
Abstract
The design and implementation of a software decoder for
MPEG video bitstreams is described. The software has been
ported to numerous platforms including PC’s, workstations,
and mainframe computers. Performance comparisons are
given for different bitstreams and platforms including a
unique metric devised to compare price/performance across
different platforms (percentage of required bit rate per dol-
lar). We also show that memory bandwidth is the primary
limitation in performance of the decoder, not the computa-
tional complexity of the inverse discrete cosine transform as
is commonly thought.

1. Introduction

The CCITT MPEG group was formed in 1988 to de-
velop a standard for storing video and associated audio on
digital media. Their goal was to define a standard that re-
quired bit rates less than 1.5 Mbits/sec, which is achievable
by computing networks and digital storage media available
today. A draft proposal was agreed upon in September
1990. Since then, minor changes have been made, and the
standard has been released. The work described in this pa-
per is based on the December 1991 committee draft [3].

Many research and commercial groups have developed
MPEG decoders. Because of the high stakes involved in

commercializing MPEG technology (e.g., HDTV and video
conferencing), these groups have been reluctant to release
their coders, decoders, or bitstreams. The absence of freely
distributable MPEG source code has hindered research on
MPEG applications.

We implemented an MPEG video decoder for three rea-
sons. First, we wanted to determine whether MPEG video
could be decoded in real-time using a software-only imple-
mentation on current generation desktop computers. Sec-
ond, we needed to develop a portable software decoder for
inclusion in the Continuous Media Player being developed
at U.C. Berkeley [8]. And third, we wanted to contribute
public domain to the research community.

This paper describes the design and implementation of
the decoder. A novel feature of our decoder is the use of a
dithering algorithm in YCrCb-space. We also report the per-
formance of playing seven anonymous bitstreams that we
have acquired on a variety of platforms. Rather than saying
“we can play bitstream A on platform P at N frames/sec-
ond,” we devised a metric that compares the relative price/
performance of different platforms. In our analysis, we also
found that memory bandwidth is the primary limitation in
decoder performance, not the computational complexity of
the inverse discrete cosine transform (IDCT) as is com-
monly thought.

The remainder of this paper is organized as follows.
Section 2 presents a brief introduction to MPEG video cod-
ing. Section 3 describes the implementation of our decoder
and presents a time/space performance analysis. Section 4
describes optimizations to improve decoder performance.
Section 5 describes the bitstreams used in the dithering and
cross-platform analyses presented in sections 6 and 7, re-
spectively. Lastly, we describe the experience of publishing
this software on the Internet.

2. The MPEG Video Coding Model

This section briefly describes the MPEG video coding
model. More complete descriptions are given in an intro-
ductory paper[6] and the ISO standard [3].

Performance of a Software MPEG Video Decoder*

Ketan Patel, Brian C. Smith, and Lawrence A. Rowe
Computer Science Division-EECS

University of California
Berkeley, CA 94720

*This research was supported by grants from the National Science
Foundation (Grant MIP-90-14940 and Infrastructure Grant CDA-
8722788) and Fujitsu Network Transmissions Systems, Inc., and
Hewlett-Packard Company.
Ketan Patel: (510) 642-9585, kpatel@cs.berkeley.edu
Brian C. Smith: (510) 642-9585, bsmith@cs.berkeley.edu
Lawrence A. Rowe: (510) 642-5117, larry@cs.berkeley.edu

To be presented 1993 ACM Multimedia
Conference, Anaheim, CA



Figure 1: Sample sequence.

Video data can be represented as a set of images, I1, I2,
..., IN, that are displayed sequentially. Each image is repre-
sented as a two dimensional array ofRGB triplets, where an
RGB triplet is a set of three values that give the red, green
and blue levels of a pixel in the image.

MPEG video coding uses three techniques to compress
video data. The first technique, calledtransform coding, is
very similar to JPEG image compression [2]. Transform
coding exploits two facts: 1) the human eye is relatively in-
sensitive to high frequency visual information, and 2) cer-
tain mathematical transforms concentrate the energy of an
image, which allows the image to be represented by fewer
values. The discrete cosine transform (DCT) is one such
transform. The DCT also decomposes the image into fre-
quencies, making it straightforward to take advantage of
(1).

