
A Multicast Control Scheme For Parallel Software-only Video E�ects Processing

Ketan Mayer-Patel Lawrence A. Rowe

Berkeley Multimedia Research Center

University of California, Berkeley

fkpatel,roweg@cs.berkeley.edu

Abstract

We have developed a parallel software-only processing sys-
tem for creating real-time video e�ects such as titling and
compositing (e.g., picture-in-picture) using compressed In-
ternet video sources. The system organizes processors into
a hierarchy of levels. Processes at each level of the hierar-
chy can exploit di�erent types of parallelism and coordinate
the actions of lower levels. To control the e�ect, control
messages must be distributed to processors in the hierar-
chy while preserving the independence of each level. This
requires a control mechanism that supports e�cient deliv-
ery of messages to groups of processors, tunable reliability
semantics, and recoverable state information. We describe
a mechanism that meets these requirements that uses IP-
Multicast, the Scalable Reliable Multicast protocol, and the
Scalable Naming and Announcement Protocol. We also de-
scribe an optimization that provides a exible framework for
linking the control of di�erent aspects of one or more related
video e�ects.

1 Introduction

Video e�ects like titling, transitions, and compositing are
an important tool for enhancing video data and maintaining
audience interest [11]. Traditional video e�ects processing
hardware used in the television and �lm industries, however,
is not well suited for streaming Internet video sources which
are compressed and experience variable jitter, delay, and
packet loss in the network.

We are developing a software-only video e�ects process-
ing system designed for streaming Internet video. A software-
only solution using commodity hardware provides the ex-
ibility needed to match di�erent application requirements
and keep up with developments in streaming video technol-
ogy. The key to a software-only system is to exploit paral-

To appear in ACM Multimedia 1999

lelism because current processor speeds are insu�cient for
real-time processing of many e�ects (e.g., chroma-key, com-
plex transformations, etc.). Processor improvements will
only be met with greater application demands for more com-
plicated e�ects, larger images, and higher quality.

Our system is an example of a class of applications in
which multimedia data types (e.g. compressed packet video)
are not simply transmitted and displayed, but manipulated.
In the course of building the Parallel Software-only Video
e�ects Processing system (PSVP), we have developed new
mechanisms and video representations for exploiting di�er-
ent types of parallelism. The design and implementation of
these mechanisms and representations are often constrained
by Internet media transport protocols (e.g., RTP [16],
RTCP [16], etc.) and video formats (e.g., M-JPEG [14],
H.261 [17, 9], H.263 [18], MPEG [13], etc.) that were not
designed for manipulation. We describe many of these mech-
anisms in previous publications [7, 8]. In this work, we de-
scribe how these mechanisms exchange control information
to coordinate themselves as a distributed process.

A key feature of PSVP is a recursive parallel mapping
strategy that hierarchically organizes processors to imple-
ment a video e�ect. Parallelism is independently managed
at each level of the hierarchy. To control the e�ect, con-
trol messages must be distributed to processors in the hi-
erarchy in a manner that preserves the independence of
each level. Traditional methods for controlling a distributed
system such as remote procedure calls (RPC) and remote
method invocation (RMI) can not satisfy the requirements
of PSVP. These requirements include e�cient delivery of
control messages to groups of processors, tunable reliability
semantics associated with control messages on a per mes-
sage basis, and recoverable state information. To meet these
requirements we developed a control mechanism using IP-
Multicast [4], the Scalable Reliable Multicast protocol [5],
and the Scalable Naming and Announcement Protocol [15].
The resulting control mechanism includes an optimization
for composing control elements from di�erent levels of the
process hierarchy as well as from two or more di�erent ef-
fects.

The main research contributions described in this pa-
per are the recursive parallel mapping strategy and the con-
trol mechanisms developed to coordinate the components of
PSVP. These mechanisms demonstrate the e�cacy of expos-
ing application-level semantic information about the control
messages at the transport level.

This paper is organized into 9 sections. Section 2 briey

1



 Application

Live Internet
Video Source

Live Internet
Video Source

Processed
Video Output

Control

Video

Video Archive
Server

Local Network

Effects Processor Effects Processor

Effects Server

Figure 1: System Architecture

describes the PSVP system to provide a context for the rest
of the paper. Section 3 describes in greater detail how pro-
cessors are organized to provide a parallel implementation of
a video e�ect. The control requirements that stem from how
PSVP organizes processors are described in Section 4. The
underlying reliable multicast protocols used by PSVP are
described in Section 5. Section 6 describes the design and
implementation of the control mechanisms. A performance
optimization of these mechanisms that provides additional
control functionality is described in Section 7. Alternative
approaches and related work are described in Section 8. The
paper is summarized in Section 9.

2 The PSVP System

This section reviews the system and software architecture of
the PSVP system. An understanding of how the system is
organized provides a context for the control requirements of
the system. Additional details of the system are described
in previous publications [7, 8].

The overall system architecture is shown in Figure 1.
The oval labeled \Application" represents an Internet video
application that requires video e�ects processing. The ap-
plication sends a speci�cation of the desired video e�ect to
the \E�ects Server." The ovals labeled \E�ects Processor"
represent general-purpose computers. The \E�ects Server"
allocates system resources, maps e�ects onto available pro-
cessors, and provides the application with a means to control
the e�ect (i.e., change relevant parameters).

