mb/s switched Ethernet network and the

Linux operating system. GLUnix has not yet been ported to this environment. Although

all of the work described in this dissertation was completed using the original SPARC-

NOW, we anticipate porting PSVP to the Pentium-NOW in the near future.

Although PSVP was developed with a simple model of computation and commu-

nication resources in mind, we are aware of other distributed systems research that may

provide advanced features. For example, a mechanism for load balancing that involves

process migration might be available. Even though the PSVP resource model does not

include these advanced features, we do not want to make design decisions that preclude
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their use. The remainder of this section describes several advanced system features that

might be available in a distributed computing environment and the implications these

features might have for the design of PSVP.

The resource model assumes that processes can be assigned to some available

processor but does not assume control for how that assignment is made. One advanced

feature of a distributed programming environment may be that process location is deter-

mined dynamically to achieve balanced CPU load among processors. The NOW GLUnix

environment provides this feature with the glurun facility. Glurun allows a process to be

started on the least loaded processor. Once started, the location of the process is static

despite any future CPU load imbalances that might occur.

Dynamic process migration is another advanced service that can be used to

achieve load balance among shared resources. Unlike glurun, a process migration ser-

vice dynamically relocates a process to another processor after it has been started to

maintain a load balance. The Condor system developed at the University of Wisconsin

provides dynamic process migration to take advantage of idle processing resources [35].

Another service that might be present is an automatic process restart mechanism

that provides process robustness. This service monitors a running process. If the process

fails for some reason (e.g., the processor crashes or is disconnected from the network), the

service restarts the process on a di�erent processor. The Active Services (AS-1) research

project at UC Berkeley provides a version of this service [3].

Although none of these advanced services are part of the resource model, the

design of PSVP should not preclude the use of these types of services. In general, these

services provide a layer of indirection between the location of computing resources and the

application. We identify two additional design goals for PSVP in light of these advanced

services. First, we want to eliminate or at least minimize any location dependent state

within the PSVP mechanisms for exchanging data and control. Second, whatever state

PSVP does maintain should be \soft" which means that PSVP processes should be able

to reconstruct any state information even if restarted on a di�erent processor.

With an understanding of the PSVP resource model in place, we now turn our

attention to the PSVP data model. The next section characterizes the types of packet

video streams PSVP manipulates.
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3.3 Data Model

The system operates on video data delivered on a packet network. Although

many formats and protocols exist for delivering packet video, we can characterize these

data sources and describe how they are delivered. Essentially all Internet packet video

is compressed. In Chapter 2, we described the most commonly used techniques for com-

pressing packet video data. Compression presents a formidable barrier to manipulating

video data because often the video data must be completely uncompressed to achieve the

desired video e�ect. Packet video data may be temporally dependent as a result of in-

terframe coding techniques. Consequently, data for one frame of video is dependent on

the successful reception of another frame of video. Di�erent packet video formats may

have di�erent degrees of temporal dependency. Other characteristics of packet video are

variable frame and data rates. Most packet video data sources are either variable bit rate

(VBR) sources that allow the data rate to uctuate while trying to maintain a particular

frame rate, or constant bit rate (CBR) sources that allow the frame rate to vary while

maintaining an average data rate. Although CBR sources can achieve both average frame

and data rates by varying quality on a frame-by-frame basis, this approach is rare. Even

if the data and/or frame rate is constant, this limitation is achieved only in the average

over some length of time (typically 1 second).

Network transmission of packet video data introduces variable delay and jitter

to the video stream. Finally, packet video streams generally su�er some amount of packet

loss. Almost all packet video streams are delivered using unreliable datagram protocols

(e.g., UDP over IP-Multicast). Lost packets can be detected but are not retransmitted in

most interactive or real-time applications because a retransmitted packet typically arrives

after the time it was required.

Given these characteristics, we developed the following characterization for video

streams that PSVP uses:

� Video streams are compressed.

� The frame and data rate for any stream is variable and unbounded.

� Interpacket and interframe jitter is variable and unbounded.

� Packet loss is detectable but not recoverable.
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� The video data for a frame may be spread over many packets.

� The video stream format is �xed and independent of the format of other streams.

Consequently, di�erent video streams involved in the same video e�ect may have

di�erent formats.

� Temporal dependencies between video frames may exist.

PSVP is intended to work with standardized Internet streaming video formats

and protocols. Specifying which protocols and formats were used to develop PSVP is

important because many of the mechanisms used by PSVP are format speci�c. Although

these speci�c mechanisms may be inappropriate for other formats and protocols, the tech-

niques employed generalize for packet video streams with similar characteristics.

We developed PSVP to work with the H.261 and Motion-JPEG video formats.

We chose these two formats because the MASH multimedia application toolkit provided

excellent support for them [29]. These formats represent two di�erent types of packet

video that are both within the data model. While M-JPEG has no temporal dependencies

between frames, H.261 uses a technique called conditional replenishment which creates

temporal dependencies that can extend for several frames. Even though these temporal

dependencies exist in H.261, each and every packet in an H.261 stream provides valid video

data for some region of the frame which makes it robust against packet loss. Conversely,

an M-JPEG frame is encoded into many packets, all of which are required to reconstruct

the frame. Thus, if any packet for a particular M-JPEG frame is lost, the entire frame is

lost. Both formats use the DCT and entropy encoding as explained in Chapter 2.

The IETF has de�ned the RTP for the delivery of streaming media. PSVP uses

RTP for all input, output, and intermediate video streams. RTP uses UDP for delivering

packets of media data. UDP is an unreliable datagram protocol that delivers packets using

IP or IP-Multicast. Figure 3.4 shows the basic format for an RTP packet. Each packet is

comprised of an RTP header followed by a format-speci�c header and payload. PSVP uses

the IETF de�ned standards for streaming H.261 and M-JPEG data using RTP. Because

the information available within the RTP header is independent of the actual format of

the video, PSVP mechanisms that operate using only this information can be generalized

for other video formats. The �elds of the RTP header provide information for ordering

packets, associating packets with a particular video frame, and detecting lost packets.
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Figure 3.4: RTP Packet Format

3.4 Software Architecture

This section describes the software architecture of PSVP. We identify the major

software components and their relationship to each other. The components are placed

within the system architecture described above.

The system is composed of three major software components: the FX Compiler,

the FX Mapper, and the FX Processor. The relationship between these components is

shown in Figure 3.5. The FX Compiler translates a high-level description of a video e�ect

into an intermediate representation suitable to exploit parallelism. The FX Mapper takes

the intermediate representation and maps it onto the available resources. The FX Mapper

produces e�ect \subprograms" that are executed on a particular computational resource.

The FX Processor executes these subprograms and responds to control signals sent from

the application. Placing these components in the overall system architecture depicted in

Figure 3.1, the FX Compiler and FX Mapper are part of the \E�ects Server" and the FX

Processor is the software executing on an \E�ects Processor."

Figure 3.5 shows the FX Compiler as a compile-time component, the FX Pro-
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cessor as a run-time component, and the FX Mapper as both a compile- and run-time

component. Compile-time refers to parts of the system that do not depend on knowing

exactly how many processors are available or speci�cally which video streams will be in-

puts. Run-time refers to components that are used when a video e�ect is instantiated and

executed.

The FX Compiler is the bridge between high-level e�ect descriptions speci�ed

in a language like RIVL, which was discussed in Chapter 2, and an intermediate form

appropriate for mapping onto parallel computation resources. PSVP uses a directed acyclic

graph (DAG) representation for this intermediate form. The nodes of the graph represent

primitive video operators. The video operators are the \instruction set" available to the

FX Compiler.

For example, consider the cross-dissolve video e�ect shown in Figure 3.6. A

DAG representation of this e�ect is shown in Figure 3.7. The DAG is made up of three

nodes. Each node represents a video operator. Two of the nodes represent the operation

of multiplying each pixel by a scalar value. The third node represents the function of

adding two frames together. The cross-dissolve is implemented by varying the parameter

p from 0.0 to 1.0. In Section 3.5, we describe this DAG representation for video e�ects in

greater detail.

The FX Mapper determines how the video e�ect is parallelized and generates

the code executed on the E�ects Processors to produce the video e�ect. Three types of



38

Video B

Output

Add

Multiply by
p

Multiply by
1-p

Video A

Cross-Dissolved

Figure 3.7: Simple Cross-Dissolve Graph Representation

parallelism are exploited for video e�ects processing: functional, temporal, and spatial.

Functional parallelism can be exploited by decomposing the video e�ect task into smaller

subtasks and mapping these subtasks onto the available computational resources. Tempo-

ral parallelism can be exploited by demultiplexing the stream of video frames to di�erent

processors and multiplexing the processed output. For example, one processor may deal

with all odd numbered frames while another deals with all even numbered frames. Spatial

parallelism can be exploited by assigning regions of the video stream to di�erent proces-

sors. For example, one processor may process the left half of all video frames while another

processor deals with the right half.

The e�ect graph produced by the FX Compiler is augmented by the FX Mapper

with nodes that represent mechanisms for managing the use of temporal, spatial, and

functional parallelism. The result is an e�ect-plan. An e�ect-plan is an enhanced version

of the e�ect graph that includes representations for control elements. E�ect-plans are

described in greater detail in Section 3.5. We will use the term e�ect-graph to refer to the

highly abstract e�ect representation produced by the FX Compiler and the term e�ect-

plan to refer to the more concrete e�ect representation produced by the FX Mapper which

includes representations for control elements.

The e�ect-graph is parallelized by partitioning it into subgraphs that are mapped
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to computational resources. Consider the cross-dissolve example illustrated in Figure 3.7.

Figure 3.8 shows one possible partitioning of this graph using functional parallelism. In

this example, each video operator is mapped to a di�erent processor. Figure 3.9 shows

another possible partitioning using temporal parallelism. In this example, the graph is

augmented with mechanisms for controlling the temporal subdivision and interleaving of

video frame. Figure 3.10 shows the same example using spatial parallelism.

The graphs shown in Figures 3.8, 3.9, and 3.10 are examples of e�ect-graphs

which are then used by the FX Mapper to generate an e�ect-plan. The e�ect-plan is

used by the FX Mapper to generate a set of e�ect implementation subprograms. The FX

Processor is the execution agent for the subprograms generated by the FX Mapper. The

execution environment is implemented using the MASH toolkit [41] which is described in

Chapter 4.
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3.5 E�ect-Plan Abstraction

Internally, PSVP (speci�cally the FX Mapper) requires a representation of the

video e�ect that can be manipulated to take advantage of di�erent types of parallelism.

The previous section introduced an abstract DAG representation that is used at the FX

Compiler level. This section provides a more detailed description of the e�ect-plan rep-

resentation used by the FX Mapper. We also describe the mapping strategy employed

to exploit and combine di�erent types of parallelism. An e�ect-plan is constructed by

starting with the e�ect-graph abstraction and incrementally adding elements to represent

control and communication elements.

Figure 3.7 shows an e�ect-graph made of nodes that represent video operators.

An operator takes video frames and/or parameter values as inputs and produces video

frames and/or parameter values as outputs. Figure 3.7 does not show the parameter

value p as a separate input to the operators that need its value. To represent parameters

in e�ect-plans, we introduce a parameter node to our representation. Parameter nodes

are associated with a particular data type (e.g., integer, real, color value, string, etc.).

Graphically, we represent parameter nodes as squares (see Figure 3.11).

Although parameters and video frames are both inputs and outputs to graph op-

erator nodes, we di�erentiate video frames from parameters since they are part of a high

bandwidth media stream while parameters typically control a video e�ect. Additionally,

we want to distinguish input and output video frame bu�ers from video frame bu�ers pro-

duced and used internally between stages of the video e�ect. Graphically, this distinction

is represented by three new symbols for input and output video streams and intermediate

video bu�ers shown in Figure 3.11.
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The next section describes how e�ect-plans are subdivided into multiple e�ect-

plans that are coordinated to produce the desired e�ect. To do so, we need to add to

the representation a way to distinguish the nodes of an e�ect-plan from those of another.

This distinction is represented graphically by enclosing the nodes of an e�ect-plan within

a rectangular shadow-box.

The e�ect-plan representation still lacks a representation for control elements. A

control element manages transmission and reception of control information for the e�ect-

plan (e.g., control messages setting the value of an e�ect parameter). Di�erent types of

control elements are required to manage di�erent types of parallelism. Graphically, control

elements are represented as labeled triangles as shown in Figure 3.11. The label within

the triangle indicates the control element type. For now, we introduce the most basic

control element, which is labeled with \SP" to stand for \Single Processor." This control

element manages a single e�ect-plan that operates in isolation (i.e., unaware of any other

e�ect-plan) on a single processor.

Revisiting the cross-dissolve example from Figure 3.7, a complete representation

of an e�ect-plan for this example is shown in Figure 3.12 labeled \E�ect-Plan G." This �g-

ure includes representations for the control element, parameters, and video frame bu�ers.

The e�ect-plan was also modi�ed to add an operator to compute the value of 1-p from p.

Temporal parallelism can be expressed using e�ect-plans by duplicating an e�ect-

plan and creating a new e�ect-plan with operator nodes and control elements for coordi-

nating the duplicated original e�ect-plan. Figure 3.13 shows our cross-dissolve example

using temporal parallelism. In this �gure, e�ect-plans G1 and G2 are duplicates of our

original single processor implementation of the cross-dissolve e�ect-graph. E�ect-plan T1

contains the operators and control elements necessary to divide the input streams tempo-

rally and e�ect-plan T2 contains the operators and control elements necessary to combine

the resulting processed video. The control element of T1 is labeled \TS" for temporal

selector and the control element of T2 is labeled \TI" for temporal interleaver. The TS

control element is associated with the temporal demultiplexing operators and TI is asso-

ciated with the temporal multiplexing operator. These control elements are speci�cally

aware of each other and the fact that two or more e�ect-plans are being coordinated to

exploit temporal parallelism.

The design of the temporal operators and their associated control elements is the

focus of Chapter 5. We introduce these mechanisms here to illustrate how the e�ect-plan
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abstraction is able to capture the use of temporal parallelism. In this example we also

begin to see how processors are hierarchically organized. The G1 and G2 e�ect-plans are

independent, single-processor realizations of the same e�ect-graph. Coordinating these

two plans to exploit temporal parallelism is the function of the T1 and T2 e�ect-plans.

Control information from the application is received by the control elements of T1 and

T2 and translated into appropriate control messages for G1 and G2. The e�ect-plans G1

and G2 are unaware of each other and the fact that their actions are being coordinated to

exploit temporal parallelism.

Figure 3.14 shows a spatial parallelism implementation of the cross-dissolve ex-

ample. Once again, the original e�ect-plan has been duplicated into two e�ect-plans

labeled G1 and G2. The e�ect-plan S1 contains a spatial combiner operator and its as-

sociated spatial combiner control element labeled \SC." In this example, the input video

streams are received directly by G1 and G2 using multicast, but the control element of S1

con�gures G1 and G2 to produce only partial results (e.g., left-halves and right-halves).

The operator in S1 spatially combines these partial results into a single, full-sized video

stream. As in the temporal case, G1 and G2 are unaware of each other or the fact that

they are being coordinated. Control messages from the application requiring video e�ects

processing are mediated through the control element in S1.

The last example illustrates the use of functional parallelism. The original e�ect-

plan has been subdivided into three subgraphs. From these three subgraphs, the FX

Mapper has constructed three subplans that are shown in Figure 3.15 and labeled G1, G2,

and G2. A new e�ect-plan (F1) comprised of a functional control element labeled \FC"

has also been added to the e�ect-plan. Although F1 contains no operators and thus no

video streams ow through F1, it acts as a coordinator for G1, G2, and G3 and mediates

control messages from the application.

By expressing e�ects using e�ect-plans that can be manipulated to incorporate

di�erent types of parallelism, we can combine di�erent types of parallelism into a hierarchi-

cal solution. The FX Mapper transforms an e�ect-graph into an e�ect-plan by selecting an

appropriate parallel implementation. The following example illustrates how the FX Map-

per accomplishes this task. We begin with an e�ect-plan that represents the e�ect we are

trying to parallelize. Once again, we will use the cross-dissolve example. The e�ect-plan

for this example is shown in Figure 3.12. This e�ect-plan is labeled as e�ect-plan G. This

e�ect-plan has the abstract interface that is exposed to the application. Regardless of how



47

p

1-p

Add

1 - parameter

SP E
ff

ec
t-

Pl
an

 G
2

Multiply by
parameter

Multiply by
parameter

p

1-p

Add

1 - parameter

SP E
ff

ec
t-

Pl
an

 G
1

Spatial
Combiner

SC E
ff

ec
t-

Pl
an

 S
1

Control Messages
From Application

Multiply by
parameter

Multiply by
parameter

Figure 3.14: Cross-Dissolve E�ect-Plan Representation with Spatial Parallelism



48

1-p

1 - parameter

Video A

SP E
ff

ec
t-

Pl
an

 G
1

SP

Multiply by
parameter

p
Video B

E
ff

ec
t-

Pl
an

 G
2

FC

E
ff

ec
t-

Pl
an

 F
1

Control Messages
From Application

SP

Add

Processed Video

E
ff

ec
t-

Pl
an

 G
3

Multiply by
parameter

p

Figure 3.15: Cross-Dissolve E�ect-Plan Representation with Functional Parallelism



49

many processors are involved and what types of parallelism are exploited, the controlling

application sends control messages to what it believes is e�ect-plan G.

In reality, e�ect-plan G may really be a collection of e�ect-plans that exploit

parallelism in some way. We have seen how this might be done for temporal, spatial, and

functional parallelism in previous examples. Suppose that the FX Mapper has �rst chosen

to exploit temporal parallelism. E�ect-plan G might be transformed as in Figure 3.13

into four e�ect-plans. These four e�ect-plans collectively act as if they were e�ect-plan G.

Figure 3.16 shows this con�guration with a grayed shadow-box enclosing the four e�ect-

plans that collectively implement the original e�ect-plan G. Control messages from the

application to e�ect-plan G are actually received by the control elements in e�ect-plans

T1 and T2 and translated into appropriate control messages for coordinating the actions

of e�ect-plans G1 and G2.

Notice that the relationship between the control elements in e�ect-plans T1 and

T2 and the e�ect-plans G1 and G2 is the same as the relationship between the application

and e�ect-plan G. In other words, G1 and G2 may be abstract representations of e�ect-

plans that in reality are implemented by more than one processor exploiting some mode of

parallelism. For example, the FX Mapper may choose to further parallelize this implemen-

tation by exploiting spatial parallelism for e�ect-plan G1. E�ect-plan G1 is transformed

into three new e�ect-plans (S1, G1a, and G1b) which together act as e�ect-graph G1. The

output of this mapping is shown in Figure 3.17.

The FX Mapper may choose to further parallelize G2 by exploiting functional

parallelism and transforming G2 into four new e�ect-plans (F1, G2a, G2b, and G2c).

This con�guration is shown in Figure 3.18. If no further parallelization is performed, this

con�guration is a nine processor implementation of the original e�ect-plan G that involves

two layers of parallelism. The �rst layer of parallelism exploits temporal parallelism as

e�ect-plan G was transformed into e�ect-plans T1, T2, G1, and G2. The second layer

of parallelism involved both spatial and functional parallelism. Transforming G1 into

S1, G1a, and G1b exploited spatial parallelism. Transforming G2 into F1, G2a, G2b,

and G2c exploited functional parallelism. Figure 3.19 shows the hierarchical relationships

between these e�ect-plans as a tree. Leaves of this tree represent actual implementations

of e�ect-plans that are assigned to processors. Interior nodes of this tree represent abstract

e�ect-plan interfaces exposed to e�ect-plans at the same level of the tree and higher.

A key feature of using the e�ect-plan representation as an abstraction is that it
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provides implementation independence between di�erent levels of the solution hierarchy.

For example, the implementation of G1 in the previous example that exploited spatial

parallelism could just as easily have used functional parallelism or a single processor im-

plementation. The interface exposed to T1 and T2 which coordinate the actions of G1 is

the same in all cases. In other words, any subtree of the solution hierarchy can be dynam-

ically recon�gured as long as the interface exposed at the root of the subtree remains the

same.

3.6 Control Issues

We have up to this point ignored how control messages are actually transmitted

and received. Organizing processes hierarchically and preserving the e�ect-plan abstrac-

tion between levels of this hierarchy raises several interesting control issues. This section

outlines some of these issues and develops a model and a set of requirements for our control

protocol. Our solution to these problems is described in depth in Chapter 7.

The central feature of PSVP's control model is an artifact of the e�ect-plan

abstraction. The control interface between coordinating mechanisms and underlying e�ect-

plan abstractions is the same interface exposed to the application controlling the e�ect.

The example shown in Figure 3.18 illustrates this fact. The interface between the control

element in T1 and G1 is the same as the interface between the controlling application and

G. From the point of view of G1, T1 is simply a controlling application. The underlying

implementation of G1, whether it is a single processor or parallelized implementation, is

unaware that its actions are being coordinated with those of another e�ect-plan. The

converse implication is that T1 is unaware of how G1 is actually implemented.