In MPEG transform coding, each RGB triplet in an im-
age is transformed into a YCrCb triplet. The Y value indi-
cates theluminance (black and white) level and Cr/Cb
values representchrominance (color information). Since
the human eye is less sensitive to chrominance than lumi-
nance, the Cr and Cb planes aresubsampled. In other
words, the width and height of the Cr and Cb planes are
halved.

Processing continues by dividing the image intomac-
roblocks. Each macroblock corresponds to a 16 by 16 pixel
area of the original image. A macroblock is composed of a
set of six 8 by 8 pixelblocks, four from the Y plane and one
from each of the (subsampled) Cr and Cb planes. Each of
these blocks are then processed in the same manner as
JPEG: the blocks are transformed using the DCT and the re-
sulting coefficients quantized, run length encoded to re-
move zeros, and entropy coded. The details can be found in
[14], but the important facts for this paper are that 1) the
frame is structured as a set of macroblocks, 2) each block in
the macroblock is processed using the DCT, and 3) each
block, after quantization, contains a large number of zeros.

The second technique MPEG uses to compress video,
calledmotion compensation, exploits the fact that a frame
Ix is likely to be similar to its predecessor Ix-1, and so can be

nearly constructed from it. For example, consider the se-
quence of frames in Figure 1, which might be taken by a
camera in a car driving on a country road. Many of the mac-
roblocks in frame I2 can be approximated by pieces of I1,
which is called thereference frame. By pieces we mean any
16 by 16 pixel area in the reference frame. Similarly, many
macroblocks in I3 can be approximated by pieces of either
I2 or I1. The vector indicating the appropriate piece of the
reference frame requires fewer bits to encode than the orig-
inal pixels. This coding results in significant data compres-
sion.

Note, however, that the right edge of I2 (and I3) can not
be obtained from a preceding frame. Nor can the portion of
the background blocked by the tree in I1 because these areas
contain new information not present in the reference frame.
When such macroblocks are found, they are encoded with-
out motion compensation, using transform coding.

Further compression can be obtained if, at the time I2 is
coded, both I1 and I3 are available as reference frames1. I2
can then be built using both I1 and I3. When a larger pool of
reference frames is available, motion compensation can be
used to construct more of the frame being encoded, reduc-
ing the number of bits required to encode the frame. A
frame built from one reference frame is called aP (pre-
dicted) frame, and a frame built from both a preceding
frame and a subsequent frame is called aB (bidirectional)
frame. A frame coded without motion compensation, that
is, using only transform coding, is called anI (intracoded)
frame.

Motion compensation in P and B frames is done for each
macroblock in the frame. When a macroblock in a P or B
frame is encoded, the best matching2 macroblock in the
available reference frames is found, and the amount of x
and y translation, called themotion vector for the macrob-
lock, is encoded. The motion vector is in units of integral or
half integral pixels. When the motion vector is on a half

1 This strategy will, of course, require buffering the frames and in-
troduce delay in both encoding and decoding.
2 The criteria for “best matching” is determined by the encoder.

I1 I2 I3



pixel boundary, the nearest pixels are averaged. The match
between the predicted and actual macroblocks is often not
exact, so the difference between the macroblocks, called the
error term, is encoded using transform coding.

After motion compensation and transform coding, a fi-
nal pass is made over the data using Huffman coding (i.e.,
entropy coding). Figure 2 summarizes the MPEG video
coding process.

To rebuild the YCrCb frame, the following operations
are needed:

(1) the Huffman coding must be inverted
(2) the motion vectors must be reconstructed and

the appropriate parts of the reference frame
copied (in the case of P or B frames), and

(3) the error terms must be decoded and incorpo-
rated (which includes an application of the
IDCT).

Once the YCrCb frame has been built, the frame is con-
verted to a representation appropriate for display. This last
step is calleddithering.

In summary, MPEG uses three techniques, that is mo-
tion compensation, transform coding, and entropy coding,
to compress video data. MPEG defines three types of
frames, called I, P and B frames. These frames use zero,
one, and two reference frames for motion compensation, re-
spectively. Frames are represented as an array of macrob-
locks, and both motion compensation and transform coding
operate on macroblocks.