The system is composed of three major software com-
ponents: the FX Compiler, the FX Mapper, and the FX
Processor. The relationship between these components is
illustrated in Figure 2. Placing these components in the
overall system architecture depicted in Figure 1, the FX
Compiler and FX Mapper are part of the \E�ects Server"
and the FX Processor is the software executing on an \Ef-
fects Processor."

The FX Compiler translates a high-level description of a
video e�ect into an intermediate representation. Our target
representation is a directed graph of video operators (i.e.,
a data ow graph). Figure 3 shows a cross-dissolve (i.e.,
fade) video e�ect expressed as a directed graph of primitive
operators.

The FX Mapper takes the intermediate representation
and maps it onto the available resources. The FX Mapper

C
om

pi
le

-T
im

e
R

un
-T

im
e

Interface between
processing system
and IV application.

FX Compiler

Directed Graph
Representation

FX Mapper

FX Processor

Subprogram 1

FX Processor

Subprogram N

Description of 

Control & Data

Available Resources

Control Interface
Description

High Level
Effect Specification

Figure 2: Software Architecture

determines how the e�ect is parallelized. Section 3 describes
the types of parallelization available and how the FX Map-
per constructs a parallel implementation for an e�ect. The
FX Mapper produces e�ect \subprograms" that will be ex-
ecuted on a particular computational resource. The coordi-
nated actions of these subprograms implement the e�ect.

The FX Processor instantiates the e�ect subprogram,
opens the appropriate input sockets, executes the subpro-
gram when presented with data, and responds to control
signals sent from the application.

3 Mapping Strategy

This section describes the strategy used by the FX Mapper
to construct a parallel video e�ect implementation given a
directed graph representation of the e�ect. We describe the
three di�erent types of parallelism and a recursive mapping
process that creates a layered parallel implementation of the
video e�ect.

The FXMapper exploits three types of parallelism: func-
tional, temporal, and spatial. Functional parallelism decom-
poses the video e�ect into subtasks and maps these subtasks
onto the available computational resources. Temporal par-
allelism can be exploited by demultiplexing the stream of
video frames to di�erent processors and multiplexing the
processed output. For example, one processor may deal with
odd numbered frames while another processor deals with
even numbered frames. Spatial parallelism can be exploited
by assigning regions of each frame to di�erent processors.
For example, one processor may process the left half of each
frame while another processor deals with the right half.

The FX Mapper uses a recursive partitioning process to
generate possible con�gurations. A predictive cost model for

2



Video B

Output

Add

Multiply by
p

Multiply by
1-p

Video A

Cross-Dissolved

Figure 3: Cross-Dissolve Directed Graph Representation

Number of available processors: 9

Op 1

Op 2

Op 3

Effect G

Figure 4: Mapping Strategy Example Part 1

the video operators will be developed to estimate the per-
formance of these con�gurations and choose the best one.
The partitioning process starts by choosing a particular type
of parallelism to exploit and dividing the graph into two
or more subgraphs. The FX Mapper instantiates mecha-
nisms to coordinate the subgraphs speci�c to the type of
parallelism exploited. Recursively, each subgraph is further
processed in the same manner. The base case is a single
processor implementation of a subgraph.

For example, �gure Figure 4 depicts an e�ect G that is
to be mapped onto a set of 9 processors. The e�ect is rep-
resented as a directed graph of three operators (Op1, Op2,
and Op3 ) and takes two inputs and produces one output.
At the �rst level, the FX Mapper may choose to utilize tem-
poral parallelism. To do so, it creates two new subgraphs,

Number of available processors: 7

Op 2

Op 1

Op 3

Effect G1

Op 2

Op 1

Op 3

Effect G2

Temporal
Selector

Processor 1

Temporal
Interleaver

Processor 2

Effect G

Figure 5: Mapping Strategy Example Part 2

Temporal
Selector

Processor 1

Effect G1a

Op 1

Op 2

Op 3

Spatial
Combiner

Processor 3

Op 1

Op 2

Op 3

Effect G1b

Processor 4 Processor 5

Effect G1

Op 2

Op 1

Op 3

Effect G2

Effect G
Temporal

Number of available processors: 4

Interleaver

Processor 2

Figure 6: Mapping Strategy Example Part 3

Op 1

Op 2

Op 3

Spatial
Combiner

Processor 3

Op 1

Op 2

Op 3

Effect G1b

Processor 4 Processor 5

Effect G1

Op 1

Effect G2a

Processor 7

Op 2

Effect G2b

Processor 8

Op 3

Effect G2c

Processor 9

Functional
Controller

Processor 6

Effect G2

Temporal
Interleaver

Processor 2

Temporal
Selector

Processor 1

Effect G

Number of available processors: 0

Effect G1a

Figure 7: Mapping Strategy Example Part 4

G1 and G2, which are copies of the original e�ect graph
G. The mapper also creates two mechanisms for managing
the temporal parallelism. One mechanism is the temporal
selector which is responsible for assigning frames to G1 and
G2. The other mechanism is the temporal interleaver which
takes the outputs of G1 and G2 and interleaves the results
back into one stream. These mechanisms are described in
greater detail in a previous paper [7]. The selector and inter-
leaver processes are assigned processors leaving 7 processors
for the implementation of G1 and G2. This con�guration
is illustrated in Figure 5. The mapper can now divide the
remaining processors among the implementation of G1 and
G2 and recursively parallelize their implementation. Sup-
pose 3 processors are assigned to the parallelization of G1
and 4 processors are assigned to the parallelization of G2.

