
dc: A Live Webcast Control System�

Tai-Ping Yu, David Wu, Ketan Mayer-Patel, and Lawrence A. Rowe
Berkeley Multimedia Research Center

University of California, Berkeley

ftaiping, davidwu, kpatel, larryg@bmrc.berkeley.edu

ABSTRACT
Webcasts can adopt techniques developed by television

to obtain higher quality. Television production tech-

niques, however, cannot be integrated into webcast pro-

duction without considering the fundamental di�erences

in the underlying infrastructure. We have developed a

general webcast production model composed of three

stages (i.e., sources, broadcast, and transmission) to ad-

dress these di�erences. The Director's Console (dc)

is a live webcast production application based on this

model. It utilizes a distributed service architecture,

which adapts to varying physical infrastructures and

broadcast con�gurations.

1. INTRODUCTION
The development of IP Multicast, the Mbone Tools

[11], and commercial streaming media systems (e.g.,

Apple QuickTime Streaming, Cisco IP/TV, Microsoft

Windows Media, and Real Networks) has lead to a rapid

growth in the use of streaming media on the Internet.

Several hundred live webcasts are produced each week

that are being viewed by tens of thousands of viewers

[20]. Webcasts are becoming an alternative to tradi-

tional television broadcasts.

The television industry has developed many techniques

to produce high quality video programs that can be used

to improve webcasts. One technique is to switch be-

tween di�erent video sources. In a typical television

news production, several video feeds are sent to a cen-

tral studio. The director selects the stream that best

portrays the content and broadcasts that stream to the

audience. News broadcasts, for example, introduce a

subject at the anchor desk and cut to di�erent sources

�
This research was supported by NSF grant ANI-
9907994, NSF equipment grant CDA-9512332, and con-
tributions from Fujitsu, Intel, and NEC.

as needed to present the story (e.g., recorded material,

a live-remote report, etc.). Another television technique

uses video e�ects to combine several video sources into

one stream (e.g., composition e�ects), to place text on

an image to describe who or what is being displayed (e.g.

titling e�ects), and to transition between streams (e.g.,

fade e�ects). An interview show, for example, might dis-

play an interviewer in one window and a remote person

who is being interviewed in a second window compos-

ited side-by-side with titles to identify the program, the

participants, or the location of the remote source.

Webcast producers are reluctant to integrate conven-

tional broadcast television techniques into webcasts for

several reasons. First, television production equipment

is very expensive. Second, the technologies and models

used in broadcast television typically require many peo-

ple to operate the system. Third, most broadcast tele-

vision programs produce a �xed data rate, single video

stream with no interaction. Fourth, webcasting has a

fundamentally di�erent production model than televi-

sion broadcasting and the tools and interfaces used to

produce high quality webcasts must reect the underly-

ing infrastructure.

We have produced the \Berkeley Multimedia, Inter-

faces and Graphics (MIG) Seminar" webcast on the In-

ternet Mbone since 1995. The seminar features invited

lecturers who give formal presentations. The seminar

takes place in a room equipped with a variety of au-

dio/visual hardware, which is used to produce the web-

cast. We have used the Berkeley MIG Seminar webcast

as a practical experiment to explore the problems asso-

ciated with webcast production.

Our webcast is comprised of two video streams and

one audio stream. One video stream focuses on the

speaker, called the speaker stream, and a second stream

focuses on the presentation material, called the content

stream. Figure 1 shows a sample webcast from the re-

mote viewer's perspective. The director can switch any

of several video sources into either stream. For example,

when a member of the local audience asks a question,

the content stream can be switched to a view of the

audience so that a remote viewer can follow the con-

versation. Or, if a remote person asks a question, the

content stream can be switched to the remote viewer

and the projector in the classroom can be switched from

the presentation material to the remote person. These



examples illustrate the complexity of the webcast con-

trol problem. The director must control the production

viewed by the students in the classroom and, at the

same time, he must control the production viewed by a

remote participant.

Figure 1: An example MIG Seminar webcast. The left panel
shows a thumbnail for each stream in the session. The right
panel displays selected streams with greater resolution and
frame rate.

The MIG Seminar originates from a classroom with

many audio/video sources, computer systems, and soft-

ware processes as shown in �gure 2. The classroom is

equipped with several cameras (e.g., speaker and audi-

ence cameras), a VCR, and a document camera. These

devices are connected to a conventional video matrