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Abstract

Internet video is emerging as an important multime-
dia application area. Although development and use
of video applications is increasing, the ability to ma-
nipulate and process video is missing within this ap-
plication area. Current video effects processing so-
lutions are not well matched for the Internet video
environment. A software-only solution, however, pro-
vides enough flexibility to match the constraints and
needs of a particular video application. The key to a
software solution is exploiting parallelism. This paper
presents the design of a parallel software-only video
effects processing system. Preliminary experimental
results exploring the use of temporal parallelism are
presented.

1 Introduction

Internet packet video is emerging as an important
multimedia application area. The Multicast Back-
bone (MBone) conferencing tool vic and NetMeeting
from Microsoft are examples of Internet packet video
conferencing tools. RealVideo from RealNetworks,
NetShow from Microsoft, and IP/TV from Precept
are examples of video-on-demand streaming Internet
packet video applications.

These applications are used for a variety of pur-
poses and audiences. Using a video-on-demand sys-
tem, a single recipient views stored material. Video
conferencing is used by small groups for meetings and
by larger groups to attend remote events (e.g., classes,
conferences, concerts, etc.). Large broadcasts involve
thousands of people “tuned” into an on-going pro-
gram originating from either live sources or stored
archives. For this paper, we group all of these appli-
cations under the general term Internet Video (IV).

Internet video is characterized by variability. Frame
rates, bit rates, and jitter are all variable in TV appli-
cations. In contrast, a television system, whether ana-
log or digital, is characterized by constant frame rates,

bounded bit rates, and synchronous transmission. IV
applications must also deal with packet loss. These
applications often use multicast networking protocols.

Although development and use of IV is increasing,
the ability to manipulate and process video is missing.
Live broadcasts of conferences, classes, and other spe-
cial events require improved production values. Ex-
perience from the television, video, and film indus-
tries shows that visual effects are an important tool
for communicating and maintaining audience inter-
est [9]. Titling, for example, is used to identify speak-
ers and topics in a video presentation. Compositing
effects that combine two or more video images into
one image can be used to present simultaneous views
of people or events at different locations or artifacts
at varying levels of detail. Blends, fades, and wipes
are transition effects that ease viewers from one video
source to another. Figure 1 illustrates several video
effects.

Traditionally, video effects are created using a video
production switcher (VPS). A VPS is a specialized
hardware device that manipulates analog or digital
video signals to create video effects. It is usually op-
erated by a technician or director at a VPS control
console. Figure 2 shows a Composium VPS produced
by DF/X.

A conventional VPS is not well matched for the IV
environment. An analog VPS requires signals with
very tight timing constraints which are not present
with video on the Internet. A digital VPS requires un-
compressed signals and uses networking protocols not
suitable for the Internet. Moreover, hardware VPS
solutions can be very expensive. A VPS can cost any-
where from $1000 for a low-end model with very lim-
ited capabilities to $250,000 for a full featured digital
VPS like the Composium pictured in Figure 2.

Another disadvantage of conventional hardware so-
lutions is the difficulty incorporating them into a net-
worked environment. One advantage of IV applica-
tions is the ability for users to participate from their
desktop. The cost of video processing hardware makes
it impractical to provide each user with his or her own
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VPS. Some organizations build a traditional video
routing network alongside the computer network to
connect desktops with video processing hardware lo-
cated in a machine room. This approach is also im-
practical.

We are developing a software-only video effects
processing system designed for IV applications. A
software-only solution using commodity hardware
provides flexibility that matches the constraints and
needs of these applications. Software systems can be
written to handle video formats already in use on the
Internet and to use multicast communication proto-
cols.

Different IV applications require different tradeoffs
between latency, bandwidth, and quality. Interactive
conferences may demand low latency at the expen-
sive of quality and bandwidth. Broadcast presenta-
tions can tolerate higher latencies to achieve higher
quality. The number of viewers and type of content
also impact the desired quality. Conventional televi-
sion systems cannot vary these quality and delivery
parameters.