Given 3 processors to parallelize G1, the FX Mapper
may opt to exploit spatial parallelism. Two copies of G1
are constructed (G1a and G1b) and are modi�ed slightly so
that one produces the left half of the output stream and one
produces the right half of the output stream. A mechanism
for controlling and coordinating these processes is instanti-
ated and assigned to a processor. This process, called the
spatial combiner, is described in a previous paper [8]. Now,
only two processors are left for the implementation of G1a
and G1b. Each graph is assigned one processor. No further
parallelization is possible and the mapper produces a single

3



processor implementation for each subgraph. This con�gu-
ration is illustrated in Figure 6.

Given 4 processors to parallelize G2, the FX Mapper
chooses to exploit functional parallelism. The G2 graph,
which is composed of 3 nodes, is decomposed into 3 new ef-
fect graphs, each of which contains a single node (G2a, G2b,
G2c). A mechanism for coordinating the actions of these
three graphs, called the functional controller, is instantiated
and assigned to a processor. The mapper constructs single
processor implementations for each of the three subgraphs
G2a, G2b, and G2c and assigns each to a processor. The
�nal con�guration is in Figure 7.

A key feature of the recursive mapping strategy is the
separation of each level of parallelism. At any level of par-
allelism the details of lower and higher levels are hidden. In
our example illustrated in Figure 7, the existence of the tem-
poral mechanisms at level G is unimportant to the spatial
mechanisms at level G1.

The processes that implement G1 are unaware that their
actions are being coordinated to exploit temporal paral-
lelism at a higher level. Similarly, the mechanisms instanti-
ated at level G to coordinate the actions of G1 and G2 are
unaware that these e�ect graphs are implemented using fur-
ther levels of parallelism. This separation is made possible
because the interface exposed by an e�ect graph implemen-
tation is constant. In other words, the interface between
the controlling application and the topmost level of the ef-
fect implementation is the same interface used between any
two levels of the implementation.

By hierarchically organizing processes into levels of par-
allelism, any portion of the solution hierarchy can be dy-
namically recon�gured. For example, in the previously il-
lustrated scenario, the implementation of G1 can be dy-
namically recon�gured to use additional processors or even
a completely di�erent type of parallelism as long as the re-
sulting solution maintains an implementation of G1. Single
processor implementations of an e�ect graph (i.e., the leaves
of our solution hierarchy) can be dynamically parallelized.

Supporting a dynamic solution hierarchy also allows
PSVP to take advantage of advanced distributed program-
ming environments. For example, the Berkeley Network-of-
Workstations (NOW) project provides mechanisms for start-
ing a software process on a collection of computers in a load
balancing manner. The AS-1 active services framework pro-
vides mechanisms for starting and maintaining processes on
a collection of computing resources [1]. The Condor project
provides an environment in which processes can be migrated
between processors to exploit idle computing resources [6].
Leveraging these advanced services is simpli�ed if PSVP
assumes nothing about the location of its component pro-
cesses.

To support a dynamic solution hierarchy, the mecha-
nisms that implement a speci�c level of parallelism need
to coordinate the abstract e�ect graphs immediately below
without any knowledge of exactly how these e�ect graphs
are implemented. In our example, the two temporal mecha-
nisms at the topmost level are aware of each other and coor-
dinate with each other to manage the underlying levels G1
and G2. These mechanisms are responsible for translating
any control messages from higher levels to the appropriate
messages for lower levels. Distributing control messages is
challenging because higher level mechanisms are not aware
of how lower level e�ect graph abstractions are implemented.
The number, location, and organization of processes at the

lower levels must remain hidden.

4 Control Requirements

The previous section described the hierarchical organization
of processes implementing an e�ect. This section describes
the control information needed to manage an e�ect and the
requirements for distributing these control messages.

To control an e�ect, the controlling agent, which is an
application or parallel mechanisms at the next higher level,
must know or be able to discover the number and type of
inputs, outputs, and parameters for the e�ect. Each input,
output, and parameter is identi�ed by a name and has one or
more controllable attributes. The attributes in the current
implementation are summarized in Table 1.

Trigger commands are control messages that cause an ef-
fect implementation to produce a frame of output data. Dif-
ferent types of trigger commands are provided to implement
di�erent synchronization schemes among input streams. An
e�ect can also be \auto-triggered" by the arrival of new
input data. An auto-trigger, which is an attribute of a par-
ticular input, is listed in Table 1.

A completion token is a control message produced by an
e�ect to indicate that an output frame has been produced.
Completion tokens provide performance feedback.