Given the control model, we can identify several requirements for how control
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information is distributed to and among the processes that implement an e�ect. First,

the number and location of processes that implement an e�ect-plan is unknown to the

controlling agents (i.e., the controlling application or mechanisms that coordinate tempo-

ral, spatial, and functional parallelism). Similarly, the number and location of controlling

agents is unknown to the processes that implement an e�ect-plan. Third, the reliability

requirements for di�erent control messages may vary. These requirements are explained

in greater detail in Chapter 7.

We previously identi�ed several advanced distributed system features and how

they might a�ect the design of PSVP even if they are not part of our basic resource model.

These services emphasized the need to minimize location dependent state. The control

requirements we have identi�ed further reinforce this idea. Because process relocation and

process restart are anticipated as possible advanced services, the e�ect state (e.g., current

values for parameters, etc.) needs to be recoverable. Thus, with these advanced services

in mind, we can add soft, recoverable control state to our set of requirements.

Unfortunately, traditional distributed control mechanisms like Remote Procedure

Call (RPC) are not well matched to the requirements of PSVP. RPC-like mechanisms do

not provide soft recoverable state and are location dependent. Chapter 7 describes a

control mechanism built on IP-Multicast that meets these requirements.

3.7 Evaluation Metrics

This section describes various evaluation metrics that are appropriate for measur-

ing PSVP performance. We evaluate system performance using two interrelated metrics:

latency and throughput. Several di�erent sources and types of latency are important to

PSVP performance. Per frame processing latency refers to the amount of time required

to produce an output frame from a set of input frames. Processing latency can be further

subdivided into latency incurred transforming video data from one representation into

another and time spent actually manipulating video data. Bu�ering and communication

latency refers to time spent managing the transfer of video data. Throughput will most

often be measured in terms of frames per second along with the average size of frames

in a stream (i.e., average bitrate). Frames per second is a more meaningful measure of

throughput because many actions of the system occur on a per frame basis and the per-

ceived quality of a video stream is highly correlated to this measure. Although jitter is
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an important measure of system performance for many multimedia applications, we are

unconcerned with jitter in our system. Jitter can be e�ectively managed either at the

�nal destination of a video stream or as a last conditioning process between PSVP and

the stream recipients.

Latency and throughput are interrelated in di�erent ways within PSVP. Di�erent

parallelization techniques provide di�erent relationships between these two measures. We

will show later in this dissertation that temporal parallelism does nothing to reduce per

frame processing latency and achieves increased throughput by overlapping the processing

latencies of di�erent frames. In this case, there is little to no relationship between process-

ing latency and throughput. Instead, we discover a relationship between bu�ering latency

and throughput that can be managed to provide a trade-o� between these two measures.

In contrast, spatial parallelism will be shown to achieve higher throughput by reducing per

frame processing latency. The design of mechanisms used to exploit temporal and spatial

parallelism needs to reect how these di�erent latency sources contribute to performance.

3.8 Summary

This chapter described the design of PSVP and introduced the e�ect-plan rep-

resentation. The design is based on a generic model of distributed computation and com-

munication resources. Although the requirements for computing resources are simple, we

recognize the possibility that advanced distributed programming services may be available

that may inuence the design. Some of these services and their inuence on the PSVP

design were identi�ed. One important feature of the resource model is the assumption

that su�cient local network bandwidth exists for all data and control communication.

This assumption is made because the research issues explored by this dissertation are

focused on dealing with the computational complexity of creating video e�ects on stream-

ing compressed packet video. Another feature of the resource model is the availability of

IP-Multicast. All computers in the system must be able to communicate with each other

using IP-Multicast. The Berkeley NOW is one realization of such an environment.

The software components of PSVP (i.e., FX Compiler, FX Mapper, and FX Pro-

cessor) were described. An e�ect-graph abstraction is produced by the FX Compiler to

represent video e�ects. The FX Mapper constructs an e�ect-plan from this representation

and manipulates it to incorporate di�erent types of parallelism. The three types of paral-
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lelism were explained. We presented examples of how these three types of parallelism are

represented as a collection of coordinated e�ect-plans. The problems faced when build-

ing the media-speci�c mechanisms required for each type of parallelism are the primary

research issues of this dissertation. These issues and our solutions to these problems are

detailed in the following chapters.

The e�ect-plan representation maps easily onto a set of hierarchically organized

processors. A primary function of the FX Mapper is to build this hierarchy and gen-

erate implementations for the e�ect-plans. The hierarchical organization of e�ect-plans

creates an interesting set of requirements for communicating control information. These

requirements were identi�ed and described briey. We showed that traditional RPC-like

mechanisms are ill-suited for these requirements. Another contribution of this disserta-

tion is an IP-Multicast based control protocol that meets these requirements. This control

protocol is described in detail in Chapter 7.
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Chapter 4

Implementation

This chapter describes details about the FX Mapper and the FX Processor.

The FX Mapper determines how the video e�ect is parallelized and generates the code

executed on the E�ects Processors to produce the video e�ect. The FX Mapper generates

executable e�ect implementations from an e�ect-plan. The FX Processor provides the

execution environment for an e�ect implementation. This component is built using the

MASH multimedia application toolkit and the Dali image and video manipulation library.

Section 4.1 describes the FX Processor. Speci�cally, we describe the split-object

model used by MASH, the object types we developed to implement e�ects, and the video

manipulation operators provided by Dali. Section 4.2 presents an example that illustrates

the execution model for producing output frames. The FX Mapper is described in Sec-

tion 4.3. This section describes the objects used to represent parameters, video bu�ers,

and operators, and the process by which an e�ect implementation is generated from an

e�ect-plan. Section 4.4 summarizes the chapter.

4.1 FX Processor

Parallelizing an e�ect results in a set of coordinated processes. Each process

implements a portion of the e�ect. Some processes implement mechanisms to control

and coordinate other processes. The \FX Processor" is the environment in which these

processes execute. An understanding of this implementation is necessary to explain how

speci�c mechanisms for exploiting di�erent types of parallelism operate. This section

describes the FX Processor implementation. The FX Processor was built using the MASH
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multimedia toolkit and the Dali image manipulation library. Each of these components

and how they are used within the FX Processor are described in the following subsections.

4.1.1 MASH

The FX Processor was built using the MASH toolkit and interpreter. The MASH

interpreter is a Tcl/Tk interpreter that has been extended with a C++/OTcl split-object

architecture and an extensible set of objects within that architecture for managing and

manipulating multimedia data. The split-object architecture allows developers to imple-

ment objects that have both a C++ and an OTcl component. C++ methods of an object

can be made accessible through the OTcl interface and OTcl methods can be invoked from

within C++ methods. This architecture allows developers to prototype objects quickly

and to extend the MASH interpreter easily with these new abstractions. Objects in the

MASH toolkit are designed to be thin, composable, and reusable. We chose the MASH

toolkit for PSVP development to leverage existing objects for managing RTP and RTCP

sessions, decoding and encoding video streams, and exploiting IP-Multicast. The MASH

toolkit and its split-object architecture is described more completely elsewhere [41].

We extended the MASH toolkit with a new DaliSubprogram class which is a base

class for encapsulating e�ect processing implementations. The DaliSubprogram class is

written entirely in OTcl. A speci�c e�ect is implemented as a subclass. A particular

subclass is required to provide information about the number of inputs and their required

representation, the number and format of outputs produced, and the number and type of

each e�ect parameter. Methods in the DaliSubprogram base class use this information to

create and con�gure other MASH objects for participating in RTP and RTCP sessions,

decoding input, and encoding output video frames. Subclasses also implement a \trigger"

method that manipulates decoded input video in the speci�ed representation and produces

a representation of the output video for encoding and transmission. The trigger method

is described in more detail below. A separate PSVPControlAgent1 class was developed

to manage control communication. DaliSubprogram objects create PSVPControlAgent

objects to receive and send control information.

Figure 4.1 shows a block diagram of the MASH objects in FX Processor and

their relationship to each other. In the �gure, rectangles represent objects. Each object

1The actual name of the class within the PSVP code base is GraphComm. The more logical name

PSVPControlAgent is used in the dissertation text to improve readability and understanding.
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DaliSubprogram

Input video frame

Decodes video
packets.

Decoded video
data.

Encoded video
packets.

Manages RTP Session,
receives data packets.

VideoAgent Decoder VidRep

Manages control channel,
receives/transmits control messages.

appropriate method calls.
Messages translated into

Performance feedback,
and other messages.

Trigger method implements specific
effect graph. Input video processed

into output video using current parameter values.

representation.
Output video frame

packets.
Encodes video

Manages RTP Session,
transmits data packets.

VidRep Encoder VideoAgent

PSVPControlAgent

Parameter

Holds parameter value/info.

Parameter value updates.

representation.

Figure 4.1: FX Processor Object Block Diagram

is labeled with the name of its base class. A particular e�ect is implemented using the

appropriate subclasses of each object. This �gure shows only one input, output, and

parameter.

The DaliSubprogram trigger method is executed to produce an output frame from

a set of input frames. The trigger method can be invoked in one of several ways. First, an

\auto-trigger" can be associated with a particular input. An input auto-trigger invokes

the trigger method whenever a new frame is received for that input. Second, a \trigger"

command received through the PSVPControlAgent object can instruct the DaliSubpro-

gram object to invoke the trigger method on the last set of input frames received. Finally,

a variant of the trigger command called a \trigger vector" command can be used. A trigger

vector received through the PSVPControlAgent object provides a vector of timestamps

that indicates the expected timestamp value for each input. The DaliSubprogram object

invokes the trigger method when and if the appropriate input frames arrive. If the times-

tamp for a particular input is greater than the timestamp indicated in the trigger vector,

no action is taken and the trigger vector is canceled. If the timestamp for a particular

input is less than the timestamp indicated, invocation of the trigger method is delayed
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Dali Bu�er Type Description

ByteImage Each element is an 8-bit unsigned integer value.

BitImage Each element is 1-bit value.

SCImage Each element is a vector of 64 DCT coe�cients. This bu�er

is most commonly used to represent \semicompressed" data.

The 64 coe�cients are used to represent an 8x8 block of

video pixels.

VectorImage Each element is a vector of two signed integers. This image

type is generally used to represent motion vectors.

Table 4.1: Dali Bu�er Types

until the correct frame arrives.

Once the trigger method is invoked, the subclass implementation of the trigger

method produces an output frame from the inputs. The output frame is sent to the

appropriate encoder for transmission. The trigger method is written as an OTcl script

using Dali commands. The next subsection describes Dali and how it is used in PSVP.

4.1.2 Dali

Dali is a set of media representations and routines for media manipulation acces-

sible through a Tcl interface. Dali stores media data in bu�ers. Each bu�er is associated

with a string name that can be used to reference the bu�er within Tcl. Dali provides a

set of Tcl commands that manipulate these bu�ers in speci�c ways. In this subsection, we

will briey describe the di�erent types of Dali bu�ers available, the video frame represen-

tations we have built using these bu�ers, and give examples of how these representations

can be manipulated using Dali commands.

A Dali bu�er represents a rectangular array of elements. The type of the element

determines the bu�er type. Dali provides four image bu�er types. Table 4.1 lists these

bu�er types and briey describes each one. Each bu�er has an associated width and

height. Bu�ers may be virtual. Virtual bu�ers are subportions of another bu�er of the

same type. In the case of virtual bu�ers, each bu�er also has an associated x and y o�set

along with a width and height to specify the desired subportion. Virtual bu�ers share the

storage memory of the parent. Thus, altering the contents of a virtual bu�er also alters

the contents of the parent bu�er.
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Dali Command Description

byte new w h Creates a new ByteImage bu�er

with width w and height h. Re-

turns the name of the newly created

bu�er.

byte clip src x y w h Create a new virtual ByteImage

bu�er from src with o�sets x and

y and dimensions w x h.

byte add src1 scr2 dest Adds two ByteImage bu�ers (src1

and src2 ) together pixel by pixel

and puts results into the ByteImage

dest.

byte scalar mult src factor dest Multiplies each pixel in the ByteIm-

age src by the value of factor and

puts results into dest.

byte shrink 2x2 src dest Scales the bu�er src by a factor of 2

in both dimensions, putting results

into dest.

byte shrink 4x4 src dest Scales the bu�er src by a factor of 4

in both dimensions, putting results

into dest.

byte scale bilinear src dest new w new h Scales the ByteImage bu�er src to

�t within the dimensions new w x

new h. Results are places in dest.

sc scalar mult src factor dest Multiplies each coe�cient of each el-

ement in the SCImage src by factor

putting results in the SCImage dest.

sc add src1 src2 dest Adds two SCImages (src1 and src2 )

together and puts results in dest.

Table 4.2: Example Dali Commands
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Dali commands are used to create, manipulate, and destroy Dali bu�ers. Ta-

ble 4.2 lists and briey describes several Dali commands. This list is not comprehensive

and serves to provide examples of Dali commands. Dali commands are generally non-

destructive. In other words, the results of manipulating a bu�er are stored in a separate

bu�er without destroying the original bu�er. Dali is an extensible library so new com-

mands can be added.

Dali representations and commands are purposefully highly specialized. The

overall philosophy is to provide lean, fast functions and simple abstractions that can be

combined to produce general manipulations. For example, to scale a Dali byte image

(i.e., image bu�er of 8-bit elements) by a factor of 5, the special purpose Dali command

\byte shrink by 4x4" is �rst used and then the \byte scale bilinear" command is used to

further shrink the result by a factor of 1.25. The combined e�ect of the two commands is

to scale the original image by a factor of 5. Because the byte shrink by 4x4 command is

specialized to use simple shift and adds and the more complex byte scale bilinear is only

applied to an image 1/16 in size of the original, the combined operation executes very

quickly by taking advantage of specialized operations when possible.

PSVP uses Dali abstractions and commands to implement the complex abstrac-

tions and image operators represented in e�ect-plans. Two representations are primar-

ily used for video frames in PSVP. These representations are implemented as objects

in the MASH split-object architecture. The class names for these representations are

VidRep/Uncompressed and VidRep/Semicompressed. The VidRep/Uncompressed repre-

sentation is used for 24-bit, three plane video (i.e., one luminance and two chrominance

planes). The VidRep/Semicompressed representation is also used for 24-bit, three plane

video, but each plane is stored as a collection of DCT encoded 8x8 blocks. Both classes

are subclasses of a more general VidRep class. The methods and members of these repre-

sentations are described in Table 4.3.

4.2 Execution Example

This section steps through an example of how an e�ect is initialized and executed

within the FX Processor. The example will illustrate how the objects and representations

described above are used and their relationship to each other. The example highlights

characteristics of this execution environment that inuence the design and implementation
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Method/Member Description

w Width of video bu�er in pixels. This is the width of the

luminance plane. The chrominance planes may or may not

be subsampled.

h Height of video bu�er in pixels. This is the height of the

luminance plane. The chrominance planes may or may not

be subsampled.

true w Width of the whole video frame. The data represented by

the video representation may be a subportion of a larger

video frame. If this representation is not a subportion,

true w equals w.

true h Height of the whole video frame. The data represented by

the video representation may be a subportion of a larger

video frame. If this representation is not a subportion,

true h equals h.

h subsample Horizontal subsampling factor for the chrominance planes.

v subsample Vertical subsampling factor for the chrominance planes.

x X o�set of the video bu�er within the whole video frame if

this representation is a subportion.

y Y o�set of the video bu�er within the whole video frame if

this representation is a subportion.

ts RTP timestamp associated with this video data.

srcid RTP source id associated with this video data.

allocate() Allocates Dali bu�ers of the appropriate type and size to

store video data.

copy geometry() Given another video representation as a parameter, copy the

geometry (i.e., width, height, subsampling factors, etc.) of

the speci�ed video bu�er.

get lum name() Returns the name of the Dali bu�er storing the luminance

plane.

get cr name() Returns the name of the Dali bu�er storing the CR chromi-

nance plane.

get cb name() Returns the name of the Dali bu�er storing the CB chromi-

nance plane.

Table 4.3: VidRep Members and Methods
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of other parts of the system. In our example, a picture-in-picture e�ect is de�ned and

executed. This e�ect takes two video streams as inputs as well as several parameters

which govern how one stream is scaled and overlayed onto the other to produce a single

output stream.

When the FX Processor is started, the name of a DaliSubprogram subclass is

passed as a parameter to the process. In our example, suppose that the subclass is called

P-in-P Subprogram. This subclass is the embodiment of the e�ect-plan to be executed. A

separate, external process is responsible for creating this subclass de�nition. In our system

architecture, the FX Mapper is the responsible agent. The FX Mapper is described below

in Section 4.3. Because of the MASH split-object architecture, the subclass de�nition can

be entirely de�ned with OTcl. The most straightforward method for the FX Processor to

access the subclass de�nition is for it to be stored as an OTcl script �le on accessible disk

storage. The de�nition, however, can also be communicated to the FX Processor over a

network without storing it on disk. The subclass de�nition will generally be comprised of

two method de�nitions: the init method and the trigger method.

The FX Processor instantiates an instance of the subclass which automatically

invokes the init method. The init method is responsible for setting up inputs, outputs,

and parameters. Figure 4.2 shows a code listing for the P-in-P Subprogram init method.

This code listing has been simpli�ed to remove minor details not discussed in this example,

but still includes the essential required components. A list of input names is constructed

(line 3) and for each input name, the required video representation type is speci�ed (lines

7{11). Similarly, a list of output names is constructed (line 4) and for each output name,

the format of the output stream is speci�ed (line 14). A list of parameter names is also

constructed (line 5) and for each parameter, a parameter object of the appropriate type

is created and the domain and current value of the parameter is speci�ed (lines 18{32).

The FX Processor also creates an object to manage control information derived

from the class PSVPControlAgent. This object opens a communication channel for send-

ing and receiving control messages. Protocol and implementation details for control in-

formation are presented in Chapter 7. The source of these control messages are other

PSVP components (i.e., other FX Processes, FX Mapper, etc.) or applications using and

controlling the e�ect. In the init method of the P-in-P Subprogram class, the associated

communication object is informed of the e�ect structure (i.e., names and number of inputs,

outputs, and parameters) by invoking the setup method (line 35).
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1 P-in-P Subprogram instproc init fg f

2 $self instvar input id list output id list parameter id list

3 set input id list \in1 in2"

4 set output id list out

5 set parameter id list \xpos ypos scale"

6

7 $self instvar input info

8 set input info(in1,bu�ertype) Uncompressed

9 set input info(in1,bu�ername) [new VidRep/Uncompressed]

10 set input info(in2,bu�ertype) Uncompressed

11 set input inof(in2,bu�ertype) [new VidRep/Uncompressed]

12

13 $self instvar output info

14 set output info(out,format) JPEG

15 set output info(out,geometry) [list 0.0 0.0 1.0 1.0]

16 set output info(out,bu�ername) [new VidRep/Uncompressed]

17

18 $self instvar parameter info

19 set parameter info(xpos,pobj) [new RealParameter]

20 $parameter info(xpos,pobj) from 0.0

21 $parameter info(xpos,pobj) to 1.0

22 $parameter info(xpos,pobj) set 0.25

23

24 set parameter info(ypos,pobj) [new RealParameter]

25 $parameter info(ypos,pobj) from 0.0

26 $parameter info(ypos,pobj) to 1.0

27 $parameter info(ypos,pobj) set 0.25

28

29 set parameter info(scale,pobj) [new RealParameter]

30 $parameter info(scale,pobj) from 0.0

31 $parameter info(scale,pobj) to 1.0

32 $parameter info(scale,pobj) set 0.25

33

34 $self instvar comm obj

35 $comm obj setup

36 g

Figure 4.2: Picture-in-Picture Subprogram Init Method
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1 P-in-P Subprogram instproc trigger fg f

2 $self instvar input info output info parameter info

3 $self instvar old xpos old ypos old scale

4 $self instvar comm obj

5 $self instvar pip lum pip cr pip cb

6 $self instvar pip lum w pip lum h pip crcb w pip crcb h

7 $self instvar out frame

8

9 set xpos obj $parameter info(xpos,pobj)

10 set ypos obj $parameter info(ypos,pobj)

11 set scale obj $parameter info(scale,pobj)

12

13 set xpos [$xpos obj get]

14 set ypos [$ypos obj get];

15 set scale [$scale obj get];

16

17 set in frame1 $input info(in1,bu�ername)

18 set in frame2 $input info(in2,bu�ername)

19

20 if f[$out frame set w] != [$in frame1 set w] jj

21 [$out frame set h] != [$in frame1 set h]g f

22 $out frame copy geometry $in frame1;

23 $out frame allocate;

24 g

25

Figure 4.3: Picture-in-Picture Subprogram Trigger Method, Part 1
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26 if f$xpos != $old xpos jj $ypos != $old ypos jj $scale != $old scaleg f

27 set xval [expr [$in frame1 set w] * $xpos];

28 set yval [expr [$in frame1 set h] * $ypos];

29 set pip lum w [expr [$in frame2 set w] * $scale];

30 set pip lum h [expr [$in frame2 set h] * $scale];

31

32 set pip lum [byte clip [$out frame get lum name]

$xval $yval $pip w $pip h]

33

34 set xval [expr $xval / [$in frame1 set h subsample]];

35 set yval [expr $yval / [$in frame1 set v subsample]];

36 set pip crcb w [expr $pip lum w / [$in frame1 set h subsample]]

37 set pip crcb h [expr $pip lum h / [$in frame1 set v subsample]]

38

39 set pip cr [byte clip [$out frame get cr name]

$xval $yval $pip w $pip h]

40 set pip cb [byte clip [$out frame get cb name]

$xval $yval $pip w $pip h]

41 set old xpos $xpos; set old ypos $ypos; set old scale $scale

42 g

43

44 byte copy [$in frame1 get lum name] [$out frame get lum name]

45 byte copy [$in frame1 get cr name] [$out frame get cr name]

46 byte copy [$in frame1 get cb name] [$out frame get cb name]

47

48 byte scale bilinear [$in frame2 get lum name]

$pip lum $pip lum w $pip lum h

49 byte scale bilinear [$in frame2 get cr name]

$pip cr $pip crcb w $pip crcb h

50 byte scale bilinear [$in frame2 get cb name]

$pip cb $pip crcb w $pip crcb h

51

52 $out frame set ts [$inframe1 set ts]

53

54 $output info(out,encoder) recv $out frame

55

56 $comm obj send completion token

57 g

Figure 4.4: Picture-in-Picture Subprogram Trigger Method, Part 2
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Control messages are received to identify the streams to use as inputs and the

multicast session to use for outputs. These control messages invoke methods in the Dal-

iSubprogram base class of the P-in-P Subprogram object. These methods create and con-

�gure other MASH objects to receive and decode input video and encode and transmit

output video. Control messages that modify parameter values are translated into messages

for the appropriate parameter object created by the init method.