The key to a software solution is exploiting paral-
lelism. Currently, a single processor cannot produce
a wide variety of video effects in real-time which is
why conventional VPS systems and early research sys-
tems (e.g., Cheops [1]) use custom-designed hardware.
Even as processors become faster, the demand for
more complicated effects, larger images, and higher
quality will increase. The complexity of video effects
processing is arbitrary because the number, size, data
rate, and quality of video streams is variable. Unlike
CD quality audio, which is near the limits of human
perception, the quality of video used on the Internet is
quite poor. Improvements in processor and network-
ing technology will only be met with greater applica-
tion demands.

Fortunately, video processing contains a high de-

Figure 2: A Video Production Switcher

gree of parallelism. Three types of parallelism can
be exploited for video effects processing: functional,
temporal, and spatial. Functional parallelism decom-
poses the video effect task into smaller subtasks and
maps these subtasks onto the available computational
resources. Temporal parallelism can be exploited by
demultiplexing the stream of video frames to differ-
ent processors and multiplexing the processed out-
put. For example, one processor may deal with all
odd numbered frames while another deals with all
even numbered frames. Spatial parallelism can be ex-
ploited by assigning regions of the video stream to
different processors. For example, one processor may
process the left half of all video frames while another
deals with the right half.

Taking advantage of these types of parallelism re-
quires the solution of different problems. Exploiting
functional parallelism requires the application of com-
pilation techniques to produce an efficient decompo-
sition of the processing task into smaller components.
Temporal and spatial parallelism require mechanisms



for distributing input video streams to the appropri-
ate processor and recombining the resulting output.

This paper describes the design of a parallel
software-only video effects processing system. A gen-
eral software architecture is presented that will run
on a set, of computers connected by a high bandwidth,
low latency network. Specific mechanisms for exploit-
ing temporal parallelism have been implemented and
are described. These mechanisms address the problem
of distributing input frames among different proces-
sors and recombining the output to produce a single
video stream. Performance measurements for these
mechanisms are presented and evaluated.

The remainder of the paper is organized as follows.
Section 2 discusses related work. The system archi-
tecture is described in Section 3. Details of the spe-
cific mechanisms required for temporal parallelism are
given in Section 4. Results from experiments mea-
suring the performance of these mechanisms are pre-
sented in Section 5. Section 6 concludes the paper
and outlines the direction of future work.

2 Related Work

Several hardware systems have been developed to ex-
plore parallel video effects processing. The Cheops
system developed by Bove and Watlington at MIT
is composed of interconnected special-purpose hard-
ware components that implement specific functions
(e.g., discrete cosine transform (DCT), convolution,
etc.) [1]. Video effects are implemented by configuring
and controlling data flow between these specialized
hardware components. This system focused primar-
ily on exploiting temporal and functional parallelism.
The IBM Power Visualization System is a parallel
processor composed of up to 32 identical processors
interconnected by a global bus [4]. It was designed
specifically to support the IBM EFX suite of editing,
effects, and compression software. The Princeton En-
gine is a parallel processor composed of up to 2048
custom-designed processing elements which are used
to simultaneously operate on an array of data ele-
ments (i.e., SIMD) [2]. Many other hardware systems
have also been developed [6, 7, 11]. The system pro-
posed here differs fundamentally from these systems
by not assuming any particular underlying parallel ar-
chitecture.

More recent work by Bove and Watlington de-
scribes a general system for abstractly describing me-
dia streams and processing algorithms that can be
mapped to a set of networked hardware resources [16].
In this system, hardware resources may be special-

purpose media processors or general-purpose proces-
sors. The system is centered around an abstraction for
media streams that describes any multi-dimensional
array of data elements. The system achieves paral-
lelism by discovering overlaps in access patterns and
scheduling subtasks and data movement among pro-
cessors to exploit them. The system uses a general
approach that is not specific to video or packet video
formats and that is independent of networking proto-
cols. This research shares some of the same goals and
solutions that we are working toward. Our system
is different in that we are taking advantage of repre-
sentational structure present in compressed video for-
mats, and we are constrained to standard streaming
protocols for video on the Internet (i.e., RTP [12]).