The control protocol requirements for distributing con-
trol messages must preserve the advantages of the multi-
layered independent mapping strategy described in the pre-
vious section. The �rst requirement is that the number and
location of processors that implement an e�ect is unknown
to the controlling agent. Similarly, the number and loca-
tion of controlling agents is not known by the processors
implementing the e�ect. We use IP-Multicast [4] to support
this requirement. Each level of the e�ect implementation
is associated with a speci�c IP-Multicast session. Control-
ling agents and processors that implement the e�ect level
join this session. Control messages are sent and received
through this session. IP-Multicast provides e�cient deliv-
ery of messages to members of the session by replicating and
transmitting messages in the network at routers as neces-
sary. The IP-Multicast session acts as a level of indirection.
Session members do not know how many other members
exist or where they are located.

The second requirement for the control protocol is that
di�erent messages are delivered with di�erent levels of relia-
bility. Trigger commands and completion tokens, for exam-
ple, do not need reliable delivery because their value is signif-
icantly diminished over time. Messages that communicate
the number and type of inputs, outputs, and parameters,
however, should be reliably delivered since this information
is valid for the lifetime of the e�ect. Messages setting the
value of a particular attribute of an input, output, or pa-
rameter, should only be delivered reliably if the message is
the most recent update for that attribute.

Finally, we require that the current state of an e�ect
(e.g., attribute values for inputs, outputs, and parameters,
etc.) be recoverable at any time. This soft-state approach
allows for dynamic recon�guration and robustness.

The next section describes the Scalable Reliable Multi-
cast and the Scalable Naming and Announcement protocols
that are used to implement the PSVP control protocol.

4



Attribute Description
Inputs source Speci�es which RTP stream to use as this input. The speci�cation

includes the multicast address, port number, and source id of the video
stream.

auto trigger If set to 1, indicates that the e�ect should produce output frames for
every input frame received.

Outputs dest Speci�es the multicast session that this output stream should be sent
to. Speci�cation includes the multicast address and port number of the
session.

geometry This attribute is used by spatial parallelism mechanisms to specify the
portion of the output frame to be produced. The attribute is set to
four values from 0.0 to 1.0 which de�ne the upper left and lower right
corners of a subregion relative to the true frame size.

format Indicates the desired format for output frames. Possible value currently
include M-JPEG, H.261, and SC. SC is a semi-compressed format we
developed speci�cally to support spatial parallelism.

Parameters type Indicates the type of the parameter. Possible types include: real, inte-
ger, text, and list.

domain Speci�es the domain of the parameter. Domain values are type speci�c.
For example, for real parameters, domain is indicated by two real values
indicating the range of possible values for the parameter.

value The current value of the parameter.

Table 1: Attribute descriptions for inputs, outputs, and parameters.

5 SRM and SNAP

The Scalable Reliable Multicast (SRM) [5] protocol extends
IP-Multicast to provide reliable delivery of data through
a multicast session. The protocol is an example of a re-
ceiver reliable protocol in which receivers, and not sources,
are responsible for detecting losses and requesting repairs.
Any member of the multicast session can respond to re-
pair requests if it can provide the necessary data. The re-
pair requests and the retransmission of data in response to
them use a scalable feedback mechanism based on \multi-
cast damping." Multicast damping uses randomly selected
timer values to prevent more than one session member from
making the same repair request or retransmitting the same
data.

A key feature of SRM is selective reliability. Since re-
ceivers are independently responsible for detecting and re-
covering from losses, each receiver can decide to recover
losses based on application requirements. Some receivers
may need to recover all lost data, some may tolerate losses
of certain types of data, and some may detect losses but
delay recovery until the data is actually needed.

To take advantage of selective reliability tuned to ap-
plication needs, receivers must distinguish the relative im-
portance of lost data. Unfortunately, SRM does not provide
this information. Packets of data in SRM are given sequence
numbers and loss is detected by gaps in the sequence number
space of received packets. The sequence number of the lost
packet is unable to convey to the receiver what type of data
the packet contains. In short, the application-level semantic
structure of data required to exploit selective reliability is
lost when the data is mapped to a single linear namespace
of packet sequence numbers.

Raman and McCanne developed the Scalable Naming
and Announcement Protocol (SNAP) [15] to overcome this
shortcoming of SRM. Built on top of SRM, SNAP provides

a hierarchical namespace that applications can use to expose
the semantic structure of data at the transport layer. This
concept of tailoring network mechanisms to match appli-
cation semantics is an example of Application Level Fram-
ing [3]. With SNAP, each source of data in the SRM ses-
sion is associated with a tree of \containers." Initially, each
source starts with a tree comprised of a single root container.
Sources can create and name new containers as children
under any existing containers. In this way, a hierarchical
namespace of containers is built on a source by source ba-
sis. The namespace information for each source is reliably
disseminated using SRM.

Sources label each unit of transmitted data (i.e., packet)
as belonging to a particular container within the namespace
tree. SNAP maintains a sequence number space for each
container. Packets are delivered to receivers labeled with
the source from which they originated, the container with
which it is associated, and the sequence number within that
container. When lost packets are detected, receivers are no-
ti�ed to which container the lost packet belongs. Receivers
can use this container information to selectively repair lost
packets.

