Aggregate Congestion Control for Distributed
Multimedia Applications

David E. Ott, Travis Sparks, and Ketan Mayer-Patel
Department of Computer Science
University of North Carolina at Chapel Hill

Endpoint A; Endpoint B,

Abstract—We consider the problem of applying aggre-
gate congestion control to a class of distributed multi- ’ ’

media applications known as Cluster-to-Cluster (C-to-C) \ /

applications Flows in such an application share a common @ CEL Aggregation -~ Aggregation 77.'.,' Pl

intermediary path that is the primary source of network Endpoint 4, : . Endpoint B,

delay and packet loss. . : Clustor-to-Clustor : o*
Using the Coordination Protocol (CP)architecture, we . T DataPath .

show how aggregate congestion control can be achieved Endpoint Ay Endpoint By

with the following properties: Cluster A Cluster B

« Almost any rate-based, single-flow congestion control
algorithm may be applied to make aggregate C-to-C
traffic congestion responsive.

o C-to-C applications may use multiple flow bandwidth

Fig. 1. C-to-C application model.

In this paper, we are interested in a class of distributed
shares and still exhibit correct aggregate congestion multimedia appllpatlons that we cadiluster-to-cluster
responsiveness. (C-_to-(‘f) appll_cgtlon_s T_he hallmark of a C-to-C fappll-

. C-to-C applications may implement complex cation is that it is distributed over many computing and
application-specific adaptation schemes in which the cOmmunication devices, @ndpoints within some local
behavior of individual flows is decoupled from the environment and communicates with a set of endpoints
behavior of the congestion responsive aggregate flow.located in some remote environment. Consider, as an

Bandwidth filtered loss detection (BFLDs presented as a example, a tele-immersion application. In such an ap-

technique for making single-flow loss detection algorithms plication, tens of cameras are used to capture video data

work when aggregate traffic uses multiple flowshares. from a number of different angles and viewpoints. These

The approach is evaluated using botms2 simulation and yjdeo streams (along with other sensor information such

e et 4 e of S Spalialized auclo and 30 uacking foraion) e

conditions. 9 sent to a remote environment Wherfs they are consumed

by a distributed set of processes which may, for example,
be driving an immersive multi-projector 3D display.
|. INTRODUCTION C-to-C applications exhibit a number of interesting
and important characteristics. Figure 1 illustrates the

As multimedia applications of the future become ingpstract C-to-C applicaiton model and some of its iden-
creasingly diverse and sophisticated, so too will thedfying characteristics, including:

networking needs. Where one or two data streams was _ _)
sufficient, future applications will require many streams * A Natural aggregation pointData communicated
to handle an ever-growing number of media types and P€tween clusters will typically pass through a nat-
modes of interactivity. Where the endpoints of com- Ural aggregation point (AP)as data leaves one
munication were once single computing hosts, future €nvironment on route to the remote environment.
endpoints will be collections of communication and com- * A common Internet path across flowishile few
puting devices. Examples of such applications include 1ows in a C-to-C application share the exact same
distributed sensor arrays, tele-immersion [1], computer- €nd-to-end path, all flows will share a common
supported collaborative workspaces (CSCW) [2], ubig- Internet path between clusters. While the network

uitous computing environments [3], and complex multi- Within @ cluster can be provisioned to support the
stream, multimedia presentations [4]. needs of the application, the pabetweenclusters

is shared with other Internet flows. We call this the

This work is supported by the National Science Foundation ITR cluster-to-cluster data pa.th
Program (Award #ANI-0219780) « Independent, but semantically related flows of data.

An application may need to priortize its manyhe equivalent of a single flowshare. We believe that
streams in a particular way, or divide complexhis unduly restricts the bandwidth available to any given
media objects into multiple streams with specifilow in a multi-flow application.

temporal or spatial relationships. Furthermore, theseWe propose applying congestion control to aggregate

relationships may be complex and dynamic.

C-to-C application traffic such that an application with

« Transport-level heterogeneityJDP- or RTP-based flows may receive thequivalent ofm flowshares Fur-
protocols, for example, might be used for streanthermore, how available bandwidth is actually divided
ing media while TCP is used to reliably transmiamong flows is left entirely to the C-to-C application. For

application control data.
o Complex adaptation

example, some application flows may take more than a
requirementsChanges in single flowshare, while others take less. The decoupling

available bandwidth require coordinated adaptatiaxf aggregate congestion control from individual flow
decisions that take into account the global objectivéghavior is a novel feature of our approach, and of
of the application, its current state, the nature dfemendous utility to applications with diverse objectives

various flows, and relationship between flows.

and networking needs.

An important issue for C-to-C applications is that of The main contributions of this paper are:

congestion control While individual flows within the e
application may use a variety of transport-level proto-
cols, including those without congestion control, it is
essential thahggregate application traffies congestion
responsive [5].

While application traffic must be responsive to net-
work congestion at an aggregate level, how this respon-
siveness is achieved should depend entirely on the appli-
cation. Thus, the sending behavior of individual flows in
response to congestion may vary widely according to an
arbitrarily complex scheme defined by the application. e
For example, certain flows may halt sending altogether,
while others make media encoding adjustments, and still
others continue to send at their original sending rate.
Important only is the effectiveness of the scheme in
responding to changes in available bandwidth on an
aggregate level. .

This paper addresses the problem of applying conges-
tion control to aggregate C-to-C application traffic. In
particular, we are interested in leveraging existing single-

A protocol is described that supports global mea-
surement of network conditions across all flows of a
C-to-C application.We call this protocol theCoor-
dination Protocol (CPhecause these measurements
enable application endpoints to make coordinated
adaptation decisions.

A method for applying rate-based, single-flow con-
gestion control algorithms to aggregate C-to-C traf-
fic is described and evaluatedo illustrate, we
implement and examine experimentally TFRC [9].
This method is extended to allow aggregate con-
gestion control for the equivalent of flowshares.

A new technique calletbandwidth filtered loss de-
tection (BFLD)is presented that allows bandwidth
availability to be calculated correctly regardless of
the aggregate sending rate.