The Resolution Independent Video Language
(RIVL) is a high-level language for describing video
effects irrespective of format and resolution [15]. The
system described here is independent of any specific
language for specifying video effects, but RIVL serves
as a model for the type of language to be supported.
Dali is a low-level set of image operators that operate
on specific representations of data elements [13]. We
are using Dali as a target language to express primi-
tive effects processing tasks.

3 System Architecture

The overall system architecture is shown in Fig-
ure 3. This picture depicts the high bandwidth,
low latency network as a cloud. The oval labeled
“IV Application” represents an application that re-
quires video effects processing. The application sends
a specification of the desired video effect to the “Ef-
fects Server.” This specification also identifies the
video input streams which may be live or stored
video. The ovals labeled “Effects Processor” repre-
sent general-purpose computers. The “Effects Server”
allocates system resources, maps the effect onto the
available processors, and provides the IV application
with a means to control the effect (e.g., change any
relevant parameters).

3.1 Design Goals

This subsection outlines the major design goals for the
proposed system. Four primary goals that influenced
the system design are:

1. Exploit all available means of parallelism.

2. Use standard video formats and networking pro-
tocols.
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Figure 3: System Architecture

3. Use commodity hardware.

4. Service multiple effect-tasks simultaneously.

The system should exploit all types of parallelism:
functional, temporal, and spatial. To support func-
tional parallelism, the system must compile a high-
level description of a video effect into an interrelated
set of low-level subtasks which are appropriate for
the computational resources (i.e., number of available
processors). Temporal and spatial parallelism require
mechanisms to distribute and reassemble video data
to and from processors. Moreover, the system should
be able to use different types of parallelism in con-
junction with each other to achieve an appropriate
implementation of the desired effect. One challenge
for the system will be to decide which types of par-
allelism are appropriate for a particular video effect.
Format and operation specific cost models will be de-
veloped to predict performance so that good solutions
can be constructed.

The second major design goal is to work within
standard video formats and networking protocols
found on the Internet. Motion-JPEG, H.261/H.263,
and MPEG are the most common video formats in
use today. These formats are very similar — they
use the DCT, quantization, and entropy coding with
intra- and inter-frame optimizations. We will capital-

ize on available compressed domain processing meth-
ods wherever possible [14]. RTP is the standard net-
working protocol used by IV applications [12]. This
protocol is used for input and output video streams.

The third major design goal is to use commodity
hardware. The system should operate on any set of
networked, general-purpose processors. This goal re-
quires the system to be software-only and portable.
Clearly, system performance will be limited by com-
munication latency and processing speeds of the par-
ticular resources available. The most common archi-
tecture will be 2 to 100 processors connected by a
fast, low latency local area network. The Network of
Workstations (NOW) project at U.C. Berkeley pro-
vides this type of environment and is the target for
our development efforts [3].

The last design goal is to support multiple effect-
tasks simultaneously. Several IV applications may re-
quire effects processing from the system at the same
time, or one application may instantiate two or more
effects at the same time. The system processing re-
sources must be dynamically allocated.

This paper concentrates on the software compo-
nents needed to map a particular video effect onto
a given set of resources and the overhead of temporal
parallelism.
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3.2 Software Architecture

The system is composed of three major software com-
ponents: the FX Compiler, the FX Mapper, and the
FX Processor. The relationship between these com-
ponents is illustrated in Figure 4. The FX Compiler
translates a high-level description of a video effect
into an intermediate representation suitable to ex-
ploit functional parallelism. The FX Mapper takes
the intermediate representation and maps it onto the
available resources. The FX Mapper produces effect
“subprograms” that will be executed on a particu-
lar computational resource. The FX Processor exe-
cutes these subprograms and responds to control sig-
nals sent from the application. Placing these compo-
nents in the overall system architecture depicted in
Figure 3, the FX Compiler and FX Mapper are part
of the “Effects Server” and the FX Processor is the
software executing on an “Effects Processor.”