To take full advantage of SNAP, applications must con-
struct namespace hierarchies that adequately expose the
application-level semantic relationships of the transmitted
data. We use SNAP as a foundation for control messages
in PSVP. The following section describes how control mes-
sages are organized to meet the requirements outlined in the
previous section.

6 PSVP Control

Control messages in PSVP are organized into the follow-
ing namespace hierarchy. Under the root container are �ve
containers labeled inputs, outputs, parameters, triggers, map
commands, and misc. For each input of the e�ect, a child

5



Root

source dest geometry type value domainsource

Outputs Triggers

i1 i2 out p

Inputs Misc. Parameters Map Commands

Figure 8: Control Namespace for Cross-Dissolve

container is constructed under the inputs container and la-
beled with the name of the input. For example, Figure 8
illustrates the namespace representing a cross-dissolve e�ect
with two inputs labeled i1 and i2. For each attribute of an
input, a child container is constructed under the container
associated with that input and labeled with the name of the
attribute. In Figure 8, the inputs i1 and i2 have an attribute
called source which is represented by child containers of the
i1 and i2 containers. Outputs and parameters are handled
similarly. In Figure 8, the output of the cross-dissolve e�ect
is represented by a child of the outputs container and is la-
beled out. Attributes of the out output are represented by
children of this container and are labeled with the attributes
names (e.g., dest and geometry). The parameter p in our
example is represented by a child container of the parame-
ters container and has attributes type, domain, and value.
The triggers container is used for trigger commands and
completion tokens. The map commands container is used
to implement control features described in Section 7, and
the misc container is used for debugging and miscellaneous
messages.

Participants in a control session can be one of two types:
controlling agents or implementation agents. Applications
like user interfaces and automated video production pro-
cesses are controlling agents that require control over a video
e�ect. Single processor implementations of a video e�ect
are implementation agents. Parallel processing mechanisms
that manage the use of temporal, spatial, and functional
parallelism act as both implementation agents and control-
ling agents. To higher levels of parallelism and applications,
these mechanisms are implementation agents. To lower lev-
els of parallelism and single processor implementations of
e�ect graphs, these mechanisms act as controlling agents.

Each level of the e�ect implementation is associated with
a di�erent multicast control session. Parallel processing
mechanisms participate in multiple control sessions. They
participate in the control session for their own level as well
as the control sessions for each of the next lower levels that
the mechanisms are coordinating. For example, in Figure 7
which shows a 9 processor implementation of an e�ect, there
are 8 di�erent control sessions with one for each level of the
e�ect (i.e., G, G1, G2, G1a, G1b, G2a, G2b, and G2c). The
temporal mechanisms at level G also participate as control-
ling agents for G1 and G2. The spatial combiner at level
G1 also participates as a controlling agent for G1a and G1b.
The functional controller at level G2 also participates as a
controlling agent for G2a, G2b, and G2c.

Implementation agents communicate the structure of an

e�ect (i.e., number of inputs, number of outputs, param-
eters, etc.), by creating container nodes as children of the
inputs, outputs, and parameters nodes. Various attributes
of inputs, outputs, and parameters are described by creat-
ing a subcontainer for each attribute under the associated
container.

Controlling agents set a particular attribute by transmit-
ting its value as a packet in the attribute's container. When
the packet is received by other participants, the container in-
formation indicates which attribute of which input, output,
or parameter is being set and the data in the packet pro-
vides the new value. Receivers tune the selective reliability
mechanisms for these attribute containers to reliably receive
only the last transmitted packet. To illustrate this point, we
refer to the example namespace for the cross-dissolve e�ect
shown in Figure 8. If an implementation agent receives pack-
ets with sequence numbers 1 and 3 for the source attribute
of the input i1, it will be noti�ed that packet 2 has been
lost. The agent will not issue a repair request because the
information sent in packet 2 is known to be old since packet
3 has already been received. If the SNAP mechanisms dis-
cover a tail-loss of packets 4, 5, and 6, only packet 6 will be
recovered since it represents the most up to date and current
value of the attribute.

The control messages sent in the triggers container in-
clude trigger commands and completion tokens described
earlier. These messages have limited temporal value and no
reliability is associated with this container. The misc and
map commands containers are used for a variety of di�er-
ent messages including control mapping messages which are
described in the next section. Because these control mes-
sages need to be sent reliably, receivers invoke the recovery
mechanisms for all losses.

Using this naming scheme with SNAP and SRM, we can
achieve our primary design goals outlined in the previous
section. Our �rst design goal of hiding the number and
location of both the controlling agents as well as the imple-
menting agents is achieved by using multicast. Our second
design goal of associating di�erent reliability semantics with
di�erent types of control messages is achieved by creating a
namespace structure in SNAP that groups related control
messages together. Our last design goal of being able to re-
cover the current state of an e�ect is supported by SNAP's
ability to reconstruct the current namespace combined with
mechanisms for recovering relevant messages in each of the
containers.