The trigger method is invoked as described above by a direct trigger, a trigger

vector command, or as a consequence of arriving input frames. The trigger method is

invoked without any arguments. The implementation of the trigger method is responsible

for manipulating the input video representations using the current parameter values to

produce an output video representation. The output video representation is sent to the

associated encoder for transmission. Finally, a \completion token" message is transmitted

in the control session. Figure 4.3 and Figure 4.4 show the code listing for the P-in-

P Subprogram trigger method.

The method begins by declaring all of the instance variables that will be ac-

cessed (lines 2{7). The current value for the three parameters xpos, ypos, and scale are

retrieved (lines 9{15). The names of the video representations holding the input frames

are retrieved (lines 17{18). These bu�ers were created during the init method and �lled

by the appropriate decoders as data arrived before the trigger method was called. The

current output frame bu�er is held in the instance variable \outframe." The geometry

of the output frame bu�er is checked against the geometry of the �rst input frame bu�er

(lines 20{21). If the size does not match, the output frame bu�er is reallocated (lines

22{23). The current parameter values are checked against the values used last (line 26).

If there is a mismatch, the parameter values are used to recalculate the picture-in-picture

region and virtual Dali bu�ers are created with the Dali command \byte clip" to access

this region in each plane of the output frame bu�er (lines 27{40). The three planes of

the �rst input frame bu�er are copied into the three planes of the output frame bu�er

using the Dali command \byte copy" (lines 44{46). The three planes of the second input

frame are scaled and copied into the picture-in-picture region using the Dali command

\byte scale bilinear" (lines 48-50). The output frame bu�er is timestamped according to

the timestamp of the �rst input (line 52) and sent to the associated encoder for transmis-

sion (line 54). Finally, the associated PSVPControlAgent control object is used to issue a

\completion token" into the control session which may be used by controlling agents as a
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form of performance feedback (line 56).

A key characteristic of the FX Processor execution environment is that the orig-

inal e�ect-plan representation of an e�ect is no longer present. The e�ect-plan is used

as input to the FX Mapper which then generates an implementation in the form of a

DaliSubprogram subclass. The FX Mapper is described next.

4.3 FX Mapper

The FX Mapper performs two tasks. First, it translates an e�ect-graph into an

e�ect-plan that exploits di�erent forms of parallelism. Second, it generates FX Processor

implementations for each portion of the e�ect-plan. The FX Mapper is written in OTcl.

This section describes the structures created and manipulated by the FX Mapper and the

process used to generate e�ect implementations.

The task of translating and generating a plan that exploits parallelism given

a simple e�ect-graph is currently a manual process. In Chapter 8, we discuss possible

directions for automating this process by incorporating a cost model to guide what forms

of parallelism are used.

E�ect-plans are expressed as XML documents conforming to a document type

de�nition designed to describe directed graphs. The XML form of an e�ect-plan consists

of \node" and \edge" elements. Each node element is typed as either an \operator,"

a \parameter," or a \video bu�er." An \edge" element encapsulates the relationships

between operators, parameters, and video bu�ers. The FX Mapper uses a Tcl-based

XML parsing package to read the e�ect-plan and create OTcl objects for each operator,

parameter, and video bu�er. These OTcl objects are maintained in a library that can

be extended to add new operators, parameter, and video bu�er types. These objects are

only part of the FX Mapper and are not part of an e�ect implementation. These objects

provide methods that generate code fragments which can be assembled into an e�ect

implementation. The result of parsing an XML e�ect-plan description is a single OTcl

object of the class E�ectPlan that encapsulates the individual objects for each operator,

parameter, and video bu�er. The E�ectPlan object implements methods for assembling

the e�ect implementation as well as writing an XML description of itself.
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Operator Type Description

UncompScalarMult Multiplies the pixel values of an uncompressed video bu�er

by some real scalar factor, and stores the results in an un-

compressed video bu�er.

UncompScalarAdd Adds a constant pixel value to each pixel of an uncompressed

video bu�er and stores the results in an uncompressed video

bu�er.

UncompAdd Adds two uncompressed video bu�ers together. The bu�ers

are assumed to be the same size.

SemicompScalarMult Multiplies the pixel values of a semicompressed video bu�er

by some real scalar factor and stores the results in a semi-

compressed video bu�er.

SemicompScalarAdd Adds a constant pixel value to each pixel of a semicom-

pressed video bu�er and stores the results in a semicom-

pressed video bu�er.

SemicompToUncomp Converts a semicompressed video bu�er into an uncom-

pressed video bu�er.

UncompToSemicomp Converts a uncompressed video bu�er into a semicompressed

video bu�er.

UncompA�neXform Applies an a�ne transformation to an uncompressed video

bu�er given the coe�cients of an a�ne transform matrix.

Stores the results of the transform in an uncompressed video

bu�er. The coe�cients are passed in as six separate real

parameters.

Table 4.4: Examples of Operator Types

4.3.1 Operators, Parameters, and Video Bu�ers

Operators represent manipulations to be performed on parameters and video

bu�ers. When the FX Mapper encounters an operator speci�ed in an XML e�ect-plan

description, the type of the operator is extracted from the element's \class" attribute,

an OTcl object with that type is instantiated, and the object is added to the E�ectPlan

object. Additional information is extracted from the XML element to associate this object

with other objects that represent the parameters and video bu�ers used by this operator.

Part of the operator de�nition is the type and local name of each required parameter and

video bu�ers. The types of these associated objects are checked at this point to ensure a

valid e�ect-plan has been created. Table 4.4 lists and describes a subset of operator types.

Similarly, objects representing parameters are created when XML node elements
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Parameter Type Description

Parameter Parameter base class.

The following attributes are available for all sub-

types:
name Logical name for parameter given

within XML description.

obj name Implementation variable that

holds name of parameter object.

init val Initial value of parameter.

Int Integer parameter.

Attributes:
from Lower bound for value of param-

eter.

to Upper bound for value of param-

eter.

Real Real parameter.

Attributes:
from Lower bound for value of param-

eter.

to Upper bound for value of param-

eter.

Text Textual string parameter.

ExclusiveChoice Parameter takes one of a set of prede�ned string

values.

Attributes:

domain List of possible string values.

Color Parameter is a list of 3 integer values between 0

and 255 which encodes a YCrCb color value. At-

tributes:

init val Initial value of parameter.

VidRep/Uncompressed Uncompressed video bu�er. Consists of 3 planes,

each represented by a Dali ByteImage.

VidRep/Semicompressed DCT Compressed video bu�er. Consists of 3

planes, each represented by a Dali SCImage.

Table 4.5: Parameter Types and Attributes
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are encountered that are one of several parameter types. Table 4.5 lists and describes the

currently implemented parameter types. Video bu�ers are treated as a special subclass

of parameters. Currently, two video bu�er types exists corresponding to the two image

bu�er types available in Dali. These are also described in Table 4.5. Parameters and

video bu�ers can be either internal or external. Internal parameters and video bu�ers are

associated with exactly one operator that is responsible for maintaining its value and one

or more operators that use the parameter or video bu�er as an input. In other words,

each internal parameter or video bu�er is the output of exactly one operator and the

input to one or more operators. External parameters and video bu�ers are either e�ect

inputs or outputs. External parameters and video bu�ers that have no \parent" operator

(i.e., they not produced by an operator in the graph) are provided as inputs to the e�ect.

External parameters and video bu�ers that are not consumed by an operator are outputs

of the e�ect. The FX Mapper classi�es each parameter and video bu�er as internal or

external after the e�ect-graph has been parsed. External parameters and video bu�ers are

further classi�ed as either e�ect inputs or e�ect outputs. A parameter or video bu�er is

not allowed to be both an e�ect input and an e�ect output at the same time.

A properly formed graph execution plan will have the following properties:

� The inputs and outputs of all operator objects will be associated with a properly

typed parameter or video bu�er object.

� Each internal parameter or video bu�er will have exactly one \parent" operator

which produces it and one or more operators that use it as an input.

� A path exists through the \edges" connecting operators, parameters, and video

bu�ers from each external input to at least one external output.

Once the graph is parsed by the FX Mapper and the appropriate objects created

to represent the operators, parameters, and video bu�ers, the FX Mapper generates an

e�ect implementation.

4.3.2 Code Generation

Currently, the FX Mapper constructs an e�ect implementation by generating

a new subclass of the DaliSubprogram class and overriding the init and trigger methods.

The implementation of parameter and operator objects in the FX Mapper provides speci�c
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1 $self instvar parameter id list

2 $self instvar parameter info

3

4 lappend parameter id list %%self.name%%

5 set parameter info(%%self.name%%,pobj) [new IntParameter]

6 $parameter info(%%self.name%%,pobj) from %%self.from%%

7 $parameter info(%%self.name%%,pobj) to %%self.to%%

8 $parameter info(%%self.name%%,pboj) set %%self.init val%%

9 $self instvar %%self.uid%% obj

10 set %%self.uid%% obj $parameter info(%%self.name%%,pobj)

Figure 4.5: Initialization Code Fragment For An Integer Parameter

hooks (i.e., method calls) that produce code fragments for parameter- and operator-speci�c

tasks (e.g., initialization, execution, etc.). The gen init and gen trigger methods of the

E�ectPlan class construct the init and trigger methods for the new subclass by invoking

the code generating methods of each parameter and operator and then assembling the

results.

To generate the body of the init method, the gen input init method for each

input parameter object is invoked. This method is responsible for generating the ini-

tialization code for the input parameter. Similarly, the gen output init method for each

output parameter object is invoked to generate the initialization code for each output pa-

rameter, the gen internal init method for each internal parameter object is invoked, and

the gen op init method for each operator is invoked. To generate the body of the trigger

method, the gen trigger method for each operator is invoked. When generating the trigger

method, the code generation method for the operators are invoked in dependency order.

In other words, code generation for an operator is done before any other operator that may

depend on its results. The acyclic structure of e�ect-plans assures that this dependency

order is valid.

These code generation methods are implemented by manipulating pre-written

code fragments. The code fragments contain references to attributes such as parameter

names, parameter object names, and unique variable pre�xes. These attributes are re-

solved when the XML description of the e�ect-plan is parsed and the E�ectPlan object

constructed.
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As an example, Figure 4.5 contains the initialization code fragment for an integer

parameter. In this example, \%%self.name%%" is a reference to the name of the parameter

as given in the XML description. Similarly, references are also made to the \from," \to,"

and \init val" attributes. Each of these attribute references is replaced at the time of code

generation with their proper values. The syntax for an attribute reference is \%%<obj

reference>.<attribute name>%%." By convention, the \<obj reference>" is set to \self"

to retrieve attributes for the associated parameter or operator. If an operator needs to

access attributes of one of its inputs or outputs, the attribute reference uses the local

name of the input or output instead of \self." The input and output names are resolved

to retrieve the actual names of the objects representing those inputs and outputs. These

objects are asked to generate code expressions for the required attribute values and the

result is substituted for the attribute reference.

Figure 4.6 shows the execution code fragment for the \Uncompressed Scalar Mul-

tiply" operator. This operator multiplies the pixel values of an uncompressed video frame

by a scalar parameter value. This code fragment is used to construct the trigger method

for an e�ect implementation that uses this operator. In lines 1{2, instance variables used

by the code fragment are declared. The %%self.uid%% attribute provides a unique string

that can be used to ensure that constructed variable names will not conict with variable

names used by other parameters or operators. The %%input.obj name%% and %%out-

put.obj name%% attributes resolve to the object names used to represent the input and

output video bu�ers for this operator. The values for these attribute references are pro-

vided by the FX Mapper objects instantiated to represent these video bu�ers. Lines 4{11

compares the input geometry to the last known geometry, recon�guring and allocating the

output video bu�er if necessary. Lines 13{15 retrieve the name of the object that main-

tains the factor by which to multiply each pixel value. Lines 17{23 retrieves the names of

the Dali bu�ers used to represent each plane of the input and output frames. Again the

%%self.uid%% attribute is used to construct unique variable names. Finally, lines 25{27

invoke the appropriate Dali commands that multiply the pixel values of each input plane

and places the result in the appropriate output plane.
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1 $self instvar %%self.uid%% info

2 $self instvar %%input.obj name%% %%output.obj name%%

3

4 if f[%%input.obj name%% set w] != $%%self.uid%% info(old w) k

5 [%%input.obj name%% set h] != $%%self.uid%% info(old h)g f

6 %%output.obj name%% copy geometry %%input.obj name%%

7 %%output.obj name%% allocate

8

9 set %%self.uid%% info(old w) [%%input.obj name%% set w]

10 set %%self.uid%% info(old h) [%%input.obj name%% set h]

11 g

12

13 $self instvar %%factor.obj name%%

14

15 set %%self.uid%% factor value [$%%factor.obj name%% get];

16

17 set %%self.uid%% in lum [%%input.obj name%% get lum name]

18 set %%self.uid%% in cr [%%input.obj name%% get cr name]

19 set %%self.uid%% in cb [%%input.obj name%% get cb name]

20

21 set %%self.uid%% out lum [%%output.obj name%% get lum name]

22 set %%self.uid%% out cr [%%output.obj name%% get cr name]

23 set %%self.uid%% out cb [%%output.obj name%% get cb name]

24

25 byte scalar mult %%self.uid%% in lum

%%self.uid%% out lum %%self.uid%% factor

26 byte scalar mult %%self.uid%% in cr

%%self.uid%% out cr %%self.uid%% factor

27 byte scalar mult %%self.uid%% in cb

%%self.uid%% out cb %%self.uid%% factor

Figure 4.6: Execution Code Fragment For The Uncompressed Scalar Multiply Operator
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4.4 Summary

This chapter provided implementation details about the FX Processor and the

FX Mapper. The FX Processor provides an execution environment for a speci�c e�ect

implementation. We described the objects built within the MASH toolkit that provide this

execution environment. The execution model within the FX Processor is trigger based.

The entire e�ect implementation is encapsulated as a subtype of the DaliSubprogram

class. The subtype is expected to provide a trigger method that will produce output

frames given a set of input frames. Existing MASH objects are used to decode input video

streams into the appropriate input frame representations. Similarly, MASH objects for

encoding output frames and transmitting the resulting video packets are invoked as part

of the trigger method. A separate object is used to manage control information including

updates to parameter values and trigger commands. The control protocol for managing

these actions is described more fully in Chapter 7.

The FX Mapper provides a framework for generating an e�ect implementation

from an e�ect-plan. E�ect-plans are represented using an XML description. The FX

Mapper parses the XML description and creates OTcl objects for each parameter, video

bu�er, and operator in the e�ect-plan. The input and output relationships between these

components are resolved. Each operator, parameter, and video bu�er provides methods

to generate code for di�erent situations (e.g., initialization, execution, etc.). Code is gen-

erated by manipulating pre-written code fragments and replacing attribute place holders

with their actual resolved values. The current implementation of the FX Mapper produces

a straight-forward e�ect implementation. More sophisticated compiler techniques can be

used to improve code generation. We intend to use the FX Mapper for future work that

will associate a cost model with each operator. The cost models can be used to automati-

cally search for e�ective parallelizations. Currently, the use of parallelization is manually

con�gured.

The complete PSVP source code is available as part of the MASH toolkit and

can be obtained from http://mash.cs.berkeley.edu.
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Chapter 5

Temporal Parallelism

This chapter describes the mechanisms and algorithms developed to support

temporal parallelism. We begin by characterizing the basic tasks these mechanisms must

perform. Two central questions are raised. First, how is video input distributed to partic-

ipating processes? Second, how are processed frames interleaved into a coherent output

video stream? Each of these questions is explored in turn. We map out the design space

for possible solutions and motivate the design of our mechanisms. Lastly, the performance

of the algorithms we developed are evaluated through a series of experiments.

The main contributions of this chapter are:

� We show that a decentralized solution to the input distribution problem is untenable.

� Given certain constraints, a centralized solution to the input distribution problem

can perform as well as any decentralized solution.

� A token-based feedback mechanism is described that can be used for highly adaptive

load balancing.

� The design of the interleaving mechanism is constrained by RTP.

� An algorithm is described for managing the interleaving bu�er that allows control

over the tradeo� between latency and frame rate.

Section 5.1 discusses the mechanics of temporal parallelism abstractly. A key observation

introduced in this section is the fact that per frame processing latency is not reduced by

temporal parallelism. Section 5.2 describes the mechanisms for distributing input data.
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Figure 5.1: Idealized Model for Temporal Parallelism

The problem of uncoordinated packet loss is described. This problem in conjunction with

limitations of RTP motivate our centralized approach to input distribution. Section 5.3

deals with the converse problem of constructing a coherent output stream. We show

that the constraints of RTP mandate a centralized solution and describe the adaptive

bu�er management algorithm. Performance measurements for the temporal parallelism

mechanisms are given in Section 5.4. And, Section 5.5 summarizes the chapter.

5.1 Temporal Parallelism Mechanics

Before describing the speci�c mechanisms and algorithms developed for PSVP,

we review the mechanics behind temporal parallelism and identify the major challenges.

We �rst illustrate how temporal parallelism works in an idealized model. We identify the

central requirements for enabling temporal parallelism and describe additional challenges

that arise from less than ideal behavior.

Temporal parallelism works by overlapping the computational latency associated

with processing di�erent frames of a video sequence. The nature of temporal parallelism

is fairly simple. Given a set of n entities coordinated to exploit temporal parallelism,

each entity is assigned a di�erent video frame as they arrive. In our case, the entities

are implementations of an e�ect-plan which may involve one or more processes. For ease

of reference, we will refer to e�ect-plan implementations as a \process" even though, in

reality, more than one process may be involved. When a process is �nished operating
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on a frame, it is eligible to receive another. This description serves as a good model for

temporal parallelism even though it is somewhat simpli�ed.

Figure 5.1 illustrates this ideal model. This �gure shows six parallel timelines.

The topmost timeline shows video frame arrivals. Each frame is represented by a shaded

rectangle labeled with a frame number. The next four timelines represent the actions of

four processes performing a video e�ect that are coordinated using temporal parallelism.

Each frame is assigned to one of the four processes after it arrives. The processing time

for each frame is shown as a shaded rectangle labeled with the number of the frame being

processed. The �nal timeline at the bottom of the �gure represents the processed output

video sequence produced by the four processes. Each output frame is labeled with its

corresponding input frame number.

The idealized model captures the basic mechanics behind temporal parallelism.

While \Process 1" is operating on \Frame 1," \Process 2," \Process 3," and \Process

4" operate on \Frame 2," \Frame 3," and \Frame 4" respectively. In this idealized case,

\Processor 1" �nishes just in time to begin on \Frame 5." One important feature of

temporal parallelism is that the per frame computational latency remains the same for all

frames. This fact is seen in Figure 5.1 as the di�erence in time between when a frame

enters and exits the system. For example, \Frame 1" enters at time t=0 and exits at time

t=5. The di�erence between exit and entry is 5 units. Similarly, \Frame 2" enters at

time t=1 and exits at t=6, a di�erence of 5 units. The presence of the other processors

does nothing to decrease the processing time of a particular frame. Temporal parallelism

reduces total computation time by overlapping the processing times of di�erent frames.