Figure 4 shows the FX Compiler as a compile-time
component, the FX Processor as a run-time compo-
nent, and the FX Mapper as both a compile- and
run-time component. Compile-time refers to parts
of the system that do not depend on knowing ex-
actly how many processors are available or specifically
which video streams will be inputs. Run-time refers
to components that are used when an effect task is
executed.

The FX Compiler is the bridge between high-level
effect descriptions in a language like RIVL and an
intermediate form appropriate for mapping onto par-
allel computation resources. Our strategy for devel-
oping the FX Compiler is to use a directed graph of
video operators as the intermediate form (i.e., a data
flow graph). The video operators are the “instruction
set” available to the FX Compiler.

For example, consider the cross-dissolve video effect
shown in Figure 5. A directed graph representation of
this effect is shown in Figure 6. The directed graph is
made up of three nodes. Each node represents a video
operator. Two of the nodes represent the operation
of multiplying each pixel by a scalar value. The third
node represents the function of adding two frames to-
gether. The cross dissolve is implemented by varying
the parameter p from 0.0 to 1.0.

The granularity of the operators will determine how
much functional parallelism can be exploited. The
price for fine grained operators, however, will be in-
creased overhead. The trade-off between granularity
and overhead is a research issue that will be explored.

Another responsibility for the FX Compiler is con-
structing a control interface description for the graph.
In the cross dissolve example, the parameter p deter-

1
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mines to what degree one video source is dissolved
into the other. A more complicated effect may have
many parameters that are interrelated. A control in-
terface description will name each parameter, indi-
cate legal values for the parameter, and possibly re-
late the parameters to each other. Applications using
the system will use the control interface description to
manage the effect by generating an appropriate user
interface, mapping the controls to a predefined inter-
face (e.g., a software-only video production switcher
interface [17]), or controlling the effect programmati-
cally!.

The FX Mapper is analogous to a database query
optimizer or a compiler code generator. The FX Map-
per determines how the video effect will be paral-
lelized. The effect graph produced by the FX Com-
piler is augmented with temporal and spatial paral-
lelism operators. The graph is then partitioned into
subgraphs which are mapped to computational re-
sources. Again consider the cross dissolve example
illustrated in Figure 6. Figure 7 shows a possible par-
titioning of this graph using functional parallelism.

1For example, building a heuristic program that uses all
sources of input (e.g., media streams, remote control com-
mands, user preferences, etc.) to automate the production of a
video program typically produced by a human director.

In this example, each video operator is mapped to a
different processor. Figure 8 shows a possible parti-
tioning using temporal parallelism. In this example,
the graph is augmented with operators for controlling
the temporal subdivision and interleaving. Figure 9
shows the same example using spatial parallelism.

Our approach to building the FX Mapper is to use
a recursive bipartitioning process to generate possi-
ble configurations. A predictive cost model for the
video operators will be developed to estimate the per-
formance of these configurations and choose the best
one. The bipartitioning process starts by choosing
a particular type of parallelism to exploit and divid-
ing the graph into two subgraphs. Recursively, each
subgraph is processed in the same manner until the
number of subgraphs equals the number processors
available. Heuristics incorporating the predictive cost
model will be used to guide the partitioning process.
Different partitions generated at each step produce
the sequence of plans to be evaluated by the FX Map-
per. Once a plan is selected, the FX Mapper generates
subprograms that implement the effect. The effect
graph primitives are implemented as Dali programs
or operations implemented in a general purpose pro-
gramming language.

The FX Processor is the execution agent for the
subprograms generated by the FX Mapper. The ex-
ecution environment is implemented on the MASH
platform [8]. MASH is a flexible software environ-
ment for building distributed continuous media ap-
plications. It supports existing Internet protocols in-
cluding RTP, RTCP, RTSP and SRM [12, 5, 10].