We describe an implementation of our architec-
ture using FreeBSD and Linux and evaluate its
performance under various condition®ur results
demonstrate the overall success of our approach.

flow congestion control schemes for C-to-C aggregateThe organization of this paper is as follows. Section I

flows such that: discusses various approaches to managing congestion

« Cluster endpoints are informed of bandwidth availcontrol in flow aggregates. In Section Ill, we describe the
able to the C-to-C application as a whole. Coordination Protocol (CPand discuss how it supports

. Endpoints may respond to this information ifthe application of existing single-flow congestion control
application-defined ways. algorithms to the C-to-C application context. Simulation

« End-to-end semantics are preserved for each indesults evaluating these methods for a single flowshare is
vidual flow. presented in Section IV. In Section V, we consider how

« Aggregate application traffic is congestion resporihis technique can be extended to supportiowshares.
sive. In Section VI, we describe our implementation of the CP
In addition, we believe that an aggregate congestié‘Hd present performance evaluation results under various
control scheme should suppariultiple flowsharesin network conditions. Section VII summarizes this paper

other words, if we consider a single flowshare to be t#d discusses future directions.

bandwidth achieved by a single congestion-controlled

flow (i.e., a single TCP connection), then a C-to-C Il. RELATED WORK

application that involves multiple flows should receive The problem of managing congestion control for flow
multiple flowshares. Several approaches discussedamggregates has been addressed by a number of other re-
Section Il ([6], [7], [8]) apply congestion control tosearchers, most notably in the Congestion Manager (CM)
aggregate flows such that the total bandwidth usedvi®rk of Balakrishnan [6]. In this section, we discuss

several such approaches and assess their applicability tirst, CM’s use of a flow scheduler to apportion

the C-to-C application context. bandwidth among flows is problematic. Because C-to-C
applications can have complex schemes for accommo-
dating ad hoc flow arrivals and departures, and for re-
sponding to changes in available bandwidth and changes

One approach for applying congestion control to floyy application state, we expect adaptation strategies to
aggregates is to multiplex a single congestion responspggult in very dynamic rate adjustments for individual
flow among individual flows sharing the same transmigiows. Thus, characterizing each flow’s rate requirements
sion path. In the C-to-C context, this could be dong difficult to doa priori. This kind of characterization is
using a single flow between aggregation points, with @8quired with CM because individual flow rate require-
application- or transport-level multiplexer/demultiplexoments are reconciled within a hierarchical fair-service
at each AP. This approach is taken by [8] in their workyrve (HFSC) scheduler. The HFSC scheduler at the core
on TCP trunkingfor connections that traverse a commogf CM also serves to po“ce the aggregate Sending rate
backbone path. and ensures that the resulting traffic conforms to the

Another variation of this approach known aggre- calculated congestion controlled rate. Thus, while CM
gated TCP (ATCP}s presented in [7]. In this approachis able to take a set of individual flows that are well-
multiple connections from a set of endpoints to a congharacterized, and a set of static interflow priorities, and
mon remote endpoint are each divided intola@al puild a hierarchical schedule for bandwidth allocation,
subconnectiometween an endpoint and its portal routesis approach is less suitable in the more dynamic C-to-
and a sharedemote subconnection C context.

Whether executed at the application-level or transpar-Furthermore, CM is designed to multiplex a single
ently as in TCP-trunking, there are a number of problenggngestion responsive flowshare among flows that have
with flow segmentation in the C-to-C context. First, thehe same end-to-end path. Again, as in the multiplexing
approach reduces aggregate application traffic to a singlgproach, it may be undesirable to constrain a C-to-C
flowshare. We argue in Section | that limiting aggreapplication to a single flowshare. Our solution allows
gate C-to-C application traffic to a single congestiofiggregate C-to-C traffic to use multiple flowshares while
responsive flow is unfairly restrictive in Circumstanceﬁgmaining congestion responsive.
where the application employs numerous flows or is
competing with numerous flows at the bottleneck link. [1l. COORDINATION PROTOCOL(CP)

Second, this approach fails to inform C-to-C application |, yig section, we briefly describe our proposed solu-

endpoints of aggregate networking performance. With, the Coordination Protocol (CP). Our focus here will
out this information, application endpoints cannot fully, 5, cp mechanisms for aggregate congestion control.

exploit specific interstream adaptation schemes. Thirgh, o raader is referred to [10], [11] for a more complete
this approach may result in additional network delay a3asantation of CP.

application packets are buffered at the trunk source wait-
ing to be forwarded in a congestion controlled manney. .
. . . Overview
Finally, end-to-end transport-level protocol semantics are ~ "~
not preserved for individual flows if communication is CP is implemented between the network layer (IP)

segmented into multiple connections (e.g., endpoint &\d the transport layer (TCP, UDP, etc.). The network
AP, AP to AP, AP to endpoint). stacks of each cluster endpoint and their associated AP

are modified to process CP packet headers, while all
_ other nodes along the C-to-C data path require no special
B. Congestion Manager(CM) modifications. Figure 2 illustrates the CP architecture
The congestion manager (CMgrchitecture, proposedfrom a stack implementation point of view.
by Balakrishnan et al. in [6], provides a compelling Using the CP header, a cluster AP identifies C-to-C
solution to the problem of applying congestion contr@pplication packets and attaches network probe infor-
to aggregate traffic where flows share the same end-mation to each. The remote AP receives and processes

A. Flow Segmentation

end path. Unlike the above schemes, CM emphasizes | Aggregation : Aggregation | _
application control by informing flows of bandwidth E"d"m"" L Pem R Evhem
available to them and avoiding the buffering of flow data — ; ; ?m
during the forwarding process. 52 T B T N N 5 15
While the CM architecture proposes many Useful con-""xeuon Lover] |] o =

cepts and mechanisms for managing congestion control L1 1 I |
for flow aggregates, we believe that it is not a good match
for the C-to-C problem context as described in this pap&ig. 2. CP network architecture.