6



E2

Control Session A

Control Session B

Control Session C

Selector
Temporal

Temporal
Interleaver

UI App

E1

Figure 9: Example Control Session Organization with Tem-
poral Parallelism

E2

Control Session A

Control Session B

Control Session C

Selector
Temporal

Temporal
Interleaver

UI App

E1

Figure 10: Example Control Session Organization After
Map Command

7 Control Mapping Feature

The responsibilities of the temporal, spatial, and functional
parallelism mechanisms give these entities dual roles with
respect to control. They participate as implementing agents
for higher levels of parallelism as well as controlling agents
for the lower levels of parallelism that they coordinate. A
consequence of this dual role is the need to participate in
more than one control session and translate control mes-
sages from one session into another. Often control messages
from higher levels can be passed directly to lower levels. To
avoid this forwarding latency, we developed control mapping
commands that enable portions of one control session to be
mapped into another. This section describes this capability.

Figure 9 shows an example using temporal parallelism.
Pictured on the left is a UI application that controls the
e�ect. The e�ect is implemented with temporal parallelism
and involves two processes for controlling the parallelism.
These two processes are labeled as the \Temporal Selector"
and the \Temporal Interleaver." The selector and inter-
leaver processes coordinate the actions of E1 and E2 which
are independent implementations of the e�ect. E1 and E2
may be single processor implementations, or they may be
further parallelized. The UI application participates in con-
trol session A along with the selector and interleaver. The

selector and interleaver processes also participate in control
session B to direct the actions of E1 and control session C to
direct the actions of E2. These control sessions are depicted
in Figure 9 as boxes that group the participating processes.

As described in the previous section, E1 and E2 create
containers in their SNAP namespace to indicate the exis-
tence of inputs, outputs, and parameters and subcontain-
ers to indicate attributes. In our example, suppose E1 and
E2 are cross-dissolve e�ects that use the control namespace
shown in Figure 8. The temporal selector and interleaver
processes detect these containers in control sessions B and
C and reect the structure of the e�ect by constructing a
congruent namespace in control session A. In this way, in-
formation from lower levels is exposed to higher levels and
eventually to the controlling application.

The UI application sends messages in particular contain-
ers to set attribute values for inputs, outputs, and param-
eters, issue trigger commands, and, in general, control the
e�ect. The commands are translated by the temporal selec-
tor and temporal interleaver into the appropriate commands
for E1 and E2. For example, if the UI application issues a
command to set the source attribute of i1 (i.e., specify which
stream should be used as that input), the temporal selector
and interleaver receive this message and take appropriate
action. The temporal selector which is in charge of tem-
porally dividing input streams among E1 and E2 translates
this command to set the inputs of E1 and E2. The com-
mand is not simply forwarded to E1 and E2 because they
do not receive the input stream directly, but instead, will
receive streams that have been temporally divided by the
temporal selector. The temporal interleaver, however, takes
no action because it is only responsible for output streams
and not input streams. Consequently, the interleaver has
no interest in control messages that involve inputs. The in-
terleaver tunes the SRM/SNAP reliability mechanisms to
avoid repairing any lost control messages that involve in-
puts. Similarly, the temporal selector is optimized to deal
only with control messages that involve inputs and does not
participate in output control messages. One advantage of
using SRM and SNAP is the ability to tune the reliability
semantics for only portions of the namespace. This example
highlights how we capitalize on this advantage.

Some control messages do not need translation by either
the temporal selector or interleaver. For example, messages
setting the value of a parameter are not translated. These
messages need to be forwarded to E1 and E2. Either the
selector or the interleaver can be responsible for forwarding
these messages. Forwarding messages, however, can create
problems with message latency. In our example, E1 and E2
may be further parallelized in di�erent ways. If E1 involves 1
additional level of parallelization and E2 involves 10 addition
levels of parallelization, messages that are forwarded to E1
and E2 will experience vastly di�erent latencies. Reducing
the latency of control messages improves the responsiveness
of the system.

To optimize the control mechanism and avoid forward-
ing latencies, we added map commands. A map command
instructs processes that implement an e�ect to join and par-
ticipate in other control sessions for a limited portion of the
control namespace. Table 2 lists and describes the map com-
mands we have implemented. These commands are issued
in the map commands container. Receivers fully recover lost
map commands.

With map commands, mechanisms that manage paral-

7



Map Command Description
map session addr port Map the control session speci�ed by addr and port

in its entirety into this session. All messages in all con-
tainers from the speci�ed session are processed.

map inputs addr port Map the \inputs" container from the control session
speci�ed by addr and port. Any subcontainers are also
mapped into this session.

map outputs addr port Map the \outputs" container from the control session
speci�ed by addr and port. Any subcontainers are also
mapped into this session.

map parameters addr port Map the \parameters" container from the control session
speci�ed by addr and port. Any subcontainers are also
mapped into this session.

map input addr port input name ?alias? Map the subcontainer of the \inputs" container asso-
ciated with input name into this control session. The
alias is an optional parameter which if given indicates
the name the mapped container should be aliased to in
this session.

map output addr port output name ?alias? Map the subcontainer of the \outputs" container asso-
ciated with output name into this control session. The
alias is an optional parameter which if given indicates
the name the mapped container should be aliased to in
this session.

map parameter addr port parameter name ?alias? Map the subcontainer of the \parameters" container as-
sociated with parameter name into this control session.
The alias is an optional parameter which if given indi-
cates the name the mapped container should be aliased
to in this session.

map triggers addr port Map the \triggers" container from the control session
speci�ed by addr and port.

map misc addr port Map the \misc" container from the control session spec-
i�ed by addr and port.

map map cmds addr port Map the \map commands" container from the control
session speci�ed by addr and port.