4 Temporal Parallelism

Exploring the use of temporal parallelism is a logi-
cal starting point for this project for several reasons.
First, the processing subgraph for each computational
resource is the same. In fact, we can abstract away the
effect specification issues which will be handled by the
FX Compiler and Mapper and treat the subgraph as
a black box. Performance of mechanisms to support
temporal parallelism can be measured independent of
the specific processing task.

Two functions must be provided to support tempo-
ral parallelism: select frames to send to a particular
processor and interleave the resulting output streams.
We call these the selector and interleaver functions,
respectively.

RTP, the network communication protocol, directly
influences the solutions to these two issues. Each RTP
payload type (i.e., video format) uses a distinct packet
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format and fragmentation scheme. In the initial ex-
periments described below, we assume an MJPEG
payload since frames in this format do not have tem-
poral dependencies. Common to all RTP packets,
however, are four key pieces of information: the syn-
chronization source id (SSRC); the media timestamp
(MTS); the packet sequence number (PSN); and the
frame marker bit (FMB). Figure 10 shows where this
information is stored in an RTP header. The selector
and interleaver functions work with only these fields.

The MTS is sampled from a payload specific clock,
which for most video sources runs at 90kHz. For the
MJPEG payload type, each frame is fragmented into
one or more packets because a single frame, which is
typically 1 to 8kB, does not fit into a packet which is
typically 1kB. All packets for a particular frame have
the same MTS. Note that the MTS is not a frame
number because the media clock runs at a faster rate
than the video stream frame rate. The difference be-
tween the MTS values of two frames provides a mea-
sure of instantaneous frame rate. The PSN is unique
to a particular RTP packet. If packets are delivered
in order, PSN values will increase monotonically. The
FMB has a payload specific meaning. For MJPEG,
the FMB indicates the last packet for the frame asso-
ciated with a specific MTS. The SSRC uniquely iden-
tifies the sending process.

4.1 Selector Function

We explored two possible strategies for selecting
frames for processing agents: a decentralized ap-
proach in which each processor reads all frames but
only processes its appropriate share, and a centralized
approach in which a specific agent is responsible for
forwarding packets to the appropriate processor.

On the surface, the decentralized approach is at-
tractive because it avoids a central bottleneck and al-
lows for a higher degree of scalability. Also, an extra
latency penalty is avoided because frames can be mul-
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ticast to the FX Processors.

The disadvantages of the decentralized approach,
however, are quite severe. First, a decentralized algo-
rithm for deciding whether or not a particular frame
should be processed by a processor given only the
MTS and PSN is difficult to construct. The algorithm
cannot assume that the difference between any two
consecutive MTS values is constant since the frame
rate may change. Even if we do not expect the frame
rate to change often, small variations in timing are
common. Another approach might be based on count-
ing frames, processing every nth frame where n is the
number of processors. Although there is a small start-
up cost for making sure that no two processors operate
on the same set of frames, this approach works well
in the absence of lost packets. Unfortunately, when
the frame rate of the input stream exceeds the perfor-
mance of a given processor, packets are lost and the
scheme breaks down. Control information must be
exchanged between processors in order for any decen-
tralized scheme to be stable which adds to algorithm
complexity.

Second, synchronization among input streams is
difficult. If the effect involves more than one input
stream (e.g., compositing or transitions), the selec-
tor function must not only identify the correct frames
from one sequence, but also select the appropriately
synchronized frame(s) from the other input stream(s).
This task is complicated further by the fact that the
input streams may be arriving at different frame rates.

Third, the speed-up achieved by the decentralized
approach is dominated by the time required to read
frames that are not processed. For example, if 100
processors are processing a particular input stream
using temporal parallelism, each processor will read
100 frames of data from the network to produce the
1 frame for which it is responsible. The time spent
reading the other 99 frames is wasted.