3. Implementation

The decoder is structured to process a small, implemen-
tation dependentquantum of macroblocks at a time so it can
be suspended while processing a frame. We envision using
the decoder as a part of a larger system (the CM Player [8]),
for delivering video data over local networks. This architec-
ture is required by the player to service other tasks required
in a multimedia system (e.g., handling user input or playing
other media).

The decoder was implemented in C using the X Win-
dowing System. It is composed of 12K lines of code. Our
intent was to create a program that would be portable across
a variety of UNIX platforms. To date, the decoder has been
ported to over 10 platforms. Ports have also been completed
to PC’s and Macintosh’s.

Preliminary analysis of the run-time performance indi-
cated that dithering accounted for 60% to 80% of the time,
depending on the architecture. Consequently, we focussed
our attention on speeding up this part of the code. We also
optimized other decoding procedures using standard opti-
mization tricks: 1) in-line procedure expansion, 2) caching
frequently accessed values, and 3) custom coding frequent
bit twiddling operations. Altogether, these changes to the
decoder reduced the time by 50%. The specific optimiza-
tions are discussed in the next section. More significant im-
provements (over a factor of 15) were made by using an
ordered dither. Dithering is discussed in detail in section 5.

The fastest color dithering algorithm with reasonable
quality is an ordered dither that maps a 24-bit YCrCb image

Figure 2: MPEG video coding procedure.

01101100...
YUV
conversion

Macroblock
Transform Coding

I frame:

B
G

R

YUV
conversion

Motion
compensation

Transform
Coding of

110...
Entropy
Coding

P/B frame:

Y

Entropy
Coding

motion vectors

Cr Cb

+ +
_ +

error terms

B
G

R

Y

Cr Cb

Error Terms

Transform coded
macroblocks

Encoder output

Input image

Input image

Y

Cr Cb

Reference frame(s)

Transform coded
macroblocks



to a 7-bit color space (i.e., 128 colors) using a fixed color
map. We analyzed the performance of the decoder using
this technique. The following table shows the results:

Parsing includes all functions involved in bitstream parsing,
entropy and motion vector decoding, and coefficient recon-
struction. The IDCT code, which is called up to six times
per macroblock, is a modified version of the fastest public
domain IDCT available [5]. The algorithm applies a 1 di-
mensional IDCT to each row and then to each column. Zero
coefficients are detected and used to avoid unnecessary cal-
culation. Functions that perform predictive pixel recon-
struction, including copying and averaging relevant pixels
from reference frames, are grouped under the categoryre-
construction. Finally, dithering converts the reconstructed
YCrCb image into a representation appropriate for display.

The table shows that the majority of time is spent in re-
construction and dithering. Parsing and IDCT each require
approximately 15% of the time. The reason reconstruction
and dithering are so expensive is that they are memory in-
tensive operation. On general purpose RISC computers,
memory references take significantly longer than arithmetic
operations, since the arithmetic operations are performed on
registers. Even though steps such as parsing and IDCT are
CPU intensive, their operands stay in registers, and are
therefore faster than the memory intensive operations of re-
construction and dithering. While improving the IDCT is
important, our decoder could be sped up most significantly
by finding a scheme that would reduce memory traffic in re-
construction and dithering.

4. Optimizations

This section describes some of the low-level optimiza-
tions used to improve the basic decoder. Three kinds of im-
provements are discussed: general coding, IDCT, and
average cheating.

Numerous coding optimizations were applied through-
out the code. One strategy was to use local copies of vari-
ables to avoid memory references. For example, since the
addition of the error term to a pixel value often causes un-
derflow or overflow (i.e., values less than 0 or greater than
255), bounds checking was required. This implementation
results in three operations: the addition of the error term to

Function % Time

Parsing 17.4%

IDCT 14.2%

Reconstruction 31.5%

Dithering 24.3%

Misc. Arithmetic 9.9%

Misc. 2.7%

the pixel, an underflow check, and an overflow check. In-
stead of accessing the pixel in memory three times, a local
copy is made, the three operations are performed, and the
result is stored back into memory. Since the compiler allo-
cates the local copy to a register, we found the operations
themselves to be about four times faster.