A second key feature of temporal parallelism is that the mechanisms involved

to exploit temporal parallelism have nothing to do with the actual video e�ect being

implemented. Given any e�ect, we can treat it as a black box with respect to the temporal

parallelism mechanisms. The distribution of processing latencies of the black box is the

important property. In Figure 5.1, processing latency is uniform and constant for every

frame (i.e., 4 time units). Given a uniform and constant processing latency, the assignment

of frames to processors and the interleaving of processed frames are simpli�ed. In reality,

the processing latencies will not be uniform or constant.

The processing time for di�erent frames may vary for a number of reasons. First,

the processing time may vary as available CPU resources vary. Since the PSVP resource

model does not assume computational resources are used exclusively for video e�ects pro-
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Figure 5.2: Idealized Model for Temporal Parallelism with Varied Processing Times

cessing, the actions of other software processes executing on the same computing resource

will a�ect performance of that processor on a frame-by-frame basis. A di�erence in pro-

cessing latency may also be a result of di�erences among processors. Since computing

resources may be heterogenous (i.e., not all of the same type or speed), the processing

latency of frames assigned to one processor may be di�erent than those frames assigned to

a slower processor. The nature of the e�ect may make processing time dependent on the

content of the video frame itself. For example, chroma-key is a video e�ect in which all

pixels of a particular color in a video frame are replaced by the corresponding pixels of a

video frame from a di�erent stream. The processing time for a chroma-key e�ect depends

on the number of pixels replaced.

Similarly, the processing time may be related to the values of the e�ect's pa-

rameters. As those parameter values change over time, processing time for di�erent video

frames may also change. For example, processing time for a transition e�ect in which one

stream replaces another by sliding into view from some direction will vary over time as

the amount of the new stream that is visible increases.

Figure 5.2 is a less idealized version of Figure 5.1. In this �gure, di�erent frames

are associated with di�erent processing times. Speci�cally, \Process 3" is faster than the

other processes, and \Process 2" spends more time than usual to process \Frame 2." This

�gure illustrates more clearly the issues involved when dealing with the two primary tasks

required to support temporal parallelism: 1) distributing input data and 2) interleaving

processed results.
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The �rst challenge we face when trying to exploit temporal parallelism is dis-

tributing the appropriate data to each participating process. We refer to this task as the

selector function. In Section 5.2 we compare centralized and decentralized solutions to the

selector function and explain why a decentralized solution is untenable. Another aspect

of this task is load balancing among participants. Figure 5.2 illustrates why a simple

round-robin approach is insu�cient. \Frame 6" arrives at time t=6.5 and is assigned to

\Process 2" in a round-robin fashion, but due to di�erences in processing time among

frames, assigning the frame to \Process 3" would have been a better choice.

The mirror challenge to input distribution is output interleaving. In Section 5.3

we present our solution and show that its design is constrained by the details of RTP.

These constraints are a clear example of how a protocol designed speci�cally for end-to-

end transmission complicates the task of manipulation. An adaptive bu�er management

algorithm is described that allows control over the tradeo� between output frame rate and

latency. Figure 5.2 illustrates this tradeo�. In the example, \Frame 3" is completed before

\Frame 2" and must be bu�ered for 1.5 time units before being transmitted as part of the

output stream. Similarly, \Frame 6" and \Frame 7" are produced before \Frame 8" and

must be bu�ered. Some applications need to control how much bu�ering is tolerated and

the adaptability of the bu�ering mechanisms.

5.2 Selector Function

This section describes the PSVP temporal selector mechanisms used to distribute

input data to coordinated e�ect-plan implementations. We explore the design space of

possible solutions primarily comparing and contrasting decentralized and centralized ap-

proaches. We show that decentralized solutions are too complex to be practical and that

centralized solutions are almost always as e�ective. Part of this discussion will involve a

detailed examination of the RTP header structure and the information it provides.

One possible approach to the input distribution problem is to allow each process

to receive all input data and produce only the output frames for which it is responsible.

The reader is reminded that the term process refers to an e�ect-plan implementation

which may in reality be implemented by more than one software process. The distributed

approach to the selector function relies on using IP-Multicast to transport video streams.

Because we expect computational resources to be relatively local to each other, the video
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Figure 5.3: An RTP Header

data for the input streams can be delivered e�ciently to all of the processes involved.

Unfortunately, the distributed approach is too complex for several reasons. The

primary reason is that RTP does not provide the appropriate information about interframe

relationships. To understand the impact of this constraint, we need to explain the type of

information provided in an RTP header.

All RTP packets contain four key pieces of information:

1. the synchronization source id (SSRC)

2. the media timestamp (MTS)

3. the packet sequence number (PSN)

4. and the frame marker bit (FMB).

Figure 5.3 shows where this information is located in an RTP header. The MTS is sampled

from a payload speci�c clock, which for most video sources runs at 90kHz. For most

payload types each frame is fragmented into one or more packets because a frame does

not �t into a typical RTP packet which is between 1kB and 1.5 kB. For example, MJPEG

frames are typically 1kB to 8kB in length for CIF images (i.e., 352x288). All packets for a

particular frame have the same MTS. Note that the MTS is not a frame number because

the media clock runs at a faster rate than the video stream frame rate. The di�erence

between the MTS values of two frames provides a measure of instantaneous frame rate.

The PSN is unique to a particular RTP packet. If packets are delivered in order, PSN

values will increase monotonically. The FMB has a payload speci�c meaning. For example,

the FMB indicates the last packet for an MJPEG encoded frame. The SSRC uniquely

identi�es the sending source.
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A decentralized algorithm for deciding whether or not a particular frame should

be processed by a particular processor given only the MTS and PSN is di�cult to construct.

The algorithm cannot assume that the di�erence between two consecutive MTS values is

constant because the frame rate may change. Frame rate changes may occur to keep the

average bitrate constant or due to uctuations in the encoding process. Even if we do not

expect the frame rate to change often, small variations in timing are common. Another

approach might be based on counting frames. For example, processing every nth frame

where n is the number of processes. Although there is a small start-up cost for making

sure that no two processes operate on the same set of frames, this approach works well

in the absence of lost packets. Unfortunately, when the frame rate of the input stream

exceeds the performance of a given process, packets are lost and the scheme breaks down.

We expect packet loss to occur as system bu�ers overow with incoming video

data because the e�ect computation must be time consuming and complex enough to war-

rant using parallelism in the �rst place. Furthermore, we can expect packet loss patterns

experienced by di�erent processes to be non-uniform. In other words, the packets missed

by one process are not likely to be the packets missed by another process because the

expected source of packet loss is due to bu�er overow at the receiver and not within

the network. Non-uniform loss patterns make any decentralized approach based on frame

counting extremely complex because processes can not be sure that a received frame was

received by all of its peers. Control information must be constantly exchanged between

processors in order for any decentralized scheme to be stable which adds to algorithm

complexity.

Figure 5.4 shows the result of an experiment designed to illustrate the non-
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uniform packet loss e�ect. Four single process implementations of a rotation e�ect were

executed on UltraSPARC-1 processors locally connected with 10 Mb/s switched Ethernet.

Each process independently received the same multicast MJPEG input stream. The input

stream was a 130 kb/s stream transmitting 4 frames per second (i.e., approximately 4

kB/frame). Each processor was able to produce a processed output stream at about 1.2

frames per second. Figure 5.4 shows for each processor the received input stream packet

sequence numbers. Gaps in the black horizontal bars indicate lost packets due to input

bu�er overow. We see that the loss patterns experienced by the four processors are

highly variable and uncorrelated. In this experiment, given that at least one of the four

processors experienced a packet loss, the other 3 processes experienced the same packet

loss only 22.8% of the time.

A second shortcoming of the distributed approach is the complexity of load bal-

ancing among participating processors. Round robin approaches are insu�cient because

process speeds may be heterogenous and transient di�erences in frame processing latencies

will be encountered. We illustrated the problem with round robin assignment schemes in

Figure 5.2. Instead, each process would have to monitor the performance of its peers to

determine what share of the input frames to process. This monitoring and control is not

a major obstacle since some sort of feedback scheme will be necessary to achieve load bal-

ance. The problem in the decentralized case is that the implementation independence of

peer video e�ect-plans described in Section 3.5 is compromised. Control elements speci�c

to managing the decentralized selector function would be required as part of each process.

The peer processes must be aware of each other. Dynamically adding or removing peer

processes becomes complex because each peer would require a consistent understanding

of how many peers exists at any given time for the decentralized mechanism to operate

correctly.

Synchronization among input streams is also di�cult. If the e�ect involves more

than one input stream (e.g., cross-dissolve, picture-in-picture, etc.), the distributed selector

function must identify the correct frames from one sequence, and select the appropriately

synchronized frame(s) from the other input stream(s). Each of the peer processes must

do this operation in the same way to produce consistent results. This task is complicated

further by the fact that the input streams may be arriving at di�erent frame rates.

At a fundamental level the distributed approach does not scale. The speed-up

achieved by the decentralized approach is dominated by the time required to read frames
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that are not processed. For example, if 100 processes are processing a particular input

stream using temporal parallelism, each process will read 100 frames of data from the

network to produce the 1 frame for which it is responsible. The time spent reading the

other 99 frames is wasted.

The alternative to a distributed selector function is a centralized mechanism.

A centralized mechanism is a dedicated process that determines how input data is dis-

tributed to the peer processes. A centralized selector constructs data streams for each

of the processes that contains the appropriate input data and coordinates the processes

by generating control messages. By placing the management of temporal parallelism in

a separate process, we overcome the shortcomings and complexities encountered with the

decentralized approach.

The centralized mechanism acts as a ow control device to ensure that processes

are not overwhelmed by input data. We may still encounter packet loss due to bu�er

overow at the selector function, but these losses can be dealt with consistently. We no

longer have to worry about coordinating the actions of the selector to the actions of an-

other process which may experience a di�erent loss pattern. Load balancing is simpli�ed

because the centralized selector function can receive and account for performance feedback

from each process. The individual processes themselves no longer need to be aware of their

peers. All management of temporal parallelism is contained within this separate process,

maintaining the independence of the individual e�ect-plan implementations. Synchroniza-

tion between multiple input streams remains an issue, but at least information about the

assignment of frames to processes is known and coordinated by a single selector function.

The centralized approach has two disadvantages. First, the overhead of reading

packets from the network, deciding to which process to send them, and then writing

the packets back to the network introduces latency. Second, the performance of the

selector function may determine the maximum frame rate that can be achieved. The

latency penalty is mitigated by the mechanics of temporal parallelism itself. Recall from

the discussion in Section 5.1, temporal parallelism does nothing to reduce the per frame

computational latency. The signi�cance of the additional selector function latency is only

relative to the computational latency. We can construct an argument that a centralized

selector function will not become more of a bottleneck than any decentralized solution if

we can show that the selection decision can be made on a packet-by-packet basis.

As packets arrive, the selector function must forward them to the appropriate
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set of processes that will require the data as input. Additionally, control messages may

be generated that instruct a particular process to generate a particular output frame. If

the selector function can perform these duties based on information held entirely within

the data packet, a bottleneck forms only if the packet arrival rate is greater than the rate

at which the selector operates. Because any decentralized solution will have to make the

same decision on a per-packet basis, a bottleneck will form as part of any decentralized

algorithm as well.

The key to this argument is the assertion that the selector function can operate

on a per-packet basis. In other words, each packet of video data contains all of the

information needed to determine which processes will require the data in that packet.

For video formats like MJPEG that do not have temporal dependencies between frames,

this information is available in the RTP header (see Figure 5.3). The MTS provides the

required information. Video formats with temporal dependencies between frames (e.g.,

MPEG), on the other hand, have complex interframe dependencies. Information in the

format-speci�c header included in every packet exposes these dependencies and can be

used by the selector function. In general, the selector can e�ciently route packets to the

appropriate processes if the temporal dependencies among frames is exposed within the

format speci�c header of each RTP packet.

Some video formats, however, have temporal dependencies that can not be deter-

mined through header information. H.261, for example, has temporal dependencies that

extend across many frames that are not exposed by information in the format speci�c

header. For these formats, each packet must be delivered to all processes. IP-Multicast

allows the selector to distribute this data e�ciently. A major drawback of sending all data

to all processors is the inability to use the selector function as a ow control agent. Even

though the selector function can construct control messages to coordinate which processes

are responsible for speci�c output frames, each process will be required to receive and pro-

cess all input data packets. If the input data rate is large enough to result in input bu�er

overow, non-uniform packet loss among participating processes will create inconsistent

results.

The input distribution task is also responsible for load balancing among par-

ticipating processes. Load balancing requires feedback from the processes. We want to

make the feedback as general as possible since each process is acting as an independent

e�ect-plan implementation. The fact that these processes are being coordinated to exploit
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temporal parallelism should not be exposed. The load balancing mechanism should allow

the number of coordinated processes to be increased and decreased dynamically.

Figure 5.5 shows an example of a PSVP e�ect-graph representation using tem-

poral parallelism. The temporal selector function is implemented by the components in

\E�ect-Plan T1." Within this e�ect-plan, the control element labeled \TS" controls the

components labeled \Temporal Demux." It participates in the control sessions for the

encapsulating e�ect-plan (not illustrated in the �gure) as well as the control sessions for

each of the participating processes which are represented in the �gure as e�ect-plans G1

and G2. In the rest of this chapter, we will use the term selector to refer to this control

element.

The selector translates control information pertaining to inputs for the partic-

ipating processes. For each input, a media speci�c subtype of the \Temporal Demux"

object is created to manage data dissemination. Media speci�c temporal dependencies are

resolved in these components. The feedback channel implemented in PSVP is a special

control message that we refer to as a \completion token." A completion token is trans-

mitted into the e�ect-graph control channel whenever an output frame is produced. The

selector uses these tokens to manage which process is responsible for the next frame and

ow control.

The selector maintains a queue of process identi�ers. Each identi�er corresponds

to an e�ect-plan implementation coordinated by the selector. Responsibility for each

output frame is given to the process whose identi�er is at the head of the queue and the

identi�er is then removed from the queue. Whenever a completion token is received from

a particular process, the corresponding identi�er is added to the head of the queue. The

selector also maintains a round-robin list of process identi�ers. If the queue is empty when

responsibility for an output frame must be assigned, the next process in the round-robin

list is used.

The selector monitors the aggregate rate of completion tokens received from all

processes and uses this information to moderate the frame rate of the input streams. The

goal is to match the input frame rate to a rate slightly greater than the completion token

rate. By doing so, the selector function controls the ow of frames to the participating

processes and reduces packet loss due to bu�er overow. If the aggregate capacity of

the participating processes is below the input frame rate, the selector can manage which

frames are dropped in a format-speci�c manner.
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The returning completion tokens act as a clock for the selector to assign frames

to particular processes. In the absence of completion tokens either from loss or from the

portion of the input frame rate that exceeds the aggregate completion token rate, frames

are assigned in a round-robin order. An extended absence of completion tokens from a

particular process is used to mark a process as non-responsive. The identi�ers of non-

responsive processes are removed from both the feedback queue and the round-robin list.

Processes falsely marked as non-responsive can correct the situation by reregistering with

the selector as a participating process.

5.3 Interleaver Function

The second major challenge that arises from temporal parallelism is that the

output frames of participating processes must be interleaved into a coherent video stream.

This section describes the design and implementation of the interleaver function. One

aspect of the interleaving task is a tradeo� between frame rate and bu�ering latency. At

the heart of the interleaver mechanism is an adaptive bu�er management algorithm that

allows this tradeo� to be controlled by the user or application.

The interleaver function must be centralized because of constraints imposed by

RTP. Since packets of the interleaved output stream share the same SSRC, packets that

originate from di�erent source addresses (i.e., processors) will appear as an SSRC conict

to applications that receive the merged output stream. Even if the SSRC conict was re-

solved, PSN's must increase monotonically which requires each processor to communicate

the number of packets used for each frame accurately and quickly. Finally, given variable

processing latencies for each frame, the interleaver must adaptively bu�er packets and re-

order them. A decentralized approach to this problem su�ers from the same disadvantages

as the decentralized selector function.

In Figure 5.5 the temporal interleaver is implemented by e�ect-plan \T2". The

\TI" control element is responsible for translating control messages pertaining to out-

puts for the participating processes and the \Temporal MUX" component implements the

algorithm described below.

The interleaving problem is similar to the problem of smoothly displaying video

frames solved by video playback applications. The interleaving problem is di�erent in

that the variability of frame arrival is likely to be more severe and smoothness is not the
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primary goal. The primary goal when constructing the interleaver is to minimize bu�ering

latency while avoiding frame drops. In the simplest and best case when frames arrive from

the processors in order, packets can be forwarded by the interleaver without any bu�ering

delay. If frames arrive out of order, the interleaver must bu�er packets for reordering. A

frame that arrives after a subsequent frame has already been forwarded must be dropped

to preserve the RTP semantics of the MTS. The challenge is to adjust dynamically the

bu�ering required to avoid frame drops while minimizing bu�ering latency.

Similar to the smooth playback problem, the key to solving the interleaving

problem is to construct a mapping between the MTS of arriving frames and a local clock

to schedule frame transmission. This mapping incorporates the idea of a playout delay.

The playout delay is the delay incurred (i.e., the expected latency) if the frame arrives

as expected. Thus, a frame can be delayed up to this amount and still be properly

transmitted. If a frame arrives earlier than its scheduled playout time, it is bu�ered.

Our design for an interleaver function uses late frames to signal when the playout

delay should be increased and frames that arrive early but close to their expected trans-

mission time to signal when the playout delay should be decreased. A tunable parameter

governs how aggressively the interleaver reacts to either situation. A second parameter

governs how close an early frame must be to its expected transmission time to avoid being

bu�ered. How these adjustments are made is described after establishing de�nitions for

the parameters.

The following de�nitions are used to describe the interleaver function:

M(f) : MTS of frame f .

T (f) : arrival time of frame f . This time is expressed in the same units as M(f) (i.e.,

sampled from a 90kHz clock for RTP video streams).

o�set : mapping between MTS and local time (i.e., playout delay).

�est : estimated MTS di�erence between consecutive frames.

Q : priority queue of frames waiting for transmission ordered by their MTS.

h : next frame to be sent in Q (i.e., head of Q).

� : latency bias parameter ranged in [0; 1].
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� : closeness parameter (> 0).

l : last frame transmitted.

The value M(f) + o�set is the scheduled time for transmitting frame f . In the

ideal case, when all frames arrive in order and equally spaced (i.e., no jitter), o�set is set

so that M(f) + o�set = T (f). In other words, o�set is set so that frames are transmitted

at the same time as they arrive at the interleaver. In this ideal situation, no bu�ering

latency is incurred. The �rst frame to arrive at the interleaver is used to set o�set so it

is transmitted immediately. For all subsequent frames the following algorithm is used to

adjust the playout delay o�set :

recv(f)

1 /* Function that receives frame f */

2 if (M(f) < M(l))

3 /* Frame is late. We must drop it. */

4 /* Adjust o�set to increase bu�ering. */

5 o�set = � � o�set + (1� �) � (T (f)�M(f))

6 else if (M(f) + o�set < T (f))

7 /* Frame is late, but still valid */

8 transmit(f)

9 else if (M(f) + o�set � T (f) < � ��est)

10 /* Frame is early, but close enough */

11 /* to its expected transmission time. */

12 /* Transmit and decrease bu�ering. */

13 transmit(f)

14 o�set = (1� �) � o�set + � � (T (f)�M(f))

15 else

16 /* Frame is too early, add to Q */

17 queue-insert(f)

18

19 if (h 6= f)

20 /* Try to process head of queue if */

21 /* di�erent from this frame. */
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22 g =remove-queue-head()

23 recv(g)

24 set-timer(h)

end recv

The nested conditional statements on lines 2, 6, 9, and 15 classify a frame into

the following categories:

Late The frame is too late to be transmitted (line 2).

Late but valid The frame is late (i.e., its scheduled transmission time has already passed),

but can still be transmitted since no subsequent frame has yet been sent (line 6).

Early but expected The frame is early (i.e., its scheduled transmission time is in the

future), but the di�erence between its arrival time and its expected transmission

time is within some closeness factor of the estimated interframe di�erence (line 9).

Early The frame is too early and must be bu�ered (line 14).

If the frame is late, the value of o�set is adjusted to increase bu�ering to avoid

future frame drops. The value � determines how much adjustment is made. A value of �

near 0 makes large adjustments and a value of � near 1 makes small adjustments. If the

frame is late but valid, the frame is immediately transmitted and no adjustment is made

to o�set .

If the frame is early, the parameters � and �est determine whether or not the

frame is acceptably close to its expected transmission time. Although not shown in the

pseudo-code, the value of �est is a moving average estimate of the MTS di�erence of

consecutive frames. This estimate is updated every time a frame is transmitted. The value

of � determines when early frames are considered as opportunities to reduce bu�ering. If

the frame is acceptably close to its expected transmission time, it is sent immediately

and o�set is adjusted to reducing bu�ering. In this case, a value of � near 0 makes small

adjustments and a value of � near 1 makes large adjustments. If the frame is too early, the

frame is inserted into the queue. The set-timer function on line 24 schedules transmission

for the current head of the queue.
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Figure 5.6: Interleaver Bu�ering Latency vs. �, � = 1:0

Every time a frame is processed, the head of the queue is reprocessed to determine

if it can be successfully sent (lines 19-23). This check is especially important if the frame

at the head of the queue is acceptably close to its expected transmission time. Sending

frames slightly early is how the algorithm makes adjustments to reduce bu�ering latency.