The centralized approach, on the other hand, pro-
vides a simpler solution at the expense of a latency
penalty. Frame rate changes and packet drops can be
handled consistently and without interprocess com-
munication. Synchronization remains a problem, but
at least information about the assignment of frames to
processors is known and coordinated by the selector
function.

The disadvantage to the centralized approach is the
overhead of reading a frame from the network, decid-
ing which processor to send it to, and then writing
the frame back to the network. Also, the speed of the
selector function determines the maximum frame rate
that can be achieved.



We want to use the centralized approach for its sim-
plicity and to avoid the severe disadvantages and com-
plexity of the decentralized approach. The problem is
the throughput limit imposed by central control and
the latency of passing through another process. To
study the magnitudes of these problems, we built a
simple selector module that distributes frames to par-
ticipating processors in a round-robin manner. Ex-
periments that measure throughput and latency are
presented in Section 5.

4.2 Interleaver Function

The interleaver function must be centralized because
of constraints imposed by RTP. Since packets of
the interleaved output stream share the same SSRC
(see Figure 10), packets that originate from different
source addresses (i.e., processors) will appear as an
SSRC conflict to applications that receive the merged
output stream. Even if the SSRC conflict was re-
solved, PSN’s must increase monotonically which re-
quires each processor to communicate the number of
packets used for each frame accurately and quickly.
Finally, given variable processing latencies for each
frame, the interleaver must adaptively buffer packets
and reorder them. A decentralized approach to this
problem suffers from the same disadvantages as the
decentralized selector function.

The interleaving problem is similar to the prob-
lem of smoothly displaying video frames solved by
video playback applications. The interleaving prob-
lem is different in that the variability of frame arrival
is likely to be more severe and smoothness is not the
primary goal. The primary goal when constructing
the interleaver is to minimize buffering latency while
avoiding frame drops. In the simplest and best case
when frames arrive from the processors in order, pack-
ets can be forwarded by the interleaver without any
buffering delay. If frames arrive out of order, the in-
terleaver must buffer packets for reordering. A frame
that arrives after a subsequent frame has already been
forwarded must be dropped to preserve the RTP se-
mantics of the MTS for the MJPEG payload type.
The challenge is to dynamically adjust the buffering
required to avoid frame drops while minimizing buffer-
ing latency.

Like the smooth playback problem, the key to solv-
ing the interleaving problem is to construct a map-
ping between the MTS of arriving frames and a local
clock to schedule frame transmission. This mapping
incorporates the idea of a playout delay. The playout
delay is the delay incurred (i.e., the expected latency)
if the frame arrives as expected. Thus, a frame can be
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delayed up to this amount and still be properly trans-
mitted. If a frame arrives earlier than its scheduled
playout time, it is buffered.

Our design for an interleaver function uses late
frames to signal when the playout delay should be in-
creased and frames that arrive in order to signal when
the playout delay should be decreased. A tunable pa-
rameter governs how aggressively the interleaver re-
acts to either situation. How these adjustments are
made is described next.

The following definitions are used to describe the
interleaver function:

M(f) : MTS of frame f.
T(f)

: arrival time of frame f. This time is expressed
in the same units as M (f) (i.e., sampled from a
90kHz clock for RTP video streams).

offset : mapping between MTS and local time (i.e.,
playout delay).

A.g : estimated MTS difference between consecutive

frames.

@ : priority queue of frames waiting for transmission
ordered by their MTS.

h : next frame to be sent in @ (i.e., head of Q).
a : latency bias parameter ranged in [0, 1].

B : frame skip tolerance parameter (> 0).

[ : last frame transmitted.