We also applied this technique to the bit parsing opera-
tions by keeping a copy of the next 32 bits in a global vari-
able. The actual input bitstream is only accessed when the
number of bits required is greater than the number of bits
left in the copy. In critical segments of the code, particularly
macroblock parsing, the global copy is again copied into a
local register. These optimizations resulted in 10-15% in-
creases in performance.

Other optimizations applied included: 1) loop unrolling,
2) math optimizations (i.e., strength reductions such as re-
placing multiplications and divisions with shifts and adds),
and 3) in-line expansion of bit parsing and Huffman decod-
ing functions.

The IDCT code was heavily optimized. The input array
to the IDCT is typically very sparse. Analysis showed that
30%-40% of the blocks contained less than five coefficients
in our sample data, and frequently only one coefficient ex-
ists. These special cases are detected during macroblock
parsing and passed to the IDCT code that is optimized for
them. We implemented the forward-mapped IDCT optimi-
zation suggested by X and Y [7]. Surprisingly, it did not
speed-up the code. We are not sure why this optimization
did not work. Perhaps the strength reductions performed au-
tomatically by the compiler already reduced the number of
multiplies. Or, the additional memory required for the cache
destroyed the on-chip memory cache reference pattern es-
tablished by pixel reconstruction.

Finally, we found a way to cheat on the computation of
pixel averaging in interframes (i.e., P- and B-frames). The
MPEG standard specifies that predictive pixel values for in-
terframes are constructed from copying areas in past or fu-
ture frames based on a transmitted set of motion vectors.
These motion vectors can be in half-pixel increments which
means pixel values must be averaged.

The worst case occurs when both the horizontal and ver-
tical vectors lie on half-pixel boundaries. In this case, each
result pixel is an average of four pixels. The increased pre-
cision achieved by doing the pixel averaging is lost, how-
ever, in the dithering process. We optimize these functions
in three ways. First, if both horizontal and vertical vectors
lie on whole pixel boundaries, no averaging is required and
the reconstruction is implemented as a memory copy.

Second, if only one motion vector lies on a half-pixel
boundary, the average is done correctly. And finally, if both
vectors lie on half-pixel boundaries, the average is com-
puted with only 2 of the 4 values. We average the value in
the upper left quadrant with the value in the lower right
quadrant, rather than averaging all four values. Although
this method produces pixels that are not exactly correct,



dithering makes the error unnoticeable.

5. Sample Bitstreams

This section describes the bitstreams used for the perfor-
mance comparisons presented in the next two sections.

 Public domain MPEG data is relatively scarce. We se-
lected seven bitstreams available to us that we believe con-
stitute a reasonable data set. Table 1 presents the
characteristics of the bitstreams. Five distinct coders were
used to generate the data. Bitstreams B, D, and E were gen-
erated by the same coder. The video sequences are com-
pletely different except the sequences encoded in bitstreams
B and C which use selections from the same raw footage.

The variation in frame rates, frame size, and compres-
sion ratios makes analysis with these bitstreams difficult to
compare. We believe the best metric to judge the perfor-
mance of the decoder is to measure the percentage of the re-
quired bit rate achieved by the decoder. For example, if a
bitstream must be decoded at a rate of 1 Mbit/sec to play it
at the appropriate frame rate, a decoder that plays at a rate
of 0.5 Mbit/sec is able to achieve 50% of the required bit
rate. Given a set of bitstreams, two decoders running on the
same platform can be compared by calculating the percent-
age of bitstreams each decoder can play in real-time (i.e., at
the required bit rate).

6. Dithering Performance

This section describes the performance improvements
made to the dithering algorithm(s) used in the decoder. In
this context, dithering is the process of converting a 24-bit
YCrCb image into a representation appropriate for display.
In principle, the YCrCb image is first converted to an RGB
representation and the dithering algorithm is applied. Virtu-
ally all dithering algorithms, however, can be applied di-
rectly to the YCrCb image. This strategy avoids the
memory traffic and arithmetic associated with RGB conver-

sion, and it further reduces memory accesses since the Cr
and Cb planes are subsampled.