Table 2: Description of map commands currently implemented.

lelism like the temporal selector and interleaver can map
portions of the higher level control session that need to be
forwarded directly into the lower level control sessions. In
our example, the temporal selector issues map commands
to E1 and E2 to map the parameters container and all sub-
containers from session A into sessions B and C. Figure 10
shows which processes participate in each control session af-
ter these map commands are executed. E1 and E2 join and
participate in session A as well as their original sessions,
but only for the parameters portion of the session A names-
pace. When the UI application sends control messages for
a parameter, these messages are now directly received by
E1 and E2 with no forwarding by the temporal parallelism
mechanisms. If E1 and E2 contain further levels of par-
allelism, the original map command is properly translated
and/or forwarded to each level. Only processors that require
parameter control messages map the parameter container of
control session A into their own control session. All non-
parameter control messages in session A are ignored by E1
and E2 and losses of non-parameter control messages are
not repaired.

By using map commands, mechanisms that implement
the three types of parallelism avoid the responsibility of for-
warding control messages that do not have to be handled or

translated. These messages are directly received by what-
ever processes require them at any level of parallelism.

An advanced feature of map commands is the ability to
aggregate and compose control elements. For example, when
temporal parallelism is exploited, the temporal interleaver
can provide controlling agents (i.e., mechanisms at higher
levels of the implementation hierarchy or the controlling ap-
plication) a parameter to govern how much bu�ering latency
should be allowed when constructing the interleaved output
stream. This parameter is not part of the e�ect itself but is
speci�c to the temporal interleaver mechanism and only ex-
ists when temporal parallelism is exploited. The interleaver
can \add" this parameter to the e�ect implementation by
constructing the appropriate subcontainer in the parameter
portion of its control namespace. Controlling agents higher
in the hierarchy than the temporal interleaver treat the new
parameter as it would any other. Implementation agents
lower in the hierarchy than the temporal interleaver are un-
aware of the extra parameter and are una�ected by its pres-
ence.

An additional advanced feature of map commands is
mapping control messages with aliasing. Aliasing is when
a container of one control session namespace is mapped into
another control session with a di�erent name. This feature

8



0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9

T
im

e 
(m

s)

Hierarchy Width

Without Mapping

With Mapping

Figure 11: Time required to distribute control messages to
a shallow hierarchy of varying width.

enables a variety of exible and interesting control struc-
tures. For example, if an application is controlling two dif-
ferent e�ects, E�ect A and E�ect B, and the application
needs parameter \theta" of E�ect A to be equal to parame-
ter \alpha" of E�ect B, the container describing parameter
theta can be mapped and aliased into the control session of
E�ect B with the name of parameter alpha. Messages con-
trolling theta for E�ect A will be interpreted by E�ect B as
messages controlling alpha.

To measure the e�ectiveness of the mapping optimiza-
tion, we constructed hierarchies of distributed processes and
measured the time required to distribute a control message
to the leaves of the hierarchy with and without using the
mapping optimization. The experiments were conducted
on the Berkeley NOW which is comprised of Ultra Sparc-
1 workstations connected by a 10 Mb/s switched Ethernet
network. Figure 11 shows the results using a shallow hi-
erarchy comprised of one root node and between two and
nine children. Using the mapping optimization, the leaves
of the hierarchy all participate in the topmost control ses-
sion and receive control messages directly. Thus, even as
the number of leaves grows, the time for distributing control
messages remains relatively constant and small (i.e., around
2-3 milliseconds). Without the mapping optimization, the
root node must unicast each control message to each child.
Thus, the time for delivering control messages grows with
the number of children. Figure 12 shows similar results with
binary tree hierarchies of varying heights.

8 Related Work

In this section we describe alternative approaches to dis-
tributing control information used in distributed and paral-
lel systems. The most traditional communication primitive
for distributed systems is some form of remote procedure call
(RPC). The Remote Method Invocation (RMI) mechanism
in Java is an example of an RPC-like service. RPC mecha-
nisms, however, are fundamentally location speci�c. A client
process must be able to speci�cally address the server pro-
cess to invoke the RPC. In addition, RPC mechanisms gen-
erally do not allow for relaxed reliability requirements.

Horus [2] is a protocol toolkit speci�cally designed to
support exible communication requirements among groups

0

5

10

15

20

25

1 2 3 4

T
im

e 
(m

s)

Hierarchy Depth

Without Mapping

With Mapping

Figure 12: Time required to distribute control messages to
a binary hierarchy of varying depth.

of processes. Horus supports dynamically changing process
groups and a variety of exible reliability and consistency
models. The key feature of SNAP leveraged by our sys-
tem is the ability to dynamically construct a hierarchical
namespace within which to address our control messages,
transcending the limitations of a single numeric transport-
level sequence number namespace. This feature is not im-
mediately supported by Horus. Horus is exible enough as a
protocol framework to implement an equivalent solution, but
doing so would essentially entail writing new protocol mod-
ules for Horus that provided the services entailed in SNAP
and using existing Horus modules to provide the function-
ality of SRM.