The value M(f) + offset is the scheduled time for
transmitting f. In the ideal case, when all frames ar-
rive in order and equally spaced (i.e., no jitter), offset
is set so that M (f) + offset = T(f). In other words,
offset is set so that frames are scheduled to be trans-
mitted at the same time as they arrive at the inter-
leaver. The first frame to arrive at the interleaver is
used to set offset so it is transmitted immediately. For
all subsequent frames the following algorithm is used
to adjust the playout delay offset:

recv(f)

/* Function that receives frame f */
if (M(f) < M(1))
/* Frame is late. We must drop it. */
/* Adjust offset to increase buffering. */
offset = a * offset + (1 — ) x (T'(f) — M(f))
else if (M (f) + offset < T(f))
/* Frame is late, but still valid */
transmit(f)

0 ~J O U ix LN



9 else if (M(f) — M) < B* Aest)

10 /* Frame is early, but is probably */
11 /* the next expected frame. */
12 transmit(f)
13 offset = (1 — a) * offset + a = (T'(f) — M(f))
14 else
15 /* Frame is early so add to @ */
16 queue-insert(f)
17
18 if(h#f)
19 /* Try to process head of queue if */
20 /* different from this frame. */
21 g =remove-queue-head()
22 recv(g)
23 set-timer(h)
end recv

The nested conditional statements on lines 2, 6, 9,
and 14 classify a frame into the following categories:

Late The frame is too late to be transmitted (line 2).

Late but valid The frame is late (i.e., its scheduled
transmission time has already passed), but can
still be transmitted since no subsequent frame
has yet been sent (line 6).

Early but expected The frame is early (i.e., its
scheduled transmission time is in the future), but
the difference between its MTS and the MTS of
the last transmitted frame is within some toler-
ance of our estimate of the current frame rate
(line 9).

Early The frame is early and does not appear to be
the next frame we expect to transmit (line 14).

If the frame is late, the value of offset is adjusted
to increase buffering to avoid future frame drops. The
value a determines how much adjustment is made. A
value of a near 0 makes large adjustments and a value
of a near 1 makes small adjustments. If the frame is
late but valid, the frame is immediately transmitted
and no adjustment is made to offset.

If the frame is early, the parameters 8 and Ay de-
termine whether or not the frame is the next expected
frame. Although not shown in the pseudo-code, the
value of A.g; is a moving average estimate of the MTS
difference of consecutive frames. This estimate is up-
dated every time a frame is transmitted. The value of
[ determines how sensitive the algorithm is to changes
in frame rate. If the frame is the next expected frame,
it is sent immediately and offset is adjusted to reduc-
ing buffering. In this case, a value of a near 0 makes
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small adjustments and a value of o near 1 makes large
adjustments. If the frame is too early, the frame is in-
serted into the queue. The set-timer function on line
23 schedules transmission for the current head of the
queue.

Every time a frame is processed, the head of the
queue is reprocessed to determine if it can be suc-
cessfully sent (lines 18-22). This check is especially
important if the frame at the head of the queue is
the next expected frame. Sending the next expected
frame early is how the algorithm makes adjustments
to reduce buffering latency.

The value chosen for a determines the trade-off
between reducing latency and avoiding frame drops.
Consider the two extreme cases. When a = 0, an ad-
justment to offset is only made when a late frame is
encountered. The adjustment will ensure that any fu-
ture frame that is delayed by up to the same amount
of time will not be dropped. In this case the playout
delay is set to accommodate the longest delay thus
far seen. When a = 1, no adjustment is made for late
frames. The value of offset is set to send the next
expected frame as soon as possible. In this case, very
little buffering is done to avoid frame drops.

We have built an interleaver that uses this algo-
rithm. Results from an experiment that demonstrates
the tradeoff between latency and buffering are given
in the next section.

5 Experimental Results

The results of two different experiments are presented
in this section. The first experiment measures the
performance of the centralized temporal selector as
the number and frame rate of input streams is in-
creased. The second experiment measures the buffer-
ing latency and frame drop percentage of the tempo-
ral interleaver for different values of the parameter a
described above.

Both experiments were conducted on the U.C.
Berkeley Sparc NOW. The Sparc NOW is composed
of 100 Sun Ultra-Sparcl computers connected by a
Myrinet switch running at 160 MB/s.