The decoder supports monochrome, full (24 bit) color,
gray scale and color mapped display devices. Dithering to
full color devices is tantamount to RGB conversion. Dither-
ing to gray scale devices is done by using only the lumi-
nance plane of the image. For color mapped devices, two
dithering techniques are used: error diffusion (sometime
called Floyd-Steinberg) and ordered dither. Both are dis-
cussed in [9]. Dithering to monochrome devices can be
done using either thresholding or error diffusion.

In error diffusion dithering, each image pixel is mapped
to the closest pixel in a fixed size color map. In our decoder,
the color map has 128 entries, with 3 bits allocated for lu-
minance, and 2 bits each for Cr and Cb chrominance. The
difference, expressed as a YCrCb triplet, between the image
pixel and the colormap pixel is called theerror. The error is
then distributed to neighboring pixels. For example, half the
error might be added to the pixel below and half to the pixel
to the right of the current pixel. The next (possibly modi-
fied) pixel is then processed. Processing is often done in a
serpentine scan order, that is odd number rows are pro-
cessed left to right and even number rows are processed
right to left.

In threshold dithering, any pixel below a certainthresh-
old of luminance is mapped to black, and all other values
are mapped to white. Thresholding can be extended to color
devices by dividing the color space into a fixed number of
regions. Each pixel is mapped to a value inside the region.

Ordered dithering is similar to threshold dithering, ex-
cept the pixel’s (x,y) coordinate in the image is used to de-
termine the threshold value. An N by Ndithering matrix
D(i,j) is used to determine the threshold: D(x mod N, y mod
N) is the threshold at position (x,y). A four by four dithering
matrix is used in our decoder. The matrix is chosen so that,
over any N by N region of the image with the same pixel
value, the mean of the dithered pixels in the region is equal
to the original pixel value. For further details, the interested

Stream
Stream

Size
Frame Size

Avg. Size
I Frame

Avg. Size
P Frame

Avg. Size
B Frame

Frames/
Second

Bits/
Pixel

Bits/
Second

I:P:B

A 690K 320x240 18.9K 10.6K 0.8K 30 .488 (50:1) 1.12M 10:40:98

B 1102K 352x240 11.2K 8.8K 6.3K 30 .701 (34:1) 1.78M 11:40:98

C 736K 352x288 23.2K 8.8K 2.5K 25 .469 (51:1) 1.19M 11:31:82

D 559K 352x240 8.1K 5.5K 4.1K 6 .445 (54:1) 0.23M 6:25:88

E 884K 352x240 12.4K 9.1K 6.5K 6 .698 (34:1) 0.35M 6:25:89

F 315K 160x128 2.8K N/A N/A 30 1.09 (20:1) 0.67M 113:0:0

G 1744K 144x112 2.3K 1.8K 0.4K 30 .492 (49:1) 0.24M 294:293:1171

Table 1: Sample Bitstreams



reader is referred to [9] and [1].
When implementing the decoder, we started with a

straightforward implementation of the error diffusion algo-
rithm with propagation of 4 error values (FS4). The first im-
provement we tried was to implement an error diffusion
algorithm with only 2 propagated error values (FS2). This
change improved run-time performance at a small, and es-
sentially insignificant, reduction in quality.

The second improvement we implemented was to use an
ordered dither. We map directly from YCrCb space to a 7-
bit color map value by using the pixel position, 3 bits of lu-
minance, and 2 bits each of Cr and Cb chrominance. We call
this dither ORDERED.

Table 2 shows the relative performance of these dithers
along with a grayscale (GRAY) and 24-bit color dither
(24BIT). The table also shows the performance of the de-
coder without dithering. These tests were run on an HP 750
which is the fastest machine currently available to us. The
results are expressed as percentages of required bit rates to
factor out the differences in bitstreams.

Several observations can be made. First, notice that only
4 bitstreams (D, E, F, and G) were playable at the required
bit rate (i.e., the percentage was over 100%) using an OR-
DERED dither. These bitstreams have low required bit rates
because streams D and E were coded at 6 frames per second
(fps), stream F is only 160x128 pixels, and stream G is even
smaller at 144x128 pixels.