From endpoint to AP: From AP to AP: From AP to endpoint:

C-to-C
IP Header App ID

C-to-C
AppID

C-to-C
App ID

Protocol
ID

Flow
ID

Protocol
D

Flow
ID

Protocol
ID

Flow

Flags
ID 9

v Flags Flags

Seq. Round Trip Time RTT

Unused Timestamp No. Variance

CP Header

Echo Aggregate No. of
Delay idth Used Flows

Transport-level Unused Bandwidth Loss Bandwidth Loss
Header Available Rate Available Rate

Packet Data r

Fig. 3. CP packet structure.

this information. This exchange is bi-directional. ByB. Why A New Protocol Layer?
exchanging probe information in this manner, each AP The decision to insert CP between the network and
builds a picture of current network conditions, including(ansport layers requires some justification. First, we
round-trip time RTT) and loss rates for the applicationgte that placing CP below the transport-layer preserves
as a whole. This information, along with an estimatefie end-to-end semantics of individual transport-level
avgllable _bandW|dth value, is passed to appllcatlt_)n e’}Sir‘otocoIs. Second, we argue that CP logically belongs
points using the CP header on a per-packet basis. iy this position because managing the aggregate C-to-
An AP uses aggregate measurements of RTT and I@ssapplication traffic is conceptually above the next-
to drive a rate-based congestion control algorithm (e.@oep forwarding concerns of IP and below the end-to-
TFRC or RAP). Our design of CP allows a large classnd concerns of the transport layer. Third, application-
of congestion control algorithms to be used, bringing tayer handling of CP packets at the AP would affect
bear the work of others instead of inventing new alg@orwarding performance.
rithms. The result of the congestion control algorithm we point out, however, that our decision is merely one
is an ongoing aggregate sending rate calculation. Thiimplementation. It is certainly possible to implement
estimate predicts the bandwidth that would have be usg¢@ mechanisms we describe at the application-level.
by a single flow employing the same congestion contriideed, Section VI describes a hybrid UDP-based imple-
algorithm under similar network conditions. mentation using CP headers nested within UDP packet
When C-to-C endpoints receive this estimate, they rdata and “deep” processing by kernel-level forwarding
spond by modifying their sending rate in an applicatiorcode at the APs.
defined manner. A C-to-C application is free to employ
any response scheme it wishes in order to realize an

aggregate sending rate that reflects the bandwidth avail-_.
able to the application. In addition, the application need Figuré 3 shows a CP data packet. CP encapsulates

not limit itself to a single flowshare of bandwidth andfansport-level packets by prepending a 16-byte header
may use up tan flowshares, wheren is application- and, in turn, IP encapsulgtes Q_P packetg. I_Each CP header
defined. Within this aggregate rate, applications are fré@ntains an application identifier associating the packet
to manage individual flows in any manner. In particulaf¥!th @ C-to-C application, allowing the AP to identify
individual flows may not be congestion responsive 4{1Ch packets are part of an aggregate flow. The header
long as application traffic as an aggregate is. In SectiondP0 contains a version number and a flags field. The
we discuss how the use of multiple flowshares is realizEgMaining contents of the CP header vary according to

Unused Echo Timestamp

CP Operation

in greater detail. the changing role played by the header as it traverses
: . , _ the network path from source endpoint to destination
The benefits of this approach include: endpoint

« A fast forwarding pathsince traffic shaping and The basic operation of CP is as follows:

flow segmentation are avoided. APs do simple ac-, As packets originate from source endpoints:
counting across all application flows and a small The endpoint stack places information in the CP

number of calculations to obtain probe results. header identifying the C-to-C application and flow.
« Application endpoints are informed aiggregate , As packets arrive at the local AP:

bandwidth availabilityon a per-packet basis. The AP processes the identification information ar-
« Preserved end-to-end semantics transport-level riving in the CP header. Bandwidth usage statistics

protocols. and other state information associated with the C-
« Complete application controbver the manner in to-C application are updated. Part of the CP header

which an aggregate congestion response is realized. js overwritten, allowing the AP to communicate
« Support formultiple flowshares congestion probe information to the remote AP. As

the packet is forwarded to the remote AP, the header Transport-level Protocols

now contains timestamps used to measure RTT, ayransport-level protocols are built on top of CP. We
sequence number to detect losses, and loss rate fge initially considered coordinated versions of TCP
available bandwidth estimates. (C-TCP) and UDP (C-UDP) implemented using a mod-

» As packets arrive at the remote AP: ified socket API.
The CP header is used to measure network delayyjth C-UDP, the application is provided an interface
and loss. Again, part of the CP header is overwrify set the C-to-C application id and flow id, and get the
ten, this time to communicate network conditiofytest estimated RTT, aggregate loss rate, and estimated
information, aggregate bandwidth usage, and othgfajlable bandwidth. The application is responsible for
aggregate measures of performance to the remgigpting its packet send rate based on this information.
endpoint. _ o . Our coordinated version of TCP (C-TCP) provides the

« As packets arrive at the destination endpoint: same end-to-end semantics as TCP (i.e., a reliable byte
The endpoint stack processes network conditifiream), but relies on the underlying CP protocol to de-
information from the CP header and makes {kct congestion and suggest an appropriate sending rate.
available to the transport-level protocol and thghe application can attenuate the suggested congestion-
application. controlled rate by setting a scale factor.

F. Exploiting CP
D. Aggregate Congestion Control A C-to-C application may configure its endpoints to

Implementing aggregate congestion control in CP iﬁgspond to changes in bandwidth availability (as well as

volves several mechanisms. The APs use fields in the 8t|ger information in the CP header) in any way it chooses

header to measure RTT and detect loss. In addition, t‘wéd modify the configuration at will. For example, it

APs maintain an average packet size calculation. ngjgifgront] trfamzrcacl)sreey;?\t tﬁifhalfgg\?vznrte;ez%?ind:nm
information is made available to the congestion contrd ’ pond.