The value chosen for � determines the trade-o� between reducing latency and

avoiding frame drops. Consider the two extreme cases. When � = 0, an adjustment to

o�set is only made when a late frame is encountered. The adjustment will ensure that any

future frame that is delayed by up to the same amount of time will not be dropped. In

this case the playout delay is set to accommodate the longest delay thus far seen. When

� = 1, no adjustment is made for late frames. The value of o�set is set to send the next

expected frame as soon as possible. In this case, very little bu�ering is done to avoid frame

drops.

We measured interleaver performance by constructing an experiment to show how

the parameters � and � control the trade-o� between interleaver bu�er latency and frame

drops. Sequences of RTP packets representing processed video frames were constructed

with varying degrees of reordering. The sequences were constructed by simulating an
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e�ect that required on average 360 milliseconds with standard deviations varying from

that average on a stream of frames arriving at 30 frames per second. Sequences generated

with a small standard deviation (e.g., 1 ms) produce frames that are regularly spaced every

33 ms with very few reorderings. Sequences generated with a large standard deviation (e.g.,

120 ms) produce frames irregularly spaced and with many reorderings.

Figure 5.6 shows the average interleaving bu�er latency incurred versus di�erent

� values with � = 1:0 for sequences generated with standard deviations varying from 1

to 120 milliseconds. As expected, when � is set to small values (i.e., near 0.0), bu�ering

latency is incurred to accommodate out of order frames. When � is set to large values

(i.e., near 1.0), bu�ering latency is reduced and out of order frames are not tolerated.

Because the algorithm is adaptive, the amount of bu�ering is dependent on the variability

of the frame sequence. When the frame sequence shows little variability (i.e., frames are

rarely out of order and regularly spaced) the algorithm incurs little or no bu�ering latency

regardless of the value of �. When the frame sequence is highly variable, the range of

bu�er latency incurred as a function of � increases accordingly.

Figure 5.7 shows the frame drop percentage versus di�erent � values with � = 1:0

for the same sequences shown in Figure 5.6. In this graph we see the percentage of frames

dropped as a result of limited bu�ering increases with � and is adaptive to the variability

of the frame sequence. The tradeo� between bu�ering and frame drops is shown more

clearly in Figure 5.8. In this graph, the latency and frame drop percentage for the most

variable sequence (sd = 120ms) are shown together.

Figure 5.9 and Figure 5.10 show the e�ect of varying �. The � parameter controls

how aggressively the algorithm tries to \catch up" by limiting how much earlier a frame

can be transmitted relative to its expected transmission time. Larger values of � cause

the algorithm to reduce bu�ering latency more aggressively when possible (i.e., when

frames seem to be arriving regularly). These graphs show the result of varying � with the

most variable frame sequence (sd = 120). As expected Figure 5.9 shows that larger, more

aggressive values of � reduce average bu�ering latency for all values of �. Correspondingly,

Figure 5.10 shows that the reduction of average bu�ering latency comes at the cost of

increased frame drop percentages. Intuitively, we can think of � as controlling the trade-

o� between bu�ering latency and frame drops and � controlling the shape of that trade-o�.

In practice, applications are most likely to adjust � and � in one of two ways.

Applications that are less interactive and can a�ord larger bu�ering latencies will use �
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Figure 5.11: Achieved Frame Rate for 590 kb/s MJPEG Video with Temporal Parallelism

values near 0 with low (i.e., less than 1.0) � values to prevent the algorithm from catching

up with bu�ered data too aggressively. Applications that are more interactive will opt for

higher frame loss rates and set � to values near 1 and use aggressively set � values (i.e.,

greater than 1.0).

5.4 Temporal Mechanism Performance

This section presents performance measurements for the temporal mechanisms in

the current PSVP implementation. The measurements were taken by creating a \dummy"

e�ect task that simulated e�ect processing tasks with di�erent per frame processing laten-

cies. In each case, frames from an input stream are received, decoded, held for a speci�ed

amount of time, encoded, and retransmitted as a \processed" output stream. The experi-

ments were conducted on the Berkeley-NOW using UltraSPARC-1 workstations connected

by a 10 Mb/s switch Ethernet network.

Figures 5.11, 5.12, 5.13, and 5.14 show the results of processing MJPEG streams

of varying bitrates arriving at 30 frames per second. All video streams were CIF-sized

(352x288) images and bitrate was varied by increasing and decreasing quality. Processing
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Figure 5.12: Achieved Frame Rate for 900 kb/s MJPEG Video with Temporal Parallelism

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

A
ch

ie
ve

 F
ra

m
e 

R
at

e

Number of Processes

0 ms
25 ms
50 ms
75 ms

100 ms
150 ms
200 ms
250 ms
500 ms

Figure 5.13: Achieved Frame Rate for 1.2 Mb/s MJPEG Video with Temporal Parallelism



99

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

A
ch

ie
ve

 F
ra

m
e 

R
at

e

Number of Processes

0 ms
25 ms
50 ms
75 ms

100 ms
150 ms
200 ms
250 ms
500 ms

Figure 5.14: Achieved Frame Rate for 1.5 Mb/s MJPEG Video with Temporal Parallelism

latencies were varied from 0 to 500 milliseconds. The graphs show a nearly linear in-

crease in performance as additional processors are added for all cases which indicates that

the temporal mechanisms are highly scalable for MJPEG streams. The selector mecha-

nism rate control feedback loop, however, creates a small proportion of loss that prevents

the system from achieving a full 30 frames per second output stream even when ample

computing resources are available. To place the performance of the mechanisms into a

practical context, we have found that a cross-dissolve e�ect operating on two CIF-sized

MJPEG video streams of medium quality (i.e., 1 Mb/s) requires between 6 to 8 participat-

ing processes using temporal parallelism to achieve 30 frames per second on the Berkeley

NOW.

Figures 5.15, 5.16, 5.17, and 5.18 show the results of processing H.261 CIF-

sized streams of varying bitrates arriving at 30 frames per second. Processing latencies

were varied from 0 to 500 milliseconds. Again, we see nearly perfect linear increases in

performance as additional processors are added. The increase in performance is not as

smooth using H.261 as with MJPEG due to the temporal dependencies in H.261 data that

requires all packets to be distributed to all processors.
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Figure 5.17: Achieved Frame Rate for 750 kb/s H.261 Video with Temporal Parallelism
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5.5 Summary

This chapter described the PSVP mechanisms developed to exploit temporal par-

allelism. Two problems were addressed: distributing input data and interleaving processed

results. An exploration of the design space for the input distribution problem revealed se-

vere complexities with a decentralized design. An intuitive argument was constructed for

why a centralized selector function should perform as well as any decentralized method.

One advantage of the centralized design is the ability to make load balancing and rate

control decisions for all participating processes while preserving their independence. In

other words, processes involved in exploiting temporal parallelism need not be aware of

each other. A simple token-based feedback mechanism for rate control was implemented

as part of the selector function.

The design of the interleaver was necessarily constrained by the media transport

protocol RTP. The interleaver function involves a trade-o� between bu�ering latency and

frame drops due to misordered data. We described a bu�er management algorithm that

provides control over how this trade-o� is managed and presented measurements showing

this trade-o� for a variety of di�erent conditions. Finally, performance measurements were

presented that show that the temporal mechanisms are highly scalable.
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Chapter 6

Spatial Parallelism

This chapter describes the mechanisms developed to support spatial parallelism.

Spatial parallelism uses several processes to compute di�erent regions of the resulting

output stream. For example, one process may compute the left half of the output frame

while another process computes the right half. In the context of PSVP, spatial parallelism

is speci�ed by constructing an e�ect-plan for each subregion and instantiating mechanisms

to coordinate these e�ect-graphs and recombine the resulting output into a valid output

video stream.

Spatial parallelism improves e�ects processing performance by reducing the per

frame processing latency. As more processes are used, performance improves up to some

limit. Figure 6.1 shows an idealized model for processing frames using spatial parallelism

with one, two, and four processes. The output frame rate is increased when adding more

processes because the per frame processing latency is reduced. In other words, the time

required for a process to produce its share of the output is proportional to the size of the

assigned subregion. In contrast, the processing latency for any speci�c frame is constant

for temporal parallelism regardless of the number of processes involved. The primary

advantage of spatial parallelism is the reduction in per frame processing latency. Given

this advantage, the main design goal of mechanisms developed to exploit spatial parallelism

must be to preserve this advantage.

The idealized model for spatial parallelism, however, can not be realized in prac-

tice for several reasons. Variations in process performance lead to ine�ciencies since the

time required to process a frame is constrained by the slowest participating process. More-

over, the processing task itself is usually not perfectly subdividable. A certain amount
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of per frame overhead is incurred by each process that is independent of the size of the

assigned subregion. In addition, some e�ects have processing times that are content de-

pendent. For example, a titling e�ect which overlays text on top of a video stream only

a�ects pixels in the area where the title is placed. If this area falls entirely within the

subregion of one process, the processing latencies among participating processes will be

unbalanced. In some cases, the most e�ective method for dealing with these complexities

is to avoid spatial parallelism altogether.

When the e�ect subdivides e�ectively and processes are fairly homogenous in

performance, two basic problems must be solved to apply spatial parallelism: 1) how is

video data distributed from input streams to participating processes, and 2) how are the

resulting streams recombined into a valid output video stream? These challenges require

an understanding of the di�culties of extracting speci�c regions of a video frame from a

compressed representation. We will show that most compressed packet video formats are

ill-suited for representing subregions of a video stream.

The main contributions of this chapter are:

� We explore the design possibilities for distributing input video and show why we

chose a decentralized solution.

� A new video representation and RTP payload format designed speci�cally to be used

as an intermediate representation is described.

� Results from experiments measuring system performance using spatial parallelism

are reported.

� A hybrid temporal-spatial con�guration that overcomes bottlenecks encountered

when using spatial parallelism is is described.

Section 6.1 deals with the challenge of distributing input video streams to par-

ticipating processes. Section 6.2 explains why a new intermediate video representation is

required for results that need to be recombined into an output video stream. Section 6.3

describes our this new representation. Measurements of system performance using spatial

parallelism are reported in Section 6.4. Finally, Section 6.5 summarizes the chapter.
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6.1 Input Distribution

Distributing the input video to the participating processes depends on the com-

putation to be implemented and the format of the input video streams. For some e�ects,

computation of an output subregion requires access to the directly corresponding subre-

gions of the input streams. For example, when performing a cross-dissolve between two

input video sources, any subregion of the output only requires the corresponding subre-

gions of the two input streams. Other e�ects, however, have more complex relationships

between input and output regions.

An a�ne transformation (e.g., scale, rotation, translation, etc.) may require

any portion of the input video frame to compute a particular subregion of the output.

Figure 6.2 shows input and output frames of a rotation e�ect. The output frame is divided

into four subregions labeledO1, O2, O3, andO4. The corresponding input regions required

to compute these subregions are labeled I1, I2, I3, and I4 on the image of the input frame.

Figure 6.3 shows an example of picture-in-picture, which is a combination of scaling and

translation. In this example, the O2 subregion requires the entire frame of the input frame

B while the other three output subregions do not require any input from the frame.

The relationship between inputs and outputs in these kinds of e�ects are gener-

ally captured by user-speci�ed parameters (e.g., angle of rotation, center of rotation, or

scaling factor). These parameters may vary in time. As the parameters vary in time, the

corresponding input region for an output region will vary in time as well. Even if the

required region of the input video is easily computed, the input video format may not

lend itself to the simple extraction of that region. Three compression techniques that are

particularly problematic are DC prediction, di�erential encoding, and entropy encoding.

DC prediction is a technique widely employed in video formats based on the

Discrete Cosine Transform (DCT) including M-JPEG, MPEG-1, MPEG-2, H.261, H.263,

and DV. In these formats, each plane of video data is dissected into 8x8 blocks. The

blocks are ordered in some format speci�c fashion. Each block is transformed using the

DCT. The result of the transform is a set of 64 coe�cients. The �rst, and most important,

coe�cient is called the \DC" coe�cient. The remaining coe�cients are called the \AC"

coe�cients. DC prediction, which is employed by all of these formats, encodes only the

di�erence between the DC coe�cient of a block and the DC coe�cient value of the previous

block. The �rst block is encoded without di�erencing. To properly decode a particular
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block, all DC coe�cient di�erences between the �rst block and the block of interest must

be decoded. Thus, even if a process can easily calculate the required subregion of the

input frame, DC prediction may require it to decode unnecessary portions of the image.

Di�erential encoding is a technique employed by formats that exploit interframe

similarities for compression. Formats that use this technique encode the di�erence between

an 8x8 block and an 8x8 reference block from a previous frame. Conditional replenishment

is a variant of this technique that only encodes blocks that have signi�cantly changed from

the previous frame. MPEG-1, MPEG-2, H.261, and H.263 are among the formats that

employ this technique. The reference block used as a predictive basis for the encoded

block may not be in the same position. MPEG video streams, for example, use motion

vectors that may require the value of pixels outside the subregion of interest. If the

region of interest changes due to varying e�ect parameters (i.e., angle of rotation, position

of translation, etc.), the new subregion of interest may reference blocks not previously

required. The conditional replenishment scheme widely used by Intra-H.261 is especially

troublesome in this case because blocks of video that are not changing are only transmitted

intermittently.

The most di�cult technique to accommodate is entropy encoding. Unfortunately,

every video compression format uses this technique in one form or another. Entropy en-

coding is the use of variable length codes to represent a set of symbols that occur with

di�erent expected frequencies. Hu�man codes are a well-known example of entropy en-

coding. DCT-based video formats use entropy encoding to represent the AC coe�cients of

each block. Some formats also use entropy encoding for the DC di�erential values. Because

entropy encoding uses variable length codes, the encoded information is not byte-aligned.

Because forcing byte-alignment works directly against the advantage of this technique,

blocks of transformed and entropy encoded video data are typically packed together with-

out regard to byte-alignment. To access the data for a particular block of video, the entire

sequence of entropy encoded blocks that precede it must be decoded. Thus, if the subre-

gion of interest included the last encoded block, the entire input frame must be decoded.

Some video formats provide restart markers in the encoded stream which de�ne searchable

points within the entropy encoded sequence of blocks where the state of the decoder is

well known. The use of restart markers, however, is rare.

One possible approach to the problem of distributing input frame data to partici-

pating processes in light of these di�culties is to translate the input video into an interme-
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diate format that facilitates extracting only the necessary regions. Once transcoded, only

the required subregions of the intermediate video stream are transmitted to each process.

We reject this approach for several reasons.

The task of maintaining a mapping between output subregion and required in-

put subregion must be performed by the transcoder conditioning the input data. This

mapping can be complex and is e�ect speci�c. Additionally, the mapping is often based

on e�ect parameter values that vary in time which creates additional synchronization re-

quirements between the transcoder and the participating processes. We want the spatial

parallelism mechanisms to be as generic as possible. Often the input regions required to

produce di�erent output subregions overlap. Figure 6.2 shows an example when this might

occur. In these cases, the transcoder must transmit duplicate portions of the input frame

to di�erent processes. If the mapping between input and output subregions is complex

enough, the transcoder may end up transmitting the entire input frame to all processes.

Finally, although the transcoding process can be overlapped with the e�ect processing of

the previous set of inputs, some overhead for transmitting and receiving the transcoded

representation remains.

Our approach to this problem is to have each process receive and decode each of

the input video streams in its entirety. This approach simpli�es the input decoding process

at the expense of decoding unnecessary input regions and replicating decoding e�ort at

the participating processes. We believe these costs are outweighed by the advantage of

not having to maintain the e�ect speci�c relationship between outputs and inputs within

the mechanisms to support spatial parallelism. The problems of time varying regions

of interest in the presence of conditional replenishment schemes and motion vectors are

avoided since each process has access to the complete input video stream.

Figure 6.4 shows an example of a PSVP e�ect-plan using spatial parallelism. Note

that the participating processes (i.e., the e�ect-plans labeled \G1" and \G2") receive their

inputs directly. Unlike temporal parallelism, these inputs are not mediated or translated

by a spatial parallelism mechanism. They are transmitted directly to the participating

processes.
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6.2 Output Reconstruction

Reconstructing the output from the results produced by each participating pro-

cess requires sending the partial results to a central location to be stitched into a valid

output video stream. The RTP constraints which forced a centralized solution for the

temporal interleaver described in Chapter 5 also require a centralized solution here. Even

without these constraints, current standards for compressed packet video do not support

independently encoded subregions.

The format of the intermediate results produced by the participating processes

impacts the work required to reconstruct the output frame. Traditional formats are poorly

suited to this task. Each subregion must specify its own geometry (i.e., width and height)

as well as the relationship of the subregion to the geometry of the whole frame (i.e., vertical

and horizontal o�set). M-JPEG, H.263, H.261, and MPEG do not have mechanisms to

communicate this information. Extending RTP payload formats for these video formats

to include this information is possible, but it makes the new payload syntax incompatible

with existing software which reduces the advantage of using a standard format.

We developed a new format speci�cally designed for the task of reconstructing

whole frames from subregions. This new format is used to communicate subregion re-

sults from the participating processes to the process that will reconstruct the frame and

transcode it into the target output format. RTP is used as the transport protocol through-

out our system so we have de�ned a new payload type for this intermediate format.

Three issues were addressed when designing the intermediate format:

1. Should compression be used? If so, how much and in what form?

2. How will subregions be packetized?

3. What subregion geometries will be allowed? How will they be speci�ed?

The �rst question concerns compression. Because the intermediate format is not

the output target format, any compression used at this stage may have to be undone

at the �nal transcoding stage. Unfortunately, raw formats are large. Table 6.1 shows

the size of a single frame of uncompressed video for various region sizes. Each frame is

represented by an 8-bit luminance plane and two subsampled chrominance planes (i.e., two

chrominance pixels for every four luminance pixels). Also shown are the corresponding

bit rates required at 30 frames per second.
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Region Size Bitrate @ 30 fps

Dimensions (kB) (Mb/s)

8x8 0.1 0.02

80x60 7.2 1.70

160x120 28.8 6.90

320x240 115.2 27.60

640x480 460.8 110.60

1280x720 1400.0 331.80

Table 6.1: Uncompressed Video Sizes and Bitrates

Exploiting spatial parallelism will make the most sense as frame sizes grow and

the portion of computation that can be e�ectively parallelized is large. Using an un-

compressed intermediate format limits the applicability of spatial parallelism by quickly

exhausting network resources. The problem is exacerbated by the fact that all intermediate

results have to go to one place for reconstruction and transcoding.

We use a simple DCT block-based compression scheme. There are several advan-

tages to this approach. First, DCT is used by the most widely used compression schemes

(e.g., M-JPEG, H.263, and MPEG). Thus, in the �nal transcoding stage, the DCT coe�-

cients can be used directly. Second, if the intermediate results must be rate limited due to

network resource constraints, a DCT-based solution provides a convenient representation

to throw away data that is perceptually less signi�cant (i.e., high frequency coe�cients).

The second design issue relates to how we deal with packetization. Even though

the intermediate format will be used to describe subregions of a larger frame, more than

one RTP packet may be required to transmit the data for the subregion. The principal

of \application level framing" upon which RTP is built mandates that each RTP packet

should be processable independently of any other packet [14]. This principle led to two

design decisions. First, the entire subframe geometry and its relationship to the larger

geometry of the original frame must be speci�ed in each and every packet. Second, the

coding granularity must be small enough to �ll packets e�ciently. The decision to use a

DCT-based compression scheme naturally lends itself to using 8x8 blocks of pixels as the

smallest unit of coding.

The third design issue concerns subregion geometries. Decisions made when

dealing with the previous two issues constrain our options. The use of DCT block-based
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compression implies that subregion geometries must be rectilinear and in multiples of

the base 8x8 block size. The necessity of describing full geometry information in every

packet makes hierarchical geometry cumbersome. We decided to allow only one level of

subgeometry.

6.3 Format Details

This section describes the intermediate format we developed and points out key

features that facilitate the reconstruction of output frames from subregions. The new

format is called the SemiCompressed format (SC).

The following assumptions are made about the subregion video data coded into

the SC format:

1. The video data consists of three planes: a luminance plane (Y) and two chrominance

planes (Cr, Cb).

2. The width and height of the Y plane are multiples of 8.

3. The Cr and Cb planes are possibly subsampled.

4. If the Cr and Cb planes are subsampled, the subsampled width and height are still

multiples of 8 and both planes are subsampled to the same degree.

The SC format supports the speci�cation of any subregion which is rectilinear

along 8x8 block boundaries. The last assumption stated above may restrict the subregion

geometry to courser block boundaries since the subregion dimensions must be multiples

of the subsampling factor as well. For example, if the chrominance planes are subsampled

by a factor of 2 horizontally and not subsampled at all vertically, subregion widths must

be multiples of 16 while subregion heights may be multiples of 8.