The remaining bitstreams can be played at approxi-
mately 50% of the required bit rate which implies that the
current generation workstations can play around 15 fps.

Second, notice that even without dithering, which is
shown in the column labeled NONE, our decoder can
achieve only 2/3’s of the required bit rate of a full-size, full-
motion video stream.

Notwithstanding this pessimistic result, private commu-
nications with other groups working on decoders optimized
for particular platforms say that their decoders operate 2-3
times faster than our portable implementation.3 In addition,

faster machines (e.g., DEC Alpha) are reported to play CIF
video (i.e., 360x240) at 28 fps. The implication is that we
are very close to being able to decode and play reasonable-
sized videos. Indeed, video with small images and low
frame rates can be played on PC’s and Macintosh’s.

7. Cross-Platform Performance

In evaluating the decoder on different platforms, we
cannot use the percentage of required bit rate metric to rate
the platform because price/performance is important. For
example, running a decoder on two platforms where one
platform is 4 times more expensive does not really tell you
much. A better metric would factor in the cost of the hard-
ware.

The metric we propose is thepercentage of required bit
rate per second per thousand dollars. We will call this met-
ric PBSD. For example, suppose two machines M1 and M2
that cost $15K and $12K respectively play a bitstream at
100% and 50% of the required bit rate. The PBSD metrics
for the two machines are 6.7 and 4.2. Higher numbers are
better, so machine M1 is more cost efficient than M2.

On the other hand, suppose that M1 played only 60% of
the required bit rate. The PBSD metrics would be 4.0 and
4.2, which implies that M2 has better price performance. Fi-
nally, suppose both machines can play the bitstream at
100% of the required bit rate. In this case, M2 is clearly bet-
ter since it is less expensive, and the metrics confirm this
comparison because they are 6.7 and 8.3.

Table 3 shows the PBSD metric for playing the sample
bitstreams using ordered dithering on three workstations in
our research group. The tests were run with image display
accomplished using shared memory between the decoder
and the frame buffer in the X server.

From the table we conclude that the HP is up to a factor

3For example, machines with graphics pipelines or parallel ALU’s
can overlap multiply-add and matrix operations.

Table 2: Relative performance of different dithering algorithms.

Stream FS4 FS2 ORDERED GRAY 24BIT NONE

A 12.64% 27.4% 51.4% 62.4% 35.7% 66.6%

B 11.2% 23.7% 42.5% 52.3% 30.3% 53.4%

C 11.6% 25.6% 48.6% 61.2% 33.5% 62.8%

D 56.7% 120.9% 225.3% 279.3% 156.1% 287.4%

E 56.0% 117.7% 210.5% 266.7% 151.5% 259.7%

F 43.7% 86.4% 146.2% 200.0% 111.8% 172.7%

G 60.5% 133.5% 247.2% 322.0% 180.9% 327.4%



Stream HP 750
SUN

Sparc 1+
Sun

Sparc 10
DECstation

5000/125

Cost $43K $7K $22K $10K

A 1.19 1.71 1.20 1.31

B 0.99 1.43 0.98 1.15

C 1.13 1.65 1.14 1.29

D 2.32 7.72 4.55 5.26

E 2.32 7.14 4.55 5.60

F 2.32 4.84 3.32 4.11

G 2.32 8.08 4.55 6.37

Table 3: Performance/Price ratios.

of three less efficient on a price/performance basis. This ex-
ample reveals a premium paid to achieve higher bit rates.
Even though the SPARC 1+ achieves a PBSD metric of 4.84
for bitstream F, this represents only 34% of the bitrate. To
achieve 100% of the bitrate for stream F, an HP is required,
since multiple Sparc 1+’s can not be combined to achieve
the bitrate.

On the whole, the HP 750 is between 4-5 times faster
than the Sparc 1+ and nearly 2 times faster than the Sparc
10. If we extrapolate from these data points, we can expect
the next generation of workstations to be able to support
video at the quality of streams A, B and C (320 by 240 pixel
video at 30 frames per second) using a software only solu-
tion.