algorithm. The algorithm is expected to estimate th%oplication may instead reali;e a congestiqn-c_ontrolled
available bandwidth for a single flowshare. The estimaﬁ\ggregate send rate by backing off or terminating some

is maintained by thereceiving AP. For example, in Oﬁié@?;enoag\fye;' apolication implements dvnamic
Figure 1, the AP for Cluster B maintains an estimate ! PP P y

for available bandwidth from Cluster A to Cluster Be”‘?'po".“ configuration i$ Ie_ft entirely up to t_he appli-
and reports this estimate back to endpoints in CIusCi?tIon ltself. Some applications may be statically con-
A within the CP header of packets traveling back in thégured from the onset. Others may employ a centralized

other direction. In the same manner, Cluster A maintaiﬁgmrOI process which interprets changing network infor-

an estimate of available bandwidth from Cluster B tg1at|on and Pe”Od.'C&”y sends configuration messages o
Cluster A. each endpoint. Still others may employ a decentralized

approach in which endpoints independently evaluate

To measure RTT.’ the AP’TQ‘ use a ti.mestamp-bass plication and network state information and make send
mechanism. An AP inserts a timestamp into each pack Ie adjustments accordingly

which is echoed along with the delay since that times-
tamp was received. When the echo is received by the
original AP, a RTT sample is constructed BI T = _ ,) , _
current time - timestamp echo - echo deldjhe RTT In this section, we describe our implementation of CP
sample is used to maintain a smoothed weighted averd@s2[12] and discuss simulation results for a mock C-
estimate of RTT and RTT variance. to-C application configured to send at an aggregate rate
To detect loss, each AP inserts a monotonically | quivalent to asingle flowshare. Our results show that
creasing sequen'ce number in the CP header. At performs well when compared to competing flows of

receiving AP, losses are detected as a gap in the sequéﬁ@esame protocol type.
number space. These losses are reported to the conges-
tion control algorithm and a smoothed average loss rge CP-TFRC

is maintained. We refer to ourns2 implementation of the TFRC
CP can employ any rate-based congestion contamngestion control algorithm in CP &P-TFRC (Full
algorithm that uses the current RTT, mean packet sizistails of the TFRC algorithm can be found in [13].)
and individual loss events or loss rates as basic builder CP-TFRC, a loss rate is calculated by constructing
ing blocks. We illustrate this in Section IV where our loss history and identifyingpss eventsThese events
implementation of TFRC is described in some detail. are then converted to lass event rateSmoothed RTT,

IV. SINGLE FLOWSHARES

2

CP-TFRC (aggregate) ——
1.8 | TFRC (per flow) -+ B

1.6

14 -

r2r o] o
P R i

ocommmon o

S —————

|
Bottleneck Link
0.8

06 -

Normalized throughput

Fig. 4. Simulation testbed in ns2. sl

02 r

Parameter Value

Packet size 1K % 10 20 30 40 5 60 70
ACK Size 40 B Number of competing TFRC connections
Bottleneck delay 50 ms

Fig. 5. TFRC versus CP-TFRC normalized throughput as the number

Botreneck bandwidth 15 Mbisec of competing TFRC flows is varied.

Bottleneck queue length 300
Bottleneck queue type | RED
Simulation duration 180 sec

2

CP-TFRC (aggregate) ——
1.8 | TFRC (avg per flow) -+ B

1.6

TABLE |
CONFIGURATION PARAMETERS

14 -

12 -

1L

loss event rate, and various other values are then used
as inputs into the equation [13]:

0.8 -

Normalized throughput

06 -
04 -

- 2b 3b (1) 0.2 7
R Tp + tRTO(S Tp)p(l + 32]?2) o 10 2 3 4 5 60 70

Number of CP connections

S

X

which calculates a TCP-compatible transmission r
X (bytes/sec) wheres is the packet size (bytes)

is the round trip time (sec) is the loss event rate, i

trro is the TCP retransmission timeout (sec), ang C- Evaluation

the number of packets acknowledged by a single TCPOur goal in this section is to compare aggregate CP-
acknowledgement. Updates in bandwidth availability amFRC traffic using a single flowshare with competing

made at a frequency of once every RTT. BandwidthFRC flows sharing the same C-to-C data path. Our
availability is estimated at the remote AP. The resultingbncern is not evaluating the properties (e.g., TCP-
bandwidth availability value is placed in the CP headebmpatibility) of the TFRC congestion control scheme,
on the reverse path, and simply forwarded by the lodalit rather examining how closely C-to-C aggregate traf-

all—‘leg 6. TFRC versus CP-TFRC normalized throughput as the number
of flows in the C-to-C aggregate is varied.

AP to application endpoints. fic conforms to TFRC bandwidth usage patterns. The
_ _ qguestion of how well CP-TFRC performs with respect
B. Configuration to competing TCP flows is left to Section VI

Figure 4 shows our ns-2 simulation topology. Sending In Figure 5, a mock C-to-C application consisting of
agents, labeleds; through S, transmit data toAPs 24 flows competes with a varying number of TFRC flows
where it is forwarded through a bottleneck link to remotgharing the same cluster-to-cluster data path. Throughput
AP, and ACK agentsA; through A,,. For any given values have been normalized so that a value of 1.0
simulation, the bottleneck link betweeRh and I, is represents a fair throughput level for a single flow.
shared by CP flows transmitting between clusters andThe performance of TFRC flows is presented in two
competing (i.e., non-CP) TFRC flows. Table | summavays. First, normalized bandwidth of a single run is pre-
rizes topology parameters. Links between ACK agergsnted as a series of points representing the normalized
Aq through A,, are assigned delay values that vary ihandwidth received by a each competing flow. These
order to allow some variation in RTT for different endpoints illustrate the range in values realized within a trial.
to-end flows. Second, a line connects points representingaerage

Flows in our simulated C-to-C application are configimean) bandwidth received by competing TFRC flows
ured to take an equal portion of the current bandwidticross 20 different trials of the same configuration.
available to the application. That is, if C-to-C end- The CP-TFRC line connects points representing the
points share bandwidth flowshafg then each endpoint aggregatebandwidth received by 24 CP flows averaged
sends at a rate d8/n. More complex configurations areover 20 trials. For each each trial, this aggregate flow
possible, and the reader is referred to [11] for furthe@ompetes as only a single flowshare within the sim-
illustrations. ulation. We see from this plot that as the number of

25

,,,,,

"""*““T\%R,a?fg;eg% values of B to decrease, thus responding to current

2 network conditions. IdeallyB would settle on some
new value which, when multiplied by, results in the
5y] appropriate congestion-controlled level that would have

otherwise been achieved by independent flows.