A subregion is described by one or more SC packets. Figure 6.5 shows the

components of each SC packet. Each packet is composed of an RTP header followed by

an SC header and the description of one or more 8x8 blocks of pixels as DCT coe�cients.

Figures 6.6 and 6.7 show the �elds in the RTP and SC headers. Reviewing the RTP

header, the ags �eld is 8 bits wide, the frame marker bit is a single bit, the type �eld is

7 bits wide, and the sequence number is 16 bits wide.
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Figure 6.5: SC Packet Format
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Synchronization Source ID

TypeFlags

Figure 6.6: RTP Header
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First Block Address (cont’d)

16 Bits Wide

Width
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True Width
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Horizontal Offset
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Hor. Subsample Ver. Subsample

First Block Address

Figure 6.7: SC Header

The marker bit in the RTP header is set when the SC packet is the last packet of

a sequence of packets describing the contents of the subregion for a particular timestamp.

SC packet decoders should not depend on this bit being set because the last packet may

be lost. The decoder can detect when all available SC packets for a subregion have been

received by noticing a change in the timestamp. The type �eld identi�es the rest of the

packet as being in the SC format.

The SC header consists of 9 �elds:

width The width of the subregion in pixels.

height The height of the subregion in pixels.

true width The width of the original frame in pixels.

true height The height of the original frame in pixels.

horizontal o�set The horizontal o�set of the subregion in pixels.

vertical o�set The vertical o�set of the subregion in pixels.

horizontal subsample The horizontal subsampling factor of the chrominance planes.

vertical subsample The vertical subsampling factor of the chrominance planes.

�rst block address The address of the �rst block of pixels described in this packet.
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Figure 6.8: Block Addressing

Each 8x8 block of pixels is given a \block address" that uniquely determines

both the position and plane of the pixel values. The address is calculated relative to the

original parent geometry by enumerating the 8x8 blocks in row-order starting with the

upper left block of the Y-plane and continuing with the Cr- and Cb-planes, respectively.

Figure 6.8 shows this addressing scheme for a frame 64 pixels wide and 64 pixels tall with

4:2:0 chrominance subsampling (i.e., subsampled by 2 in both dimensions).

The format of a block encoding is shown in Figure 6.9. Each block is made up

of a DC coe�cient, zero or more AC coe�cients, and a block address increment. The

coe�cients have 12 bit precision and are unscaled. The DC coe�cient is coded with 16

bits. Each AC coe�cient is coded with either 16 or 32 bits depending on the number of

zero coe�cients that precede it. The block address increment determines the address of

the next block described in this packet. It is coded in either 16 or 32 bits depending on

its value.

The AC coe�cients are encoded in row-major order using run length encoding to

avoid coding coe�cients with a value of zero. Each AC coe�cient is encoded along with
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(16 or 32 bits)

Block Address Increment
(16 or 32 bits)

DC Coefficient
(16 bits)

AC Run Length and Cofficient
(16 or 32 bits)

AC Run Length and Cofficient

Figure 6.9: Block Encoding

the number of zero coe�cients that precede it (i.e., the run length). If the run length is

less than 15 (the most common case), 16 bits are used. The top 4 bits encode the run

length and the next 12 bits encode the coe�cient value. If the run length is greater than

15, the run length is encoded in 16 bits with the top 6 bits set to an escape code and

the next 10 bits encoding the run length. Following the escaped run length are 16 bits

indicating the coe�cient value.

The block address increment indicates that no more AC coe�cients are encoded

for the current block and determines the block address of the next block described in this

packet by encoding the di�erence between the block address of the next block and the

current block address. If this di�erence is less than 1023, the block address increment can

be encoded into 16 bits. If greater than 1023, the block address increment is encoded into

32 bits. In either case, the �rst 6 bits are set to one of 2 escape codes indicating the end

of the AC coe�cients for the current block and determining the number of bits (10 or 26)

used for the block address increment. The description of a subregion does not have to

describe every block in the subregion. And, the order of the blocks is not strictly speci�ed.

The SC format has several key features. First, if network constraints demand

that each processor rate limit the resulting SC packet stream, several techniques are easily

applicable. Small coe�cients that may be quantized to zero by the output coding process
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can be discarded. High frequency AC coe�cients can be discarded to reduce the number

of coe�cients encoded in each block. And, conditional replenishment can be applied by

not coding blocks that have not changed since last they were last transmitted.

Second, by avoiding entropy encoding the block coe�cients we simplify recon-

struction and transcoding. If entropy coding was used in SC, it would require decoding

before translation into the output format. In any case, entropy encoding is not likely to

be e�ective with SC because the coe�cients are not quantized. Full precision coe�cients

are necessary to prevent quality degradation. The absence of entropy coding allows the

components of an SC packet (i.e., block address increments and coe�cient values) to be

byte aligned which simpli�es and streamlines reconstruction and transcoding.

Third, reconstruction of the original frame can be separated into two stages:

transforming SC packet streams describing subregions into a single SC packet stream that

describes the larger parent geometry and transcoding this packet stream into the desired

output format. Since the block addressing scheme used is relative to the original frame

geometry and is independent of the subregion geometry, packets from several di�erent

sources describing di�erent subregions can be easily transformed into what appears to be

a single stream of SC packets that describe the larger, original geometry. This new stream

of SC packets can then be sent to a separate transcoder process that produces the desired

output frame. This transformation simply requires changes to the width and height �elds

of each SC packet to be equal to the true width and true height �elds.

6.3.1 Format Measurements

The SC format is designed to trade storage space e�ciency for processing e�-

ciency. This section compares the size of the SC format to M-JPEG. The performance of

the SC encoder and decoder is also reported. The performance of the SC encoders and

decoders is of interest because the cost of getting into and out of this intermediate format

is included in the cost of using spatial parallelism.

6.3.2 SC Format Size

Figure 6.10 shows a scatter plot of the size of over 50,000 frames in the SC

format compared to the size of the original M-JPEG frames. The x-coordinate of these

points is the number of bytes used on average to encode an 8x8 block of pixels using
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Figure 6.10: Ratio of SC frame size to M-JPEG frame size vs. Bytes Per M-JPEG Block.

M-JPEG for a particular frame. The y-coordinate is the ratio between the size of the SC

encoding and the size of the M-JPEG encoding. Overall frame dimensions were varied

from 320x240 to 960x720 and the quality metric was varied from 5 (low quality) to 95

(high quality). The quality level is an abstract quantity that governs the threshold level

for discarding DCT coe�cients. In these experiments, the meaning of the quality factor

is taken directly from the RTP speci�cation for the M-JPEG payload. Low quality levels

correlate to fewer DCT coe�cients. A quality level of 95 correlates to retaining virtually

all coe�cients. Frame sizes are normalized by computing the number of bytes used per 8x8

block-of-pixels. Bytes used per block-of-pixels correlates to encoding quality (i.e., more

DCT coe�cients per block). No information was lost when reencoding the frame into the

SC format. We can see that when M-JPEG block encodings are small (less than 2 bytes

per block), the corresponding SC format is around 6 times larger, but as M-JPEG block

encodings grow, the corresponding SC format approaches twice as large. The decrease

in the ratio happens because as the number of DCT coe�cients per block increases, the

e�ectiveness of M-JPEG entropy coding decreases. This graph shows the trade-o� between

quality and entropy coding e�ectiveness. The cost of not using entropy coding in our SC
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Figure 6.11: SC Encoding Time Per Block in Microseconds vs. Quality Factor

format is mitigated by this tradeo�. High quality video data can be represented in the SC

format with only a factor of 2 increase in bandwidth, while lower quality data that may

require a factor of 6 increase in bandwidth uses much less bandwidth in the �rst place.

6.3.3 Encoder/Decoder Performance

To measure SC codec performance, we performed two experiments. Both were

conducted using an UltraSPARC-1 workstation. In the �rst, encoding time was measured

as the quality of the video varied. This encoding time corresponds to the work being

done by individual processes as they encode subregions to be sent for reconstruction and

transcoding. Figure 6.11 shows the time spent encoding a single block in microseconds

for di�erent quality levels. The results of the experiment show encoding times between

3.3 �s/block and 5.8 �s/block depending on video quality. Figure 6.12 translates these

measurements to encoding times for various region sizes.

In the second experiment, we measured the time to transcode SC frames of

di�erent sizes (due to variations in quality and frame size) into M-JPEG frames. This

transcoding time corresponds to the work being done by the spatial combiner. Because
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spatial recombination must be centralized, the performance of this element will likely be

a bottleneck in the use of spatial parallelism. Figure 6.13 shows the transcoding time

in milliseconds versus the size of the SC encoded frame in kilobytes. The three lines

on the graph correspond to di�erent frame geometries (i.e., width and height). The size

of the encoded frames was varied by altering the quality factor. In general, for a given

frame geometry, smaller frame representations correspond to lower quality. From these

measurements we see that transcoding time from SC to M-JPEG is linearly related to

the size of the SC representation. The di�erence observed in encoding times for di�erent

frame geometries with similar SC frame sizes is related to the di�erence in average number

of coe�cients contained in each block. The graph also reveals that 30 frame per second

transcoding rates are only achievable with 320x240 sized frames or very low quality frames

with larger dimensions. These experiments were, however, performed on an UltraSPARC-

1 processor which does not represent the performance of the most recent generation of

processors. The �nal transcoding bottleneck might reasonably be avoided for small frame

sizes by current processors. The bottleneck can also be side-stepped by parallelizing the

�nal transcoding step using temporal parallelism.

6.4 Performance

This section contains the results of performance experiments using spatial paral-

lelism. E�ects were simulated with processing latencies ranging from 0 to 500 milliseconds.

This time does not include the overhead of decoding inputs and encoding outputs. All

experiments were conducted on the Berkeley SPARC-NOW using UltraSPARC-1 work-

stations connected by a 10 Mb/s switched Ethernet network. In the �rst experiment, 1

to 16 processes were coordinated using spatial parallelism. The results show that uncon-

trolled input rates lead to severe performance degradation due to uncoordinated packet

loss among participating processes. Combining temporal and spatial techniques is pro-

posed as a way of addressing this problem. The second set of experiments measures the

performance of the combined solution.

In the �rst experiment, 1 to 16 processes were used to receive and process an

CIF (352x288) M-JPEG stream arriving at 30 frames per second. Processing latencies

were varied from 0 to 500 milliseconds. Each process was instructed to produce a di�erent

portion of the output frame. Output portions were calculated by dividing the output
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Figure 6.14: Performance of Spatial Mechanism

frame into horizontal strips. For example, if 4 processes were used, each produced partial

output regions 1/4 as tall and just as wide as the full output frame. The output strips were

adjusted to have dimensions divisible by 8. This requirements arises from the geometry

limitations in the SC format discussed above. The simulated processing delay was assumed

to be perfectly related to the size of the partial output region. Thus, if 4 processes were

being used, a processing delay of 500 ms would be implemented by having each process

simulate a processing delay of 125 ms.

Figure 6.14 shows the results of this experiment. Performance of the system

steadily degrades with the addition of every new process. The failure of spatial parallelism

in this con�guration is related to uncoordinated packet loss and the resulting mismatch

of partial outputs.

Because participating processes receive their input directly frommulticast sources,

problems are created by uncoordinated packet drops due to an overwhelming input data

rate. The uncoordinated packet drop problem was explained in Chapter 5. Basically, if

participating processes cannot accommodate the input data rate, packet losses will occur

due to network bu�er overow. These packet losses translate into incomplete frames which
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for many formats (e.g., M-JPEG) results in frame loss. Di�erent processes receiving the

same multicast input stream will lose di�erent packets, resulting in uncoordinated frame

drops. In the case of temporal parallelism, this e�ect made a distributed selector function

impractical. In the case of spatial parallelism, this e�ect results in mismatched partial

results.

Mismatched partial results occur when the participating processes produce par-

tial results for di�erent frames. If a partial result for a speci�c frame is missing, the

spatial combiner must discard the entire frame. When the partial results of participating

processes are mismatched, at least one portion of every frame is missing and all frames

must be discarded by the spatial combiner. For example, if two processes are producing

di�erent halves of an output stream (i.e., left and right halves), and one process produces

the left halves for all odd numbered frames and one process produces the right halves for

all even numbered frames, the spatial combiner will discard all of these mismatched partial

results and produce no output frames.

Using temporal mechanisms in conjunction with spatial mechanisms can address

this problem. Groups of processes exploiting spatial parallelism can be coordinated by

the temporal mechanisms to break through the decoding performance bottleneck of the

spatial mechanisms. The spatial mechanisms serve to reduce the per-frame processing

latency, while the temporal mechanisms reduce the input data rate for each group to an

appropriate and manageable level. The selector function developed to exploit temporal

parallelism provides feedback-based rate control that can be used here to limit the amount

of data sent to the participating processes and coordinate which frames are produced.

The parameters to the interleaver function of the temporal mechanisms are tuned to avoid

bu�ering latency as much as possible to avoid working against the latency reduction made

by the spatial mechanisms.

Figure 6.15 shows the result of combining spatial mechanisms with temporal

mechanisms. Nearly linear increases in performance are seen as the number of processes

grows from 1 to 5, especially for high e�ect processing latencies. For the 0 and 25 ms cases,

performance increases are slight because the e�ect processing latency is relatively small

compared to the overhead of receiving and decoding inputs and encoding and transmitting

partial outputs. Since the amount of input data that must be received and decoded

remains constant regardless of the number of processes, the gains in performance are only

due to the reduction in size of the output portion and thus the reduction in encoding and
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Figure 6.15: Performance of Hybrid Temporal/Spatial Mechanism

transmitting time. The performance gains are more signi�cant when processing latency

is larger. Performance degrades with 6 or more processes as mismatched partial results

again become problematic and the SC format geometry restrictions come into play.

The geometry restrictions of the SC format work against increasing the number

of processes involved by creating unequal output regions. In our experiment, the input

frame was divided into horizontal strips. The dimensions of these strips must be divisible

by 8 due to the SC format restrictions. If the vertical dimension of the output frame is

not perfectly divisible by the number of processes multiplied by 8, the strip sizes must

be adjusted resulting in unequal output region assignments. The performance of the

spatial mechanisms is limited by the slowest participating process. Thus, as new processes

are added, no real improvement in performance is seen unless every process is given a

smaller output region. In our experiment, for example, frames were 240 pixels tall. Given

6 processes, each process produces an output region 40 pixels tall. Adding a seventh

process, however, creates 5 output regions 32 pixels tall and 2 output regions 40 pixels

tall. Since two processes still have output regions that are the same size as the output

regions in the 6 process case, performance will not improve. This e�ect can be seen in



127

Figure 6.15 as the lack of performance improvement when 7 or more processors are used.

Although spatial mechanisms in PSVP are not nearly as e�ective as temporal

mechanisms, the technique does serve to reduce e�ect processing latency. Using several

small groups (i.e., 3{5) of spatially coordinated processes in conjunction with temporal

mechanisms to provide rate controlled inputs provides a hybrid solution. Furthermore,

improvements in the rate control algorithms may help improve the e�ectiveness of the

spatial mechanisms and their scaling properties.

6.5 Summary

This chapter described the PSVP mechanisms developed to exploit spatial paral-

lelism. The primary bene�t of spatial techniques is the reduction of per-frame processing

latency. The design of the spatial mechanisms was biased to preserve this bene�t.

The relationship between an output region and the required input regions is

speci�c to the e�ect processing task and can become complex. Changing e�ect parameter

values in conjunction with possible temporal and spatial dependencies among input video

streams complicates input distribution. To sidestep these di�culties, inputs are distributed

directly using multicast to all participating processes. The cost of this simpli�cation is that

each process must decode all inputs in their entirety. Since this cost does not decrease

with the number of processes involved, it represents a limit to the performance of the

spatial mechanisms.

We also showed that current video formats are ill-suited to represent partial out-

put regions that are to be recombined into a single output stream. In particular, current

video formats do not support partial geometries and the use of entropy coding compli-

cates reconstruction. We developed and described the new \semicompressed" format SC

designed speci�cally for the task of communicating partial output results.

The performance of the spatial mechanisms is unfortunately signi�cantly a�ected

by the problem of mismatched partial outputs when the input frame rate exceeds the ca-

pacity of the individual processors to decode inputs and produce a partial output. Com-

bining temporal mechanisms for rate control with spatial mechanisms was shown to be an

e�ective hybrid solution. Even this hybrid solution, however, is limited due to SC format

restrictions that prevent equal assignment of output regions.
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Chapter 7

Control Protocol

Organizing FX Processes as part of a dynamic multi-layered hierarchical execu-

tion plan creates complex control relationships between processes. This chapter describes

how control information is sent to and between PSVP processes. The contribution of this

chapter is a simple and exible control protocol developed using IP-Multicast that meets

the control requirements of PSVP. This protocol uses the Scalable Naming and Announce-

ment Protocol (SNAP) which allows us to expose application-level semantic information

about control messages at the transport level.

Section 7.1 reviews how PSVP assigns FX Processors to a multi-layered hierar-

chical execution plan. Section 7.2 describes the type and structure of control messages

that must be exchanged. The requirements of a control protocol for delivering these con-

trol messages are discussed in Section 7.3. Section 7.4 provides a detailed description of

SNAP and Scalable Reliable Multicast (SRM) and establishes a basis for understanding

the PSVP control protocol. Next, the PSVP control protocol is described in Section 7.5.

Section 7.6 describes a key feature of our scheme called \control mapping" in further de-

tail and provides measurements of the e�ectiveness this technique. Lastly, Section 7.7

summarizes the chapter.

7.1 FX Processor Organization

This section reviews how FX Processors are hierarchically organized into an

e�ect-plan. The control relationships that arise due to this organization are highlighted.

The FX Mapper is the PSVP component that constructs an e�ect-plan from an e�ect-
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graph. The following example, �rst presented in Chapter 3, illustrates the FX Mapper

process.

The process begins with an e�ect-graph. Figure 7.1 shows the e�ect-graph for

a cross dissolve e�ect. In this representation, the operators represent abstract functions

and no control elements are present. The FX Mapper �rst produces an abstract e�ect-

plan from the e�ect-graph representation. Figure 7.2 shows a graphical representation

of this plan. A legend for symbols used to denote an e�ect-plan is shown in Figure 7.3.

An e�ect-plan retains the graph relationship of the operators and augments them with

representations for parameter values, inputs, outputs, and internal frame bu�ers. This

e�ect-plan is \abstract" because the FX Mapper has not speci�ed how the plan will be

implemented (i.e., using a single processor or using some sort of parallelism).

Given a set of resources, the FX Mapper produces a multi-layer hierarchical

e�ect-plan and generates an implementation for each component of the plan. In our ex-

ample, suppose the FX Mapper has 9 processors to implement the cross-dissolve e�ect.

If the FX Mapper �rst chooses to exploit temporal parallelism, the abstract e�ect-plan is

transformed to the plan shown in Figure 7.4. The shadow-box border of e�ect-plan G is

gray to indicate that some form of parallelism has been used to implement it. The com-

ponents T1 and T2 in this �gure represent the temporal selector and temporal interleaver
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functions discussed in Chapter 5. These components are not abstract - they implement

the temporal parallelism. The FX Mapper assigns a processor to each of these components

and generates code to implement them, leaving 7 processors to implement the abstract

plans G1 and G2.

The e�ect-plans for T1 and T2 shown in Figure 7.4 include the control elements

\TI" and \TS" respectively. These control elements manage the ow of control infor-

mation to and from the abstract e�ect-plans G1 and G2. TI and TS are responsible for

coordinating the actions of G1 and G2 to implement temporal parallelism. A key charac-

teristic of this control relationship is that the speci�c implementation details of G1 and

G2 are not exposed. In other words, TI and TS are unaware of the parallelism used, if

any at all, to implement G1 and G2. Similarly, controlling agents of the overall e�ect are

exposed only to an interface for the abstract e�ect-plan G and are not exposed to the

temporal mechanisms embodied in T1 and T2.

Continuing with our example, the FX Mapper may choose to parallelize G1

using spatial parallelism and assigning 3 processors to its implementation. Figure 7.5

shows this con�guration. The abstract e�ect-plan G1 is replaced by three new e�ect-

plans (i.e., S1, G1a, and G1b). The plan S1 represents the spatial combiner mechanism

described in Chapter 6. The FX Mapper assigns a processor to this plan and generates

an implementation. S1 coordinates the actions of G1a and G1b. The e�ect-plans for G1a

and G1b are not abstract because only one processor is available for each implementation.

Thus, the FX Mapper generates a single-processor implementation of these plans. The

control element in S1 manages control information intended for the abstract execution

plan G1 (which in turn was managed by the control elements of T1 and T2) and provides
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appropriate control information for G1a and G1b. The control elements within these plans

respond to control information appropriately.