Many factors will influence this comparison, including
whether the X shared memory option is available to reduce
copies between the decoder and the X server, whether the X
server is local or across a network, and whether the file con-
taining the compressed data is local or NSF mounted. All
these changes can significantly effect the results.

8. Internet Distribution

We were amazed at the response we received when we
distributed this code on the internet.4 Within 6 weeks of an-
nouncing the availability of a portable software decoder for
MPEG video on several newsgroups (e.g., alt.graphics.pix-
utils and comp.compression), over 500 people had FTP’d
the software. Since then it has been retrieved by several
thousand people. They have reported numerous bugs and
suggestions for improvement, and they have contributed
code to add features, fix bugs, and support new platforms.

We also received our first video mail when a user sent us
an MPEG bitstream in a message.5 We played the mail mes-

4 You can FTP the software from toe.cs.berkeley.edu
[128.32.149.117] in the directory pub/multimedia/mpeg.

sage with our decoder. We added definitions to play MPEG
components to an extensible mail system using our de-
coder[4].

9. Conclusions

Several conclusions can be drawn from this work. First,
while IDCT performance is important, it is not the most
critical process in a software decoder. Data structure orga-
nization and bit-level manipulations are critical.

Second, memory bandwidth is important on RISC pro-
cessors. We suspect hardware implementations of MPEG
will use fast static RAM and pipeline key operations (i.e.,
parsing, IDCT, reconstruction, etc.) to avoid this memory
bandwidth problem.

Lastly, current generation workstations, like the HP 750,
can decode 320 by 240 video sequences at 10-15 frames per
second, within a factor of two of real-time performance. We
anticipate real-time decoding with the new generation of
workstations that will soon be available.

Acknowledgments

We want to thank the numerous people who ported the
decoder to new platforms, supplied ideas and code to im-
prove performance of the software, and provided bug fixes
and extensions. While we do not have room to name all the
people who have helped, important contributions were
made by Todd Brunhoff of North Valley Research, Reid
Judd of Sun Microsystems, Toshihiko Kawai of Sony, Tom
Lane of the Independent JPEG Group, Arian Koster of Phil-

5 The message wasuuencode’d which converts a binary file to
ASCII. Uudecode is a companion program that converts the
ASCII back to binary. It works well with saved mail messages be-
cause it ignores message headers.



lips Research, and Paulo Villegas Nuñez of Telefonico,
Madrid, Spain.

References

[1] Foley, James D. et al.,Computer Graphics: Princi-
ples and Practice, 2nd edition. Addison-Wesley,
Reading, Mass., 1990.

[2] ISO/IEC JTC1/SC2/WG10, “Digital Compression
and Coding of Continuous-Tone Still Images”,ISO/
IEC Draft International Standard 10918-1, January
10, 1992.

[3] ISO/IEC JTC/SC29, “Coded Representation of Pic-
ture, Audio and Multimedia/Hypermedia Informa-
tion”, Committee Draft of Standard ISO/IEC 11172,
December 6, 1991.

[4] Knack, K., “MIME silences multimedia critics,”
LAN Computing, Vol. 3, No. 5, May, 1992: pp 3.

[5] Lane, Tom, “JPEG Software,” Independent JPEG
Group, unpublished paper, December 1992.

[6] LeGall, Didier, “MPEG - A Video Compression
Standard For Multimedia Applications,”Communi-
cations of the ACM, April 1991, Vol 34, Num 4, pp
46-58.

[7] McMillan, Leonard and Lee Westover, “A Forward-
Mapping Realization of the Inverse Discrete Cosine
Transform,” Data Compression Conference ‘92,
IEEE Computer Society Press, Los Alamitos, CA.,
1992.

[8] Rowe, Lawrence A. and Brian C. Smith,  “A Contin-
uous Media Player,”Proc. 3rd Int’l Workshop on
Network and Operating System Support for Digital
Audio and Video, San Diego, CA (Nov. 1992).

[9] Ulichney, Robert,Digital Halftoning,MIT Press,
Cambridge, Mass. 1987.