Figure 7 shows that this is not the case. For each
simulation, the number of CP-TFRC and competing
TFRC flows is held constant at 24. The number of
. : - - p” . flowshares used by CP-TFRC traffic is then increased

Number of flow shares from k& = 1 to m using the naive approach. The factor
k is given by ther-axis. The normalized fair share ratio

with 1.0 representing perfect fairness) is given by the
competing TFRC flows increases, C-to-C flows recei\sye P gp)is g y

) o axis.
onIy_ slightly less than their fair sh_are. In Figure 7, increases in the number of flowshares
Figure 6 shows per-flow normalized throughput whe use the average bandwidth received by a competing
the number of competing TFRC flows is held consta RC flow to drop unacceptably low. By — 16
at 24’ and f[he number of CP ﬂQWS s increased, bu@ StH RC flows receive virtuallyno bandwidth, and beyond
sharing a single flowshare. Again aggregate CP traffic re-

. . ; h : = 16, growing loss rates eventually trigger the onset
C?'Ved very _close to its fair share of available bandwit f congestion collapse. Additional simulation work with
with normalized values greater th&r8 throughout.

RAP [14] (not presented in this paper) likewise shows
unacceptable results, although with a somewhat different
V. MULTIPLE FLOWSHARES pattern of behavior suggesting that different congestion
In this section, we consider the problem of supportingontrol schemes result in different types of failure.
multiple flowshares. While numerous approaches for
applying aggregate congestion control using single flow-
shares have been suggested as reviewed in Section Il,BveThe Packet Loss Problem

are unaware of any approach that considers the muItipIeIn the case of CP-TERC. recall that RTT and loss

flowshare problem. The reason for this is that single- ent rates are the primary inputs to equation 1. We

flow congestion control algorithms break when a send%(Y)te that increasing the C-to-C aqaregate sending rate
fails to limit their sending rate to the rate calculated bg(9 gareg 9
hould have no marked effect on RTT measurements

the algorithm. Here we use simulation to show how th'Snce APs simplv use anv available CP packets for the
is the case for CP-TFRC. After discussing the problerc’rﬁ Py Y P

in some detail, we present a new technigandwidth purpose of probe information exchanges. In fact, increas-

filtered loss detection (BFLD@nd demonstrate its effec-'rﬂgggjr;l:gﬁirgei\/?r'llggeagiﬁl:ae:g inlilgdmrgfge aRt;II-;ts
tiveness in enabling multiple flowshares. P

are available for probing.
_ On the other hand, we note that a large increase in C-
A. Naive Approach to-C aggregate traffic has a drastic effectloss event

Our goal in this section is to allow C-to-C applicationsate calculations in CP-TFRC. TFRC marks the begin-
to send the equivalent ofn flowshares in aggregatening of aloss eventwhen a packet los®; is detected.
traffic, wherem is equal to the number of flows in theThe loss event ends when, after a period of one RTT,
application. As mentioned in Section |, we believe thamnother packet los®; is detected. Aninter-loss event
limiting a C-to-C application to a single flowshare maynterval I is calculated as the difference in sequence
unfairly limit bandwidth for an application that wouldnumbers between the two lost packefs= j—i) and,
otherwise employ multiple independent flows. to simplify somewhat, a rat® is calculated by taking

A naive approacltfor realizing multiple flowshares is the inverse of this value = 1/I). Here we note that
simply to have each C-to-C application endpoint multiplshe effect of drastically increasing the number of packets
the estimated bandwidth availability valdgby a factor in the aggregate traffic flow is to increase the inter-loss
of m. Thus, each endpoint behaves as if the bandwidtkient intervall; while the likelihood of encountering
available to the application as a whole 48B. One a packet drop soon after the RTT damping period has
could justify such an approach by arguing that prokexpired increases, the number of packet arrivals during
information exchanges between APs maintain a clostite damping period also increases. The resultlager
feedback loop. That is, an increase in aggregate sendinggrval, or a smaller loss event rate, and hence an
rate beyond appropriate levels will result in increases inflated available bandwidth estimation. This situation is
network delay and loss. In turn, this will cause calculatatkepicted in Figure 8.

Normalized throughput

05

Fig. 7. Throughput for multiple flowshares (naive approach).

Loss Event Interval= 8-2 =6 Stochastically chosen to generate virtual packet events.

1‘2 3 4 5 6 7‘89 s Event . 23 6(7\8/9\10 1314\15 181920 21\22
ot b XCEX b4 X TR ©¢¢® **@@*M*

Loss Event Interval= 15-3 = 12

Loss Event Interval= 10-3 =7
|

1 2 !

I | Virtual 3 4 5 67 8 910 11 12 Loss Event
Multipl 1234567 891011121314151617181920 2122 s . =1/7
ovanre 4 XXX X HEXIXEEXX G ™ =102 rowee ¥ 4K K ¥ 9K b 9Ky X R
RTT

RTT

Fig. 8. Loss event rate calculation for TFRC. Fig. 9. Virtual packet event stream construction by BFLD.

In a sense, the algorithm suffers from the problem of 2 ‘ ‘ ‘ :
inappropriate feedback. For CP-TFRC, too many packets 18 oPTFRG 1
received in the damping period used to calculate a loss e]

14 -

event rate artificially inflates the inter-loss event interval.
The algorithm has been tuned for thgpropriateamount
of feedback which would be generated by a packet
source that is conformant to a single flowshare only.

12+ 1
1L s > |
_—

.
08 -

Normalized throughput

06 -
04 -

C. BFLD o2

0

Our solution to the problem of loss detection in a
multiple flowshare context is calledandwidth filtered
loss detection (BFLD)BFLD works by sub-sampling the
space of CP packets in the network, effectively reducirigsubset of the multiple flowshare packet event stream is
the amount of loss feedback to an appropriate levstochastically chosen to generate a virtual packet event
Essentially, the congestion control algorithm is driven bgtream. In this stream, we see virtual sequence numbers
a “virtual” packet stream which is stochastically samplegssigned to these packet events. As a result, the TFRC
from the actual aggregate packet stream. calculation for the loss event interval decreases from

BFLD makes use of two different bandwidth calculal2 to 7 remedying the problem illustrated in Figure 8.
tions. First is thevailable bandwidthor B,,;;, Wwhichis An interesting feature of this technique is that it can
calculated by the congestion control algorithm employdi appliedregardless of the number of flowsharesed
at the AP. This represents the congestion responsithe C-to-C application. This is because the fadfor
sending rate for a single flowshare. Second isatival ~ adjusts with whatever the amount of bandwidth used.
bandwidth or B,,.;,. The valueB,,,;, iS an estimate of
the bandwidth currently being generated by the C-to§ Evaluation
application.