The FX Mapper assigns the remaining 4 processors to the implementation of

the abstract plan G2. Suppose the FX Mapper chooses to use functional parallelism

and creates e�ect-plans F1, G2a, G2b, and G2c to implement G2. This con�guration

is depicted in Figure 7.6. The F1 e�ect-plan represents the the mechanisms used to

functionally coordinate G2a, G2b, and G2c. In this case, the plan is comprised of only a

control element (i.e., no data passes through this e�ect-plan). The plans G2a, G2b, and

G2c are implemented as single processor implementations similar to G1a and G1b.

Figure 7.7 shows the hierarchical relationships of these e�ect-plans as a tree.

Leaves of this tree represent implementations of e�ect-plans assigned to processors. Inte-

rior nodes represent abstract e�ect-plans. Although the FX Mapper uses a �xed number

of resources to create a multi-level hierarchical set of e�ect-plans to implement the e�ect-

graph, the hierarchy is dynamic. The processes used to implement G2 using function

parallelism may be recon�gured to use spatial parallelism. After the e�ect-plan is instan-

tiated nodes may be inserted into an existing implementation if new resources are made

available. Dynamic hierarchies impose further control requirements.

7.2 Type and Structure of Control Messages

This section describes the types of control messages needed to manage an e�ect-

plan. In this chapter, we will refer to processes as either control agents or implementation

agents. Control agents are processes that control an implementation of an e�ect. An

example of a control agent is a user-interface application that provides a user with a

graphical user-interface for controlling the parameters of an e�ect. Implementation agents

are processes that implement an e�ect plan. A single processor implementation of an e�ect-

plan is an example of an implementation agent. Some processes act as both implementation

agents and control agents. For example, the temporal mechanisms described in Chapter 5

are implementation agents for the e�ect-plan they are a part of as well as controlling agents

for the e�ect-plans that they coordinate. In this section, we describe the types of control

information that must be exchanged between controlling agents and implementation agents

without considering how that information is exchanged.

Figure 7.8 shows the information that must be communicated between implemen-
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Attribute Description

Input source Speci�es which RTP stream to use as this input.

The speci�cation includes the multicast address,

port number, and source ID of the video stream.

auto trigger If set to 1, the e�ect produces an output frame for

every input frame received.

Output dest Speci�es the multicast session to which this output

stream should be sent. Speci�cation includes the

multicast address and port number of the session.

geometry This attribute is used by spatial parallelism mech-

anisms to specify the portion of the output frame

to be produced. The attribute is set to four val-

ues from 0.0 to 1.0 which de�ne the upper left and

lower right corners of a subregion relative to the

true frame size.

format Speci�es the desired format for output frames. Pos-

sible values include M-JPEG, H.261, and SC. SC

is the semi-compressed format described in Chap-

ter 6.

Parameter type Speci�es the type of the parameter. Possible types

include: real, integer, text, color, and list.

domain Speci�es the domain of the parameter. Domain val-

ues are type speci�c. For example, for real param-

eters, the domain is represented by two real values

indicating the range of possible values for the pa-

rameter.

value The current value of the parameter.

Table 7.1: Common Attributes For Inputs, Outputs, and Parameters.

tation agents and control agents. The structure of an e�ect is described to a controlling

agent by the number of inputs, outputs, and controllable parameters. Each input, out-

put, and parameter may have one or more attributes. An attribute is a name/value pair.

Table 7.1 list some common attributes.

Some attributes must exist while other attributes are optional. The \name"

attribute, for example, is a required attribute of all inputs, outputs, and parameters. If

an attribute value is set by an implementation agent, it is passed to the control agent

and cannot be changed by the control agent. For example, the \domain" attribute of a

parameter speci�es a range of legal values for the parameter. The value of the domain



138

Trigger type Description

straight trigger Instructs processes to produce an output frame

using the current input frames immediately.

auto trigger Instructs processes to produce an output frame

whenever new input data is received for a par-

ticular input. This type of trigger is set as an

attribute of the associated input.

trigger vector Instructs processes to produce an output frame

using inputs with speci�c timestamps. A vec-

tor of timestamps is provided to specify the de-

sired timestamp value for each input. If an input

frame is received with a timestamp that exceeds

the expected timestamp, the action is cancelled.

Table 7.2: Description of Trigger Types

attribute is set by the implementation agent and can not be changed by the control

agent. Optional attributes for inputs, outputs, and parameters can be created by either

implementation agents or controlling agents. Any attribute not set by an implementation

agent can be set and possible reset by a control agent. Both control and implementation

agents are free to ignore any attributes that hold no meaning for them and interpret

attribute values in any manner.

Another type of control information communicated between control agents and

implementation agents are \trigger" messages. Trigger messages are commands issued

by control agents to govern how and when implementation agents produce output data.

Table 7.2 lists di�erent types of trigger messages. Implementation agents produce \com-

pletion tokens" as a form of feedback when output data is produced. In general, imple-

mentation agents produce a single \completion token" message for every frame of output

produced. These completion tokens are used to drive feedback algorithms such as the rate

control algorithm in the temporal selector.

7.3 Control Requirements

This section describes the requirements for exchanging control information. The

�rst requirement is that the number and location of processors that implement an e�ect-

plan is not known by controlling agents. Similarly, the number and location of controlling
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agents is not known by the processes implementing an e�ect. We use IP-Multicast [18]

to support this requirement. Each level of the e�ect-plan is associated with a speci�c

IP-Multicast session. Control agents and implementation agents join this session. Control

messages are sent and received through this session. IP-Multicast provides e�cient delivery

of messages to members of the session by replicating and transmitting messages in the

network at routers as necessary. The IP-Multicast session acts as a level of indirection.

Session members do not need to know how many other members exist or where they are

located.

The second requirement for the control protocol is that di�erent messages are

delivered with di�erent levels of reliability. Trigger commands and completion tokens, for

example, do not need reliable delivery because the importance of these messages signi�-

cantly diminishes over time. Messages that communicate the number and type of inputs,

outputs, and parameters, however, should be reliably delivered since this information is

valid for the lifetime of the e�ect. Messages that set the value of a particular attribute

should only be delivered reliably if the message is the most recent update for that attribute.

The reliability requirements for a particular message may only be known by the

receiver of the message. Di�erent implementation agents specialized for particular tasks

will require only a subset of the control messages. For example, the temporal interleaver

mechanism is primarily concerned with inputs and has no interest in control messages re-

lated to outputs. Thus, an additional requirement of the control protocol is that reliability

requirements for messages are managed by the receivers of the messages.

Finally, we require that the current state of an e�ect (e.g., attribute values for

inputs, outputs, and parameters, etc.) be recoverable at any time. This soft-state approach

allows for dynamic recon�guration and robustness. If the implementation of a particular

abstract e�ect-plan is changed (e.g., recon�gured to use a di�erent type of parallelism),

the processes implementing the new con�guration must be able to recover the state of

the e�ect. Another motivation for a soft-state approach is to take advantage of advanced

distributed computing mechanisms such as process relocation and process restart in the

event of failure. Examples of these advanced services were given in Chapter 3.

Traditional distributed computing control mechanisms do not meet these require-

ments. The most common communication primitive for distributed systems is some form

of remote procedure call (RPC). The Remote Method Invocation (RMI) mechanism in

Java is an example of an RPC-like service. RPC mechanisms, however, are fundamentally
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location speci�c. A client process must be able to speci�cally address the server process

to invoke the RPC. Distributed object systems like CORBA [28] and JINI [55] provide

a method to locate speci�c services on a network, but have limited support for services

implemented as a dynamically changing group of processes. In addition, RPC mechanisms

generally do not allow for relaxed reliability requirements or receiver-managed reliability.

Because many of the control requirements of PSVP arise from a need to provide

a level of indirection between control agents and implementation agents, we sought a

solution based on IP-Multicast. The IP-Multicast session model provides this level of

indirection, allowing sources and receivers of control messages to communicate without

exposing the number and location of session participants. SRM and SNAP, described in

the next section, are used to meet our reliability requirements.

7.4 SRM and SNAP

The Scalable Reliable Multicast (SRM) protocol extends IP-Multicast to provide

reliable delivery of data through a multicast session [24]. The protocol is an example of a

receiver reliable protocol in which receivers, and not sources, are responsible for detecting

losses and requesting repairs. Any member of the multicast session can respond to repair

requests if it can provide the necessary data. The repair requests and the retransmission of

data in response to them use a scalable feedback mechanism based on \multicast damping."

Multicast damping uses randomly selected timer values to prevent more than one session

member from making the same repair request or retransmitting the same data.

A key feature of SRM is receiver-based selective reliability. Since receivers are

independently responsible for detecting and recovering from losses, each receiver can decide

to recover losses based on application requirements. Some receivers may need to recover

all lost data, some may tolerate losses of certain types of data, and some may detect losses

but delay recovery until the data is actually needed.

To take advantage of selective reliability tuned to application needs, receivers

must distinguish the relative importance of lost data. Unfortunately, SRM does not pro-

vide this information. Packets of data in SRM are given sequence numbers and loss is

detected by gaps in the sequence numbers of received packets. The sequence number of

the lost packet does not convey to the receiver what type of data the packet contains. In

short, the application-level semantic structure of data required to exploit selective relia-
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bility is lost when the data is mapped to a single linear namespace of packet sequence

numbers.

Raman and McCanne developed the Scalable Naming and Announcement Pro-

tocol (SNAP) to overcome this shortcoming of SRM [45]. Built on top of SRM, SNAP

provides a hierarchical namespace that applications can use to expose the semantic struc-

ture of data at the transport layer. This concept of tailoring network mechanisms to match

application semantics is an example of Application Level Framing [14]. With SNAP, each

data source in an SRM session is associated with a tree of \containers." Initially, each

source starts with a tree that has a single root container. Sources can create and name new

containers as children under any existing containers. In this way, a hierarchical namespace

of containers is built on a source by source basis. The namespace information for each

source is disseminated reliably using SRM.

Sources label each unit of transmitted data (i.e., packet) as belonging to a partic-

ular container within the namespace tree. SNAP maintains a sequence number space for

each container. Packets are delivered to receivers labeled with the source from which they

originated, the container with which it is associated, and the sequence number within that

container. When lost packets are detected, receivers are noti�ed to which container the

lost packet belongs. Receivers can use this container information to repair lost packets.

To take full advantage of SNAP, applications must construct namespace hier-

archies that expose the application-level semantic relationships of the transmitted data.

We use SNAP as a foundation for control messages in PSVP. The following section de-

scribes how PSVP control messages are organized to meet the requirements outlined in

the previous section.

7.5 PSVP Control

Control messages in PSVP are organized into the following namespace hierarchy.

Under the root container are �ve containers labeled inputs, outputs, parameters, triggers,

map commands, and misc. For each input of the e�ect, a child container is constructed

under the inputs container and labeled with the name of the input. For example, Figure 7.9

illustrates the namespace representing the cross-dissolve e�ect with two inputs labeled

i1 and i2. For each attribute of an input, a child container is constructed under the

container associated with that input and labeled with the name of the attribute. In
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Figure 7.9: Control Namespace for Cross-Dissolve

Figure 7.9, the inputs i1 and i2 have an attribute named source which is represented

by child containers of the i1 and i2 containers. Outputs and parameters are handled

similarly. In Figure 7.9, the output of the cross-dissolve e�ect is represented by a child of

the outputs container labeled out. Attributes of the out output are represented by children

of this container and are labeled with the attribute names (e.g., dest and geometry).

The parameter p in our example is represented by a child container of the parameters

container. It has attributes type, domain, and value. The triggers container is used

for trigger commands and completion tokens. The map commands container is used to

implement control features described in Section 7.6, and the misc container is used for

debugging and miscellaneous messages.

Each level of the e�ect-plan is associated with a di�erent multicast control session.

Parallel processing mechanisms participate in multiple control sessions. They participate

in the control session for their own level as well as the control sessions for each of the next

lower levels that the mechanisms are coordinating. For example, in Figure 7.6 there are 8

di�erent control sessions with one for each level of the plan (i.e., G, G1, G2, G1a, G1b, G2a,

G2b, and G2c). The temporal mechanisms at level G also participate as controlling agents

for G1 and G2. The spatial combiner at level G1 also participates as a controlling agent

for G1a and G1b. The functional controller at level G2 also participates as a controlling

agent for G2a, G2b, and G2c.

Implementation agents communicate the structure of an e�ect (i.e., number of

inputs, number of outputs, parameters, etc.), by creating container nodes as children

of the inputs, outputs, and parameters nodes. Various attributes of inputs, outputs, and

parameters are described by creating a subcontainer for each attribute under the associated

container.



143

Controlling agents set a particular attribute by transmitting its value as a packet

in the attribute's container. When the packet is received by other participants, the con-

tainer information indicates which attribute of which input, output, or parameter is being

set and the data in the packet provides the new value. Receivers tune the selective reliabil-

ity mechanisms for these attribute containers to reliably receive only the last transmitted

packet. To illustrate this point, we refer to the example namespace for the cross-dissolve

e�ect shown in Figure 7.9. If an implementation agent receives packets with sequence

numbers 1 and 3 for the source attribute of the input i1, it will be noti�ed that packet

2 has been lost. The agent will not issue a repair request because the information sent

in packet 2 is known to be old since packet 3 has already been received. If the SNAP

mechanisms discover a tail-loss of packets 4, 5, and 6, only packet 6 will be recovered since

it represents the most up to date and current value of the attribute.

The control messages sent in the triggers container include trigger commands

and completion tokens described earlier. These messages have limited temporal value and

no reliability is associated with this container. The misc and map commands containers

are used for a variety of di�erent messages including control mapping messages which are

described in the next section. Because these control messages need to be sent reliably,

receivers invoke the recovery mechanisms for all losses.

Using this naming scheme with SNAP and SRM, we can satisfy the design goals

outlined in the previous section. Our �rst design goal of hiding the number and location

of both the controlling agents as well as the implementing agents is achieved by using mul-

ticast. Our second design goal of associating di�erent reliability semantics with di�erent

types of control messages is achieved by creating a namespace structure in SNAP that

groups related control messages together. Our last design goal of being able to recover

the current state of an e�ect is supported by SNAP's ability to reconstruct the current

namespace combined with mechanisms for recovering relevant messages in each of the

containers.

7.6 Control Mapping Feature

The responsibilities of the temporal, spatial, and functional parallelism mecha-

nisms give these entities dual roles with respect to control. They participate as imple-

mentation agents for higher levels of parallelism as well as controlling agents for the lower
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levels of parallelism that they coordinate. A consequence of this dual role is the need

to participate in more than one control session and translate control messages from one

session to another. Often control messages from higher levels must be passed directly to

lower levels. If the message must be passed down the hierarchy, the message is forwarded

one level at a time. To avoid forwarding latency, we developed control mapping commands

that enable portions of one control session to be mapped into another. This mapping al-

lows messages to be received directly at whatever level in the hierarchy they are required

with no forwarding latency. This section describes the control mapping mechanism.

Figure 7.10 shows an example using temporal parallelism. Pictured on the left

is a UI application controlling the e�ect. The e�ect is implemented with temporal paral-
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lelism. A portion of the e�ect-plan is also shown. The two e�ect-plans labeled \TS" and

\TI" represent the temporal parallelism mechanisms implementing the temporal selector

and temporal interleaver functions. The selector and interleaver processes coordinate the

actions of E1 and E2 which are independent implementations of the e�ect. E1 and E2

may be single processor implementations, or they may be further parallelized. The UI

application participates in control session A along with the selector and interleaver. The

selector and interleaver processes also participate in control session B to direct the actions

of E1 and control session C to direct the actions of E2. These control sessions are depicted

in Figure 7.10 as di�erently patterned lines connecting the participating processes. Lines

representing data ow and symbols representing internal components of E1 and E2 have

been omitted from Figure 7.10.

As described in the previous section, E1 and E2 create containers in their SNAP

namespace to indicate the existence of inputs, outputs, and parameters and subcontainers

to indicate attributes. In our example, suppose E1 and E2 are cross-dissolve e�ects that

use the control namespace shown in Figure 7.9. The temporal selector and interleaver

processes detect these containers in control sessions B and C and reect the structure

of the e�ect by constructing a congruent namespace in control session A. In this way,

information from lower levels is exposed to higher levels and eventually to the controlling

application.

The UI application sends messages in particular containers to set attribute values

for inputs, outputs, and parameters, to issue trigger commands, and, in general, to control

the e�ect. These commands are translated by the temporal selector and temporal inter-

leaver into the appropriate commands for E1 and E2. For example, if the UI application

issues a command to set the source attribute of i1 (i.e., specify which stream should be

used as the input), the temporal selector and interleaver receive this message and take

appropriate action. The temporal selector which is in charge of temporally dividing input

streams among E1 and E2 translates this command to set the inputs of E1 and E2. The

command is not simply forwarded to E1 and E2 because they do not receive the input

stream directly, but instead, will receive streams that have been temporally divided by the

temporal selector. The temporal interleaver, however, takes no action because it is only

responsible for output streams and not input streams. Consequently, the interleaver has

no interest in control messages that involve inputs. The interleaver tunes the SRM/SNAP

reliability mechanisms to avoid repairing any lost control messages that involve inputs.
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Similarly, the temporal selector is optimized to deal only with control messages that in-

volve inputs and does not participate in output control messages. One advantage of using

SRM and SNAP is the ability to tune the reliability semantics for only portions of the

namespace. This example highlights how we capitalize on this advantage.

Some control messages do not need translation by either the temporal selector

or interleaver. For example, messages setting the value of a parameter are not translated.

These messages need to be forwarded to E1 and E2. Either the selector or the inter-

leaver can be responsible for forwarding these messages. Forwarding messages, however,

can create problems with message latency. In our example, E1 and E2 may be further

parallelized in di�erent ways. If E1 involves 1 additional level of parallelization and E2

involves 10 addition levels of parallelization, messages that are forwarded to E1 and E2 will

experience vastly di�erent latencies. Reducing the latency of control messages improves

the responsiveness of the system.

To optimize the control mechanism and avoid forwarding latencies, we added

map commands. A map command instructs processes that implement an e�ect to join

and participate in other control sessions for a limited portion of the control namespace.

Table 7.3 describes the map commands we have implemented. These commands are issued

in the map commands container. Receivers fully recover lost map commands.

With map commands, mechanisms that manage parallelism like the temporal

selector and interleaver can map portions of the higher level control session that need to

be forwarded directly into the lower level control sessions. In our example, the temporal

selector issues map commands to E1 and E2 to map the parameters container and all

subcontainers from session A into sessions B and C. Figure 7.11 shows which processes

participate in each control session after these map commands are executed. E1 and E2 join

and participate in session A as well as their original sessions, but only for the parameters

portion of the session A namespace. When the UI application sends control messages for a

parameter, these messages are now directly received by E1 and E2 with no forwarding by

the temporal parallelism mechanisms. If E1 and E2 contain further levels of parallelism,

the original map command is properly translated and/or forwarded to each level. Only

processors that require parameter control messages map the parameter container of control

session A into their own control session. All non-parameter control messages in session A

are ignored by E1 and E2 and losses of non-parameter control messages are not repaired.

By using map commands, mechanisms that implement the three types of par-
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Map Command Description

map session addr port Map the control session speci�ed by addr

and port in its entirety into this session.

All messages in all containers from the

speci�ed session are processed.

map inputs addr port Map the \inputs" container from the con-

trol session speci�ed by addr and port.

Any subcontainers are also mapped into

this session.

map outputs addr port Map the \outputs" container from the

control session speci�ed by addr and port.

Any subcontainers are also mapped into

this session.

map parameters addr port Map the \parameters" container from the

control session speci�ed by addr and port.

Any subcontainers are also mapped into

this session.
map input addr port

input name ?alias?
Map the subcontainer of the \inputs" con-

tainer associated with input name into

this control session. The alias is an op-

tional parameter which if given indicates

the name the mapped container should be

aliased to in this session.
map output addr port

output name ?alias?
Map the subcontainer of the \outputs"

container associated with output name

into this control session. The alias is

an optional parameter which if given in-

dicates the name the mapped container

should be aliased to in this session.
map parameter addr port

param name ?alias?
Map the subcontainer of the \parameters"

container associated with parameter name

into this control session. The alias is

an optional parameter which if given in-

dicates the name the mapped container

should be aliased to in this session.

map triggers addr port Map the \triggers" container from the

control session speci�ed by addr and port.

map misc addr port Map the \misc" container from the control

session speci�ed by addr and port.

map map cmds addr port Map the \map commands" container from

the control session speci�ed by addr and

port.

Table 7.3: Description of map commands currently implemented.



148

E
2

Temporal
Mux

TI T
S

Temporal
Demux

Temporal
Demux

TS T
S 

UI Application

Control Session A

Control session B

Control Session C

E1 and E2 only participate
in session A for the
"parameters" portion of
the control namespace.

E
1SP SP

Figure 7.11: Control Relationships With Temporal Parallelism After Control Mapping



149

allelism avoid the responsibility of forwarding control messages that do not have to be

handled or translated. These messages are directly received by whatever processes require

them at any level of the e�ect-plan.