9 Summary

This paper describes the control mechanisms built with SRM
and SNAP for software-only parallel video e�ects process-
ing. The PSVP system uses a recursive multi-level mapping
strategy to parallelize video e�ects. As a consequence of this
strategy, several requirements are made of any mechanism
used to distribute and translate control messages. These re-
quirements include e�cient delivery of messages to all pro-
cessors, tunable reliability semantics on a per control mes-
sage basis, and recoverable state.

Traditional distributed system control mechanisms, do
not meet these requirements. Our approach to the problem
uses IP-Multicast to provide e�cient delivery of messages
along with SRM and SNAP to provide tunable reliability
semantics and recoverable state. We achieve this objective
by organizing control messages into a namespace that re-
ects application level semantics and groups related control
messages. This organization was described and its use illus-
trated by several examples.

We also describe an optimization of the control mecha-
nism to avoid unnecessary forwarding of control messages
through each layer of parallelism. The optimization allows
portions of one control session to be mapped into another.
We extended this optimization with aliasing which allows
the mapped portion of the control namespace to be renamed
automatically. With aliasing, we can construct exible con-
trol mechanisms that relate control attributes of di�erent
e�ects.

9



PSVP is implemented using the Berkeley MASH
toolkit [10] and Cornell's Dali video manipulation
language [12] in C++ and OTcl. We have used PSVP to
generate real-time e�ects for RTP streams with H.261 and
M-JPEG video data as part of the Berkeley Multimedia,
Interfaces, and Graphics seminar series.

References

[1] Elan Amir, Steven McCanne, and Randy Katz. An
active service framework and its application to real-
time multimedia transcoding. Computer Communica-
tion Review, 28(4):178{189, October 1998.

[2] Kenneth P. Birman, Robber van Renesse, and Silvano
Ma�eis. Horus: a exible group communication system.
Communications of the ACM, 39(4):76{83, April 1996.

[3] D.D. Clark and D.L. Tennenhouse. Architectural con-
siderations for a new generation of protocols. Proceed-
ings of ACM SIGCOMM '90 Symposium, 20(4):200{
208, 1990.

[4] Stephen E. Deering. Multicast Routing in a Datagram
Internetwork. PhD thesis, Stanford University, 1991.

[5] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven
McCanne, and Lixia Zhang. A reliable multicast frame-
work for light-weight sessions and application level
framing. IEEE/ACM Transactions on Networking, De-
cember 1995.

[6] M. Litzkow, M. Livny, and M.W. Mutka. Condor - a
hunter of idle workstations. Proceedings of the 8th In-
ternational Conference of Distributed Computing Sys-
tems, pages 104{111, June 1988.

[7] Ketan Mayer-Patel and Lawrence A. Rowe. Exploit-
ing temporal parallelism for software-only video e�ects
processing. Proceeding of ACM Multimedia '98, pages
161{170, 1998.

[8] Ketan Mayer-Patel and Lawrence A. Rowe. Exploit-
ing spatial parallelism for software-only video e�ects
processing. Proceeding of SPIE Multimedia Computing
and Networking 1999, pages 252{263, 1999.

[9] Steven McCanne. Scalable Compression and Transmis-
sion of Internet Multicast Video. PhD thesis, University
of California Berkeley, December 1996.

[10] Steven McCanne et al. Toward a common infrastruc-
ture for multimedia-networking middleware. Proceed-
ings of the 7th Intl. Workshop on Network and Op-
erating Systems Support for Digital Audio and Video
(NOSSDAV), 1997.

[11] G. Millerson. The Technique of Television Production.
Focal Press, Oxford, England, 1990.

[12] Wei-Tsang Ooi et al. The dali multimedia software li-
brary. Proceedings of SPIE Multimedia Computing and
Networking 1999, pages 264{275, 1999.

[13] International Standards Organization. Coded Represen-
tation of Picture, Audio, and Multimedia/Hypermedia
Information, December 1991. Committee Draft of Stan-
dard ISO/IEC 11172.

[14] International Standards Organization. Digital Com-
pression and Coding of Continuous Tone Still Images,
February 1991. JTCI Committee Draft of Standard
ISO/IEC 10918.

[15] Suchitra Raman and Steve McCanne. Scalable data
naming for application-level framing in reliable multi-
cast. Proceeding of ACM Multimedia '98, pages 391{
400, 1998.

[16] Henning Schulzrinne, Stephen Casner, Ron Frederick,
and Van Jacobson. RFC 1889, RTP: A Transport Pro-
tocol for Real-Time Applications, January 1996.

[17] International Telecommunication Union. Video codec
for audiovisual services at p*64kb/s, March 1993. ITU-
T Recommendataion H.261.

[18] International Telecommunication Union. Video coding
for low bit rate communication, February 1998. ITU-T
Recommendation H.263.

10