From these values,sampling fractionF’ is calculated
as F' = Buyail/Barriv- If Bavait > Barriv, thenF' is set
to 1.0. Conceptually, this value represents the fraction

0 5 20 25

10 15
Number of flow shares

Fig. 10. Throughput for multiple flowshares using BFLD.

Figure 10 shows the results of applying BFLD to
the simulations of Figure 7 in Section V-A. As before,
Qe number of CP-TFRC flows and competing TFRC
Qws are both held constant at 24, while the number of

arriving packets and detected losses to sample in or) :
to create the virtual packet stream that will drive th ovyshares taken by CP-TFRC traffic as an aggregate
IS increased fromk = 1 to m. The results show

congestion control algorithm. We refer to this virtuaa dramatic imorovement. Normalized throuahout for
packet stream as thétered packet event stream ¥) gnp

To determine whether a packet arrival or loss shou 'TFEC tfllowslhare(zi_ls cgnbastenrﬂy i!gseTtlgR.g ¥|Vh'|e
be included in the filtered packet event stream, a sim oughput levels achieved by competing ows

stochastic technique is used. Whenever a packet evait consistently close to 1.0.

occurs (i.e., a packet arrives or a packet loss is detected),

a random number is generated in the interval < r < VI. IMPLEMENTATION AND EVALUATION

1.0. If r is in the interval0 < r < F then an event is In this section, we briefly describe our implementation

generated for the virtual packet event stream, otherwiskthe Coordination Protocol using FreeBSD and Linux,

no virtual packet event is generated. including packet header placement, router modifications,
Packets chosen by this filtering mechanism are giverapplication API, endpoint traffic generation, and experi-

virtual packet sequence number that will be used by theental setup. We then go on to present results show-

congestion control algorithm for loss detection, compuitag how BFLD performs in an experimental network

ing loss rates, updating loss histories, etc. Figure 9 illugith competing TCP connections and various levels of

trates the effect of this process. In this figure, we see thatwork delay, bottleneck bandwidth, random loss, and

background traffic loads. Overall, we find that CP doe
quite well in maintaining TCP-compatibility under a

wide variety of network conditions. E
_ =]
A. Implementation Bupose: Jm N = g0 g B
Our implementation of the CP architecture is a com, fit My S

promise between the approach described in Section r% 11.

and an application-level approach. The implementation . .
uses UDP packets with CP packet headers nested withfh described above. Aggreate C-to-C traffic leaves the

the first 20 bytes of application data. Using UDP allowefiP on @ 1 Gb/s uplink. At the center of our testbed are
us to avoid the requirement that application endpoirf&© routers connected using two 100 Mb/s Fast E_the.rnet
have modified network stacks. links. This creates a bottleneck link, and by configuring
While the endpoint implementation is handled at thi&ffic from opposite directions to use separate links,
application level, the AP implementation is handled &mulates the full-duplex behavior seen on wide-area
the kernel level using a dynamically loadable kern@€WOrk links.
module written for FreeBSD version 4.7. This module Competing TCP flows are generated by TCP hosts on
extends IP forwarding capabilities of first and last h(;gpposne sides of the network. These hosts use the well-
routers to provide full AP functionality. The module isknown utility iperf [15] to generate long-lived flows with
configured to recognize UDP packets from particulédn_llmlted data. Each host is connected to its local switch
source-destination host pairings as CP packets, triggerkjnd 100 Mb/s Fast Ethernet. TCP flows share the same
“deep processing” of the CP packet header nested withfttleneck link with CP flows and thus compete with
UDP application data. All state maintained at the Afem for bandwidth. .
is “soft” (i.e., created on demand and torn down bg Also sharln_g the bottleneck link are background flows
timeout). etween traffic hosts on each end of the network. More
An application-level library provides a thin layer of/Vill be said about these flows in Section VI-G. _
indirection within application send and receive calls at Finally, network monitoring during experiments is
the endpoints. For send calls, the libary handles packé&ne in two ways. Firsticpdumpis used to capture
zation and inserts a CP header at the beginning of eddgP/IP headers_from packets traversing the bo'ttleneck,
send buffer. For receive calls, the library first removed!d then later filtered and processed for detailed per-
and processes the CP header, then passing data tof@f@ance data. Second, a software tool is used in
application level. API calls are provided that allows thgonjunction withALTQ [16] extensions to FreeBSD to
application to query newtork and flow information. ~ Monitor queue size, packet for_/vardlng events, and packet
To drive the system, we constructed a test applicatié’ﬁ()p events on the'outbour.ld mterfgce of th'e bottleneck
comprised of two endpoint clusters exchanging data K¥/ters. The resulting log information provides packet
infinite data sources. Each endpoint acts essentially /88S rates with great accuracy.
a rate-based traffic generator, sending mock data to a
remote endpoint at a rate equal & where B is the . pPerformance metrics
available bandwidth reported by CP akdis a multi-

plicative factor and input parameter. Our test application Overall, our goal is to compare aggregate CP flow

lacks the rich semantic relationships seen in real-wolllg T0"mance (o that of TCP under various network condi-
flons to see whether the CP architecture can successfully

distributed multimedia applications, but provides us Wltraaintain compatibility when the number of flowshares is

the tools we need to verify system correctness and sty Caled. Toward this end, we make use of two comparative
overall AP performance. Endpoint hosts include botfy &€ ’ .) P
etrics closely related to those described in [9].

Linux hosts (version 2.4) and FreeBSD hosts (versmgﬂ First is normalized throughput ratialefined as the

Experimental network setup.