An advanced feature of map commands is the ability to aggregate and compose

control elements. For example, when temporal parallelism is exploited, the temporal in-

terleaver can provide controlling agents (i.e., mechanisms at higher levels of the implemen-

tation hierarchy or the controlling application) a parameter to govern how much bu�ering

latency should be allowed when constructing the interleaved output stream. This param-

eter is not part of the e�ect itself but is speci�c to the temporal interleaver mechanism

and only exists when temporal parallelism is exploited. The interleaver can \add" this

parameter to the e�ect implementation by constructing the appropriate subcontainer in

the parameter portion of its control namespace. Controlling agents higher in the hierarchy

treat the new parameter as it would any other parameter. Implementation agents lower

in the hierarchy are unaware of the extra parameter and are una�ected by its presence.

Another advanced feature of map commands is mapping control messages with

aliasing. Aliasing is used when a container of one control session namespace is mapped into

another control session with a di�erent name. This feature enables a variety of exible and

interesting control structures. For example, if an application is controlling two di�erent

e�ects, E�ect A and E�ect B, and the application needs parameter \theta" of E�ect A to

be equal to parameter \alpha" of E�ect B, the container describing parameter theta can be

mapped and aliased into the control session of E�ect B with the name of parameter alpha.

Messages controlling theta for E�ect A will be interpreted by the processes implementing

E�ect B as messages controlling alpha.

To measure the e�ectiveness of the mapping optimization, we constructed hier-

archies of distributed processes and measured the time required to distribute a control

message to the leaves of the hierarchy with and without using the mapping optimiza-

tion. The experiments were conducted on the Berkeley NOW composed of UltraSPARC-1

workstations connected by a 10 Mb/s switched Ethernet network. Figure 7.12 shows the

results using a shallow hierarchy with one root node and between two and nine children.

Using the mapping optimization, the leaves of the hierarchy all participate in the topmost

control session and receive control messages directly. Thus, even as the number of leaves

grows, the time for distributing control messages remains relatively constant and small

(i.e., around 2-3 milliseconds). Without the mapping optimization, the root node must
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unicast each control message to each child. Thus, the time for delivering control messages

grows with the number of children. Figure 7.13 shows similar results with binary tree

hierarchies of varying heights.

7.7 Summary

This chapter described the control mechanisms built with SRM and SNAP used

in PSVP. The control mechanisms were designed speci�cally to support the recursive

multi-level mapping strategy used to parallelize video e�ects. As a consequence of this

strategy, several requirements are made of any mechanism used to distribute and translate

control messages. These requirements include e�cient delivery of messages to all processes,

tunable reliability semantics on a per control message basis, and recoverable state.

Traditional distributed system control mechanisms, do not meet these require-

ments. Our approach to the problem uses IP-Multicast to provide e�cient delivery of

messages along with SRM and SNAP to provide tunable reliability semantics and recover-

able state. We achieve this objective by organizing control messages into a namespace that

reects application level semantics and groups related control messages. This organization

was described and its use illustrated by several examples.

We also described an optimization of the control mechanism to avoid unnecessary

forwarding of control messages through each layer of parallelism. The optimization allows

portions of one control session to be mapped into another. We extended this optimization

with aliasing which allows the mapped portion of the control namespace to be renamed

automatically. With aliasing, we can construct exible control mechanisms that relate

control attributes of di�erent e�ects.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the dissertation. Section 8.1 reviews the motivations

behind the development of PSVP and the overall architecture of the system. Section 8.2

highlights the research contributions made by this dissertation during the design and de-

velopment of the prototype system. Future research directions are outlined in Section 8.3.

Finally, Section 8.4 summarizes the chapter and provides information about project status

and software availability.

8.1 Review of Motivations and Design

The development of PSVP was motivated by the increasing use of streaming video

on the Internet which is characterized by compressed packets of video with varying frame

rates, image sizes, and jitter. The current model for video production, however, is still

rooted in traditional broadcast and post-production environments. In these environments,

digitization, compression, and transmission of video streams on packet networks is done

after editing decisions have been made and video e�ects added using traditional video

editing equipment. We foresee the need for producing and manipulating video sources

within the compressed packet video environment for new applications such as distance

learning and video localization (e.g., commercial insertion, subtitling, etc.)

Our goals for developing PSVP were to: 1) add production quality to Internet

streaming video by incorporating video e�ects, and 2) investigate in what ways current

standards and protocols facilitate and hinder the manipulation of video data types. To

achieve these goals, we designed a software-only system that exploited coarse-level paral-
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lelism to create real-time video e�ects. A software-only system provides the exibility to

adapt the system to new video formats and to take advantage of improvements in proces-

sor performance. Exploiting parallelism is necessary because currently a single processor

cannot perform a wide range of video e�ects in real-time. Even as processors improve, the

demands of video applications can be expected to grow.

The target environment for PSVP is a set of general-purpose computers con-

nected by an IP-Multicast enabled network. PSVP provides a video e�ects processing

service for other applications (e.g., virtual video production switcher, automated produc-

tion system, etc.). Packet video data can be produced as part of this local environment

or arrive across the Internet from remote sources. Figure 8.1 illustrates this environment.

We used the Berkeley Network-of-Workstation (NOW) because it matches this computing

environment.

PSVP is composed of three primary software components: 1) the FX Compiler, 2)

the FX Mapper, and 3) the FX Processor. Figure 8.2 shows these components in relation

to each other. The FX Compiler translates a high-level description of a video e�ect into an

e�ect-graph representation suitable to exploit parallelism. The FX Mapper constructs a
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hierarchical e�ect-plan from an e�ect-graph and maps it onto the available computational

resources. For each leaf of the hierarchical e�ect-plan, the FX Mapper generates code to

implement a subprogram for that part of the e�ect. These subprograms are executed on

a particular computational resource, called an FX Processor. The FX Processor executes

these subprograms and responds to control signals sent from the application. Placing these

components in the overall system architecture depicted in Figure 8.1, the FX Compiler

and FX Mapper are part of the \E�ects Server" and the FX Processor is the software

executing on an \E�ects Processor."

8.2 Research Contributions

This section reviews the research contributions made by this dissertation. The

major contributions are:

� A framework was developed to explore and implement parallel video e�ects using a

network of workstations.

The software architecture of PSVP provides an environment for exploring high-level

issues such as e�ect representation and compilation from special-purpose video e�ect

languages (e.g., RIVL) as well as low-level issues such as dynamic resource alloca-

tion and best-e�ort, feedback algorithms. The interfaces between these software

components are exible.

� Mechanisms were developed to exploit temporal parallelism.

We showed that a distributed temporal selector function is hampered by uncoordi-

nated packet loss due to bu�er overow. Also, the types of information available at

the transport protocol level (i.e., RTP) further complicates a distributed temporal

selector. We argued that a centralized temporal selector will perform as well a decen-

tralized design if the temporal relationships between data packets can be determined

on a packet-by-packet basis. A user-controllable, adaptive bu�ering algorithm for

temporal interleaving was described. The ability to use this algorithm to trade-o�

bu�ering latency and frame drop rate was demonstrated and measured.

� Mechanisms were developed to exploit spatial parallelism.

We showed how the design of mechanisms to support spatial parallelism are con-

strained and inuenced by the capabilities and limitations of current packet video
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formats and protocols. We developed a new packet video format designed speci�cally

to support spatial parallelism. The e�ectiveness of spatial parallelism was shown to

be very sensitive to the coding granularity of this intermediate format and to unco-

ordinated packet loss of participating processes. A hybrid temporal-spatial solution

that provided a form of rate control was shown to improve the performance of these

mechanisms.

� A distributed control protocol was developed using IP-Multicast, SRM, and SNAP.

We showed why a location-independent control protocol will support advanced dis-

tributed computing features such as dynamic recon�guration and resource alloca-

tion. We identi�ed the control requirements for PSVP and showed how they are not

well-matched to traditional distributed computing control mechanisms (i.e., RPC,

CORBA, etc.). We developed a control protocol using IP-Multicast, SRM, and

SNAP that met these requirements. This control protocol features receiver-based

reliability semantics on a per-message basis and soft-state that allows participating

processes to recover the current state of the e�ect any any time.

The overall lesson learned from developing PSVP is that video formats and protocols devel-

oped with transmission and storage as the primary applications create arti�cial constraints

for applications that manipulate packet video data.

8.3 Future Research Directions

This section describes four possible future research directions that can be explored

using PSVP: 1) develop a cost model to automate the choice of which types of parallelism to

exploit, 2) develop new hybrid formats and transport protocols that facilitate packet video

manipulation, 3) develop the FX Compiler to create e�ect-graph representations from a

high-level video e�ect description language, and 4) explore dynamic resource allocation

and system recon�guration based on system performance feedback.

In the current implementation, decisions on what types of parallelism to use are

made manually. Automating these decisions creates a number of interesting problems.

First, a cost model for predicting the performance of di�erent implementations needs to

be constructed. This cost model can be integrated within the FX Mapper. One approach

is to construct a cost model at the level of each operator in an e�ect-plan and develop rules
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for how these cost models are combined given the relationship between operators within

the plan. The format of intermediate video bu�ers and the order of operator execution

could be optimized relative to these cost models.

A second research direction is to expand the idea of a packet video format de-

signed for manipulation. A format is needed that allows more uid trade-o� between

exibility, coding granularity, and compression. The SC format is one example of a point

in this trade-o� space. Another point is a format that allows mixed types of blocks (e.g.,

some compressed and some uncompressed) so blocks that will not be transformed by an

e�ect are not needlessly decoded and coded. In conjunction with new packet video for-

mats, new transport protocols or extensions to existing ones can be developed that expose

inter-packet relationships and provide information that improves the performance of the

PSVP parallelism mechanisms. These research directions deviate from our original goal of

using standard video formats and protocols and examines how video manipulation tasks

can be facilitated by redesigning the video formats and protocols used.

The FX Compiler component is currently undeveloped. This component should

apply compiler technology to the problem of creating an e�ect-graph from a high-level

video e�ects language such as RIVL. Investigating this problem will expose the limitations

and strengths of using a graph representation for video e�ects.

Many PSVP mechanisms are speci�cally designed to accommodate dynamic re-

source allocation and recon�guration. Another future research direction is to develop com-

ponents to monitor available resources and dynamically reallocate these resources among

simultaneously executing video e�ects. A variant of this problem is to reallocate resources

dynamically that are used within the e�ect-plan for one video e�ect.

8.4 Summary

This dissertation described the design and implementation of the Parallel Software-

only Video E�ects Processing system. The system was developed as a framework for

investigating how standard formats and protocols can be used for applications that ma-

nipulated compressed packet video streams. The key is to exploit parallelism and use

a distributed general-purpose computing environment like the Berkeley NOW. The sys-

tem was developed by incorporating several technologies including the MASH multimedia

toolkit, Scalable Reliable Multicast, the Scalable Naming and Announcement Protocol,
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and GLUnix libraries. All of the software we developed for PSVP is publicly available and

we encourage other researchers to build upon our e�orts.



159

Bibliography

[1] T. Akiyama, H. Aono, K. Aoki, K.W. Ler, et al. Mpeg2 video codec using image com-

pression dsp. IEEE Transactions on Consumer Electronics, 40(3):466{472, August

1994.

[2] S.R. Alpert, M.R. La�, W. Randall Koons, D.A. Epstein, et al. The efx editing and

e�ects environment. IEEE Multimedia, 3(1):15{29, Spring 1996.

[3] E. Amir, S. McCanne, and R. Katz. An active service framework and its application to

real-time multimedia transcoding. Computer Communication Review, 28(4):178{189,

October 1998.

[4] D. Bailey, M. Cressa, J. Fandrianto, D. Neubauer, et al. Programmable vision pro-

cessor/controller for exible implementation of current and future image compression

standards. IEEE Micro, 12(5):33{39, October 1992.

[5] A. Bilas, J. Fritts, and J.P. Singh. Real-time parallel mpeg-2 decoding in software.

Proceedings of the 11th International Parallel Processing Symposium, pages 197{203,

April 1997.

[6] V.M. Bove. Hardware and software implications of representing scenes as data. Pro-

ceedings of ICASSP '93, 1:121{124, 1993.

[7] V.M. Bove, B.D. Granger, and J.A. Watlington. Real-time decoding and display of

structured video. Proceedings of the International Conference on Multimedia Com-

puting and Systems, pages 456{462, 1994.

[8] V.M Bove and J.A. Watlington. Cheops: A recon�gurable data-ow system for

video processing. IEEE Transactions on Circuits and Systems for Video Process-

ing, 5(2):140{149, April 1995.



160

[9] V.M. Bove and J.A. Watlington. Cheops: a recon�gurable data-ow system for

video processing. IEEE Transactions on Circuits and Systems for Video Technology,

5(2):140{149, April 1995.

[10] Berkeley Multimedia Research Center. The Berkeley Internet Broadcasting System.

http://bmrc.berkeley.edu/bibs.

[11] N. Chaddha and A. Gupta. A frame-work for live multicast of video streams over the

internet. Proceedings of the 3rd IEEE International Conference on Image Processing,

1:1{4, 1996.

[12] D. Chin, J. Passe, F. Bernard, H. Taylor, et al. The princeton engine: a real-time

video system simulator. IEEE International Conference on Consumer Electronics

Digest of Technical Papers, pages 144{145, 1988.

[13] D. Chin, J. Passe, F. Bernard, H. Taylor, and S. Knight. The Princeton Engine:

A real-time video system simulator. IEEE Transactions on Consumer Electronics,

32(2):285{297, 1988.

[14] D.D. Clark and D.L. Tennenhouse. Architectural considerations for a new genera-

tion of protocols. Proc. ACM SIGCOMM 1990, Computer Communication Review,

20(4):200{208, September 1990.

[15] American Broadcasting Company. Sam Donaldson @ ABCNews.com.

http://www.abcnews.go.com.

[16] D.E. Culler et al. Parallel computing on the Berkeley NOW. 9th Joint Symposium

on Parallel Processing, 1997.

[17] D.E. Culler and J.P. Singh. Parallel Computer Architecture: A Hardware/Software

Approach. Morgan Kaufmann Publishers, Inc., San Francisco, California, 1998.

[18] S.E. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford

University, 1991.

[19] S. Dutta and W. Wolf. Processing element design for programmable video signal

processors. VLSI Signal Processing VIII, pages 401{410, 1995.



161

[20] T. Enomoto and M. Yamashina. Video signal processor (vsp) ulsis for video data

coding. Proceedings of the International Symposium on VLSI Technology, Systems,

and Applications, pages 184{188, 1993.

[21] D.A. Epstein, S.R. Alpert, and I. Chen. The ibm power visualization system: A

digital post-production suite in a box. SMPTE Journal, 104(3):125{133, March 1995.

[22] D.A. Epstein et al. The IBM POWER Visualization System: A digital post-

production suite in a box. 136th SMPTE Technical Conference, pages 136{198, 1994.

[23] S. Evans and R. Yates. Programmable general purpose data path suitable for video

signal processors. Electronics Letters, 29(22):1922{1924, October 1993.

[24] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable multi-

cast framework for light-weight sessions and application level framing. IEEE/ACM

Transactions on Networking, December 1997.

[25] M.J. Flynn. Some computer organizations and their e�ectiveness. IEEE Transactions

on Computing, (C-21):948{960, September 1972.

[26] D.P. Ghormley, D. Petrou, S.H. Rodrigues, A.M. Vahdat, et al. Glunix: a global layer

unix for a network of workstations. Software - Practice and Experience, 28(9):929{961,

July 1998.

[27] E. De Greef, F. Catthoor, and H. De Man. Memory organization for video algorithms

on programmable signal processors. Proceedings of the International Conference on

Computer Design: VLSI in Computers and Processors, pages 552{557, 1995.

[28] Object Management Group. Common Object Request Broker Architecture.

http://www.omg.org.

[29] UCB Multicast Network Research group. The MASH Toolkit.

http://mash.cs.berkeley.edu/mash/index.html.

[30] T. Ikedo. A scalable high-performance graphics processor: Gvip. Visual Computer,

11(3):121{133, 1995.

[31] Microsoft Incorporated. About DirectX. http://www.microsoft.com/directx/overview/aboutdx.asp.



162

[32] Y.-K. Lai, L.-G. Chen, H.-T. Chen, M.-J. Chen, et al. A novel video signal processor

with programmable data arrangement and e�cient memory con�guration. IEEE

Transactions on Consumer Electronics, 42(3):526{534, August 1996.

[33] C.L. Lee, C.S. Ho, S.-F. Tsai, C.-F. Wu, et al. Implementation of digital hdtv video

decoder by multiple multimedia video processors. IEEE Transactions on Consumer

Electronics, 42(3):395{401, August 1996.

[34] C.J. Lindblad, D.J. Wetherall, and D.L. Tennenhouse. The vusystem: a programming

system for visual processing of digital video. Proceedings ACM Multimedia '94, pages

307{314, 1994.

[35] M. Litzkow, M. Livny, and M.W. Mutka. Condor - a hunter of idle workstations.

Proceedings of the 8th International Conference of Distributed Computing Systems,

pages 104{111, June 1988.

[36] R.M. Lougheed and D.L. McCubbrey. The cytocomputer: a practical pipelined im-

age processor. Conference Proceedings of the 7th Annual Symposium on Computer

Architecture, pages 271{278, 1980.

[37] K. Mayer-Patel and L.A. Rowe. Design and performance of the berkeley continu-

ous media toolkit. Proceedings of the SPIE - The International Society for Optical

Engineering, 3020:194{206, 1997.

[38] K. Mayer-Patel and L.A. Rowe. Exploiting temporal parallelism for software-only

video e�ects processing. Proceedings ACM Multimedia '98, pages 161{169, 1998.

[39] K. Mayer-Patel and L.A. Rowe. Exploiting spatial parallelism for software-only

video e�ects processing. Proceedings of SPIE Multimedia Computing and Networking,

3654:252{263, 1999.

[40] K. Mayer-Patel and L.A. Rowe. A multicast control scheme for parallel software-only

video e�ects processing. Proceedings ACM Multimedia '99, 1999.

[41] S. McCanne et al. Toward a common infrastructure for multimedia-networking mid-

dleware. Proceedings of the 7th Intl. Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV), 1997.



163

[42] S. McCanne and V. Jacobson. vic: a exible framework for packet video. Proceedings

of ACM Multimedia '95, pages 511{522, 1995.

[43] G. Millerson. The Technique of Television Production. Focal Press, Oxford, England,

1990.

[44] R.F. Mines, J.A. Friesen, and C.L. Yang. Dave: a plug and play model for distributed

multimedia application development. Proceedings ACM Multimedia '94, pages 59{66,

1994.

[45] S. Raman and S. McCanne. Scalable data naming for application level framing in

reliable multicast. Proceeding of the ACM Multimedia Conference 1998, 1998.

[46] A. Rao and R. Lanphier. RTSP: Real Time Streaming Protocol, February 1998.

Internet Proposed Standard, work in progress.

[47] K. R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Appli-

cations. Academic Press, Inc., 1990.

[48] S. Sasaki, T. Satoh, and M. Yoshida. IDATEN: Recon�gurable video-rate image

processing system. FUJITSU Sci. Tech. Journal, 23(4):391{400, December 1987.

[49] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC 1889, RTP: A Trans-

port Protocol for Real-Time Applications, January 1996.

[50] K. Shen and E.J. Delp. A spatial-temporal parallel approach for real-time mpeg video

compression. Proceedings of the 1996 International Conference on Parallel Processing,

2:100{107, 1996.

[51] K. Shen, L.A. Rowe, and E.J. Delp. A parallel implementation of an mpeg1 encoder:

Faster than real-time! Proceedings of SPIE Digital Video Compression: Algorithms

and Technologies, 2419:407{418, 1995.

[52] B.C. Smith. Dali: High-Performance Video Processing Primitives. Cornell University.

Unpublished work in progress.

[53] B.C. Smith. Implementation techniques for continuous media systems and applica-

tions. PhD thesis, University of California, Berkeley : Computer Science Division,

1994.



164

[54] J. Swartz and B.C. Smith. RIVL: a Resolution Independent Video Language. Pro-

ceedings of the Tcl/Tk Workshop, pages 235{242, 1995.

[55] J. Waldo. The jini architecture for network-centric computing. Communications of

the ACM, 42(7):76{82, July 1999.

[56] J.A. Watlington and V.M. Bove. A system for parallel media processing. Parallel

Computing, 23(12):1793{1809, December 1997.

[57] T. Wong, K. Mayer-Patel, D. Simpson, and L.A. Rowe. Software-only video produc-

tion switcher for the Internet MBone. Proceedings of SPIE Multimedia Computing

and Networking, 1998.

[58] C.-M. Wu, Z.-H. Chou, and Y.-L. Chen. A function-pipelined architecture and vlsi

chip for mpeg video image coding. IEEE Transactions on Consumer Electronics,

41(4):1127{1137, November 1995.

[59] D. Wu, A. Swan, and L.A. Rowe. An Internet MBone Broadcast Management System,

January 1999.

[60] N. Yagi, K. Fukui, K. Enami, N. Sasaki, et al. A programmable video signal multi-

processor for hdtv signals. Proceedings of the IEEE International Symposium on

Circuits and Systems, 3:1754{1757, May 1993.