5.1 Selector Performance

To measure selector performance, we multicast 1Mb/s
MJPEG RTP video streams with a target frame rate
of 30 fps and used the temporal selector to distribute
the frames to four FX Processors. These four FX
Processors received both the selected frames from the



Number Of | Latency | Std. Dev. | Frame Drop
Streams (ms) (ms) Percentage
1 4.9 17.1 0.0

2 13.3 35.8 0.0

3 36.3 70.5 0.0

4 90.5 97.3 1.7

5 151.9 92.3 3.8

Table 1: Selector Performance
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Figure 11: Latency and frame drops as a function of
a.

temporal selector as well as the frames from the origi-
nal multicast streams. By recording the arrival times
of all frames, the FX Processors can measure the la-
tency incurred by the temporal selector. The selector
was also responsible for synchronizing streams when
more than one input stream was present. Because
our approach to building the selector is independent
of the number of processors involved (i.e., there is lit-
tle per processor state and no part of the algorithm
is dependent on the number of processors involved),
the fact that we used four processors does not affect
selector performance. Table 5.1 shows the results of
the experiment.

As expected, adding more input streams increased
selector latency. The standard deviation indicates
that the selector also introduced jitter. For example,
the standard deviation in the two-input case indicates
that latency values often varied by as much as one
frame time (i.e., 1/30 of a second). The percentage
of frames dropped by the selector is low even for five
input streams.

5.2 Interleaver Performance

The interleaver performance was measured by stream-
ing video through four FX Processors which intro-
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duced a random processing delay chosen from an ex-
ponential distribution. The frames were distributed
to the four FX Processors by the selector function.
This design allows us to simulate a video effects pro-
cessing task which caused frames to arrive at the in-
terleaver out of order. The delay introduced was on
average 33 ms. The latency bias parameter (i.e.,
in the above description) was varied from 0 to 1. La-
tency (i.e., amount of time in the interleaver buffer)
and frame drop percentages were recorded. Figure 11
shows the average latency and frame drop percentage
as a function of the latency bias parameter a. Al-
though the latency and drop rate are related to a as
expected, the parameter does not provide a smooth
tradeoff. A traditional video industry standard is to
keep latency through processing components under
one frame time. For our temporal interleaver, this
goal can only be achieved at the expense of an 8%
frame loss.

6 Summary

This paper described the design of a software-only
video effects processing system. The general architec-
ture of the system is designed to work with commod-
ity general-purpose processors connected by a high-
bandwidth, low-latency network. The problem is to
exploit functional, temporal, and spatial parallelism
to construct real-time solutions for video effects pro-
cessing.

The software architecture is composed of the FX
Compiler, FX Mapper, and FX Processor. The FX
Compiler constructs an intermediate dataflow repre-
sentation of the desired video effect suitable for func-
tional decomposition. The FX Mapper evaluates pos-
sible implementations of the dataflow graph and se-
lects the one with the lowest expected cost. A set of
FX Processors executes the video effect subprograms
constructed by the FX Mapper.

FEach type of parallelism requires the solution of dif-
ferent problems. The main problem with temporal
parallelism is distributing video frames to processors
and reassembling the processed video. Mechanisms
were presented to solve these problems and their per-
formance was measured.

Frame distribution (i.e., the selector function) is dif-
ficult to do in a decentralized manner. A centralized
selector function was built and its performance was
shown to be adequate, thereby precluding the need
for a more complex decentralized solution. An algo-
rithm for frame interleaving was presented that pro-
vided the ability to tradeoff latency and frame drops.



Measurements of the interleaver function show that
the tradeoff can be successfully exploited.

The interleaver function uses information about ar-
riving frames to dynamically adjust its behavior. We
believe that this technique will be widely applicable
in other mechanisms and can be used to generate con-
trol information to dynamically adjust and reconfig-
ure other system components as well. For example,
if frames that arrive at the interleaver from a par-
ticular FX Processor are consistently more delayed
than frames that arrive from other FX Processors,
the interleaver can communicate this information to
the selector function to adjust how many frames are
assigned to that processor.
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