4.5). ratio of normalized average throughput for a single TCP
flow to the normalized average throughput for a single
B. Experimental Setup CP flowshare.
Our experimental network is shown in Figure 11. CP F
hosts and their local AP on each side of the network Rrcepcop = rorp (2)
represent two clusters that are part of the same C-to-C Fop

application and exchange data with one another. Eddere Frcp and Fop are normalized flowshares as de-
endpoint sends and receives data on a 100 Mb/s linkfioed in Section IV-C and represent the average through-
its local AP, a FreeBSD router that has been CP-enablaut for a single TCP flow or CP flowshare, normalized so

10

7TCP7CP —— 7TCP7CP ——
14 TCP 14 CP —x— 14 TCP 14 CP %

35TCP7CP -

Normalized throughput
Normalized throughput

0.5 9 0.5

0

0 20 40 60 80 100 120 140 10 20 30 40 50 60 70 80
RTT (ms) Bottleneck bandwidth (Mb/s)

Fig. 12. Normalized throughput ratio as delay varies. Fig. 14. Normalized throughput ratio as bottleneck bandwidth varies.
2 ‘ ‘ ‘ ‘ ; ‘ B ‘ ‘ ‘ 7TCP7CP ——
RN LA S— 14 TCP 14 OP —x—

C.O.V. ratio
C.0.V. ratio

05 - 4 05 -

0 20 40 60 80 100 120 140 10 20 30 40 50 60 70 80
RTT (ms) Bottleneck bandwidth (Mb/s)

Fig. 13. C.O.V. ratio as delay varies. Fig. 15. C.O.V. ratio as bottleneck bandwidth varies.

that 1.0 is an ideal fair share. A value greater than 1\@rious combinations of CP and TCP flows are run to
indicates that TCP flows on an average have receiv@¢plore the effects of scaling (7-7, 14-14, 21-21, 28-28,

more bandwidth than CP flowshares, while for valuedd 35-35) and unequal flow distributions (7-35 and 35-
less than 1.0 the reverse is true. 7) on CP performance. For each combination, each of

(C.0.V.) ratio and is meant to compare the degree 6fte, for a total ofm flowshares of aggregate C-to-C

throughput variation seen in aggregate TCP and draffic. _)
traffic: Runs lasted for four minutes and begin after a 20

second ramp-up and stabilization period. Trials using a
C.O.V.rep 3) longer ramp-up and run interval did not show signifi-
C.OV.cp cantly different resultsDummynetioss rates were held
8Pnstant at 1%.

o Figure 12 shows normalized throughput results. In
aggregate throughput samples for TCP or CP divided ¥neral, values remain very close to 1.0 for all trials, with

the_ mean. A vaIU(_a greater than 1.0 indicates that m ep receiving slightly more bandwidth. C.O.V. ratios in

variance is seen in aggregate TCP throughput sam _Bﬁure 13 likewise remain fairly close to 1.0 but show

:han in CP, while for values less than 1.0 the reverse dgme\hat more variance in TCP within the 7-35 unequal
rue. flow distribution set.

COV.recpop =

C.0.V. [17] is computed as the standard deviation

D. Delay experiments E. Bottleneck bandwidth experiments

To test CP under various network delay conditions, we To test CP under conditions of various bottleneck
made use of thelummyne{18] traffic shaper found in bandwidths, we again useilimmynebn the bottleneck
FreeBSD 4.5Dummyneprovides support for classifying FreeBSD routers. This time we varied the bottleneck
packets and dividing them into flows. A pipe abstractiobandwidth configuration from 10 to 80 Mb/s, meanwhile
is then applied that emulates link characteristics includiaintaining a constant 40 ms round trip time and 1% loss
ing bandwidth, propagation delay, queue size, and packeate.
loss rate. Normalized throughput results in Figure 14 are fairly

For this set of experiments, we configuréddmmynet close to 1.0 and consistent across all sets, although CP
on the two bottleneck routers to simulate a range ofceived somewhat more bandwidth in the 35-7 unequal
combined propogation delays between 10 and 130 nfisw distribution set—especially at the smallest bottleneck

11

" TTCR7CR To better capture this dynamic, we tested CP perfor-

14 TOP 14 CP -

mance against various background traffic workloads us-
ing a Web traffic generator known ahtip.

Thttp uses empirical distributions from [20] to em-
ulate the behavior of Web browsers and the traffic that
browsers and servers generate on the Internet. Distri-
butions are sampled to determine the number and size
of HTTP requests for a given page, the size of a
o o o oo o o o response, the amount of “think time” before a new page

Packetloss rate is requested, etc. A single instance @fttp may be
configured to emulate the behavior of hundreds of Web
browsers and significant levels of TCP traffic with real-
N world characteristics. Among these characteristics are

;;‘%%ZEE? heavy-tailed distributions in flow ON and OFF times,
SaTchatcr - | and significant long range dependence in packet arrival
e processes at network routers.

We ran fourthttp servers and four clients on each set
of traffic hosts seen in Figure 11. Emulated Web traffic
was given a 20 minute ramp-up interval and competed
with TCP and CP flows on the bottleneck link in both
directions. We varied the number of browsers emulated

Normalized throughput

0.5

Fig. 16. Normalized throughput ratio as random loss varies.

C.0.V. ratio

0.5

0.005 001 0.015 0.02 0.025 0.03 0035 0.04 0045 005 0.05 from 1000 to 6000 and ran eXperimentS focusing on 14-
Packetloss ate 14 and 35-35 flow configurations. Resulting loss rates
Fig. 17. C.O.V. ratio as random loss varies. are shown in Figure 18 as measured at bottleneck router

eues.

bandwidth levels. Figure 15 shows a very balance Figure 19 shows normalized throughput ratios for both
throughput variance for all equal flow distributions, and 9t gnp
xperiment sets. Results look much improved aiem-

a strikingly unbalanced throughput variance for unequ%

flows distributions. In particular, the 7-35 set shows TCrF\gynetrandpm loss trials Sho"Y”. in Figure 16. TCP flows
flow throughput variation to be nearly double that of C verage slightly more bandwidith than CP flowshares at

L .. |ow load levels for the 35-35 set, while the reverse is
For the 35-7 set, CP shows significantly more VanatIOPrUe for the 14-14 set. C.O.V. ratio results in Figure 20

show very similar levels of throughput variation in TCP
F. Random loss experiments and CP, with only a slight difference at the lowest load

. levels.
To test CP under various loss levels we once again

used thedummynetraffic shaper on bottleneck FreeBSD
routers. We varied random loss levels from 1 to 5%, VIl. SUMMARY AND FUTURE WORK

meanwhil_e maintaining a constant 40 ms round trip time. | - s paper, we have discussed the need for aggregate
Normalized throughput results in Figure 16 show gyngestion control for a class of distributed multimedia
marked drop in ratio values as loss levels are increasgfjications call cluster-to-cluster (C-to-C) applications.

indicating that TCP is increasingly losing bandwidthyo coordination Protocol (CP) was presented as a
to CP. This is a known problem with TFRC that has

been described in [19]. Widmer theorizes that higher

packet loss rates increasingly interfere with TCP’s ability 0.05 — : : T e
to maintain self-clocking since timeouts become more 0045 | TP
frequent. SACK TCP would likely perform better than 0.04 |

0.035 |

FreeBSD’s New Reno implementation but unfortunately
is not supported by FreeBSD version 4.5.

0.03

0.025 |

Packet loss rate

0.02 -

G. Traffic load experiments 0015 |

0.01 |

While testing CP performance under various dum- 0005 L ‘ ‘ ‘ ‘ ‘
mynet loss conditions is instructive, a random loss model O by 00000
is wholly unrealistic. In reality, losses induced by drop
tail queues in Internet routers are bursty and correlatédtl. 18. Loss rates generated by background web traffic.

12

" 14TCP14CP ——
35TCP 35CP —x—

true. One idea is to design application endpoints and/or
transport-level protocols that can use the CP framework
to discriminate betweelocal (i.e., wireless) and\P-to-

AP sources of delay and loss. This can be done by com-
paring end-to-end measurements of network conditions
with reported CP measurements and using discrepancies
as an indication of conditions on the wireless portion of
the path.

Normalized throughput

0.5

3000 4000 5000 6000

Number of browsers

1000 2000

Fig. 19. Normalized throughput ratio as competing load varies. (1]

" 14TCP14CP ——
35 TCP 35 CP -

(2]
(3]

C.0.V. ratio

(4]

0.5

(5]

3000 4000 5000 6000

Number of browsers

(6]
Fig. 20.
framework that makes possible the application of rate]
based, single-flow congestion control schemes to this
context. It does this by providing network probe mechar,
nisms which measure RTT and packet loss for aggrega&e
application traffic traversing the shared intermediary9]
path. Using this information, CP estimates an available
bandwidth for a single flowshare and informs appllcatlo[rﬂO]
endpoints of this value.

We have shown how this framework can be extended
to supportmultiple flowsharesIn particular, we show 1]
that:

« Single flow congestion control algorithms do not
scale naively to support multiple flowshares.

« Bandwidth filtered loss detection (BFLD) a tech-
nique for stochastically sampling a packet arrival
event stream to provide single flow congestiol3!
control algorithms with an appropriate amount of
loss feedback. [14]

« Using BFLD, aggregate C-to-C traffic can effec-
tively realize multiple flowshares.

After demonstrating that CP performs reasonably qule]
when compared to TFRC usimg2simulation, we go on
to evaluate the performance of an actual CP implemi?ﬂ
tation using FreeBSD and Linux under a wide variety
network conditions. Our results show the overall succegs]
of our approach. [19]

Finally, an issue we have considered for future work is
the use of wireless endpoints within a C-to-C applicatiqpg)
cluster. In this case, the assumption that endpoint-to-AP
communication takes place with little loss or delay is not

C.0.V. ratio as competing load varies.

] L. Breslau, D. Estrin, K. Fall,

REFERENCES

Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev
Stesin, and Henry Fuchs, “The office of the future: A unified
approach to image-based modeling and spatially immersive
displays,” Proceedings of ACM SIGRAPH 98998.

J. Grudin, “Computer-supported cooperative work: its history
and participation.,"Computer vol. 27, no. 4, pp. 19-26, 1994.
M. Weiser, “Some computer science problems in ubiquitous
computing.,” Communications of the ACMol. 36, no. 7, pp.
75-84, July 1993.

T.-P. Yu, D. Wu, K. Mayer-Patel, and L.A. Rowe, “DC: A live
webcast control systemProc. of SPIE Multimedia Computing
and Networking2001.

Sally Floyd and Kevin R. Fall, “Promoting the use of end-to-
end congestion control in the interneZEE/ACM Transactions

on Networking vol. 7, no. 4, pp. 458-472, 1999.

Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Seshan,
“An integrated congestion management architecture for internet
hosts,” Proceedings of ACM SIGCOMMseptember 1999.

P. Pradhan, T. Chiueh, and A. Neogi, “Aggregate TCP conges-
tion control using multiple network probing.,Proc. of IEEE
ICDCS 2000 2000.

H.T. Kung and S.Y. Wang, “TCP trunking: Design, implemen-
tation and performance.Proc. of ICNP '99 November 1999.

S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
based congestion control for unicast applicatiofsfceedings

of ACM SIGCOMM pp. 43-56, 2000.

D. Ott and K. Mayer-Patel, “Transport-level protocol coordi-
nation in cluster-to-cluster applications,Proceedings of the
Interactive Distributed Multimedia Systems Workshop (IDMS)
2001.

D. Ott and K. Mayer-Patel, “A mechanism for TCP-friendly
transport-level protocol coordination,” I@SENIX 2002 June
2002.

S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and
H. Yu, “Advances in network simulation,”JEEE Computer
vol. 33, no. 5, pp. 59-67, May 2000.

M. Handley, S. Floyd, J. Padhye, and J. WidmBf-C 3448:
TCP Friendly Rate Control (TFRC): Protocol Specification
Internet Engineering Task Force, January 2003.

R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end
rate-based congestion control mechanism for realtime streams
in the internet,”Proc. of IEEE INFOCOM March 1999.

" http://dast.nlanr.net/Projects/Iperf/.

C. Kenjiro, “A framework for alternate queueing: Towards
traffic management by pc-unix based routers,USENIX 1998
June 1998, pp. 247-258.

R. Jain, The Art of Computer Systems Performance Analysis
John Wiley and Sons, 1991.

Luigi Rizzo, ,” http://info.iet.unipi.it/ luigi/ipdummynet/.

Jorg Widmer, Equation-Based Congestion Control Ph.D.
thesis, University of Mannheim : Dept of Mathematics and
Computer Science, February 2000.

F.D. Smith, F. Hernandez Campos, K. Jeffay, and D. Ott, “What
tcpl/ip protocol headers can tell us about the web,” AGM
SIGMETRICSJune 2001, pp. 245-256.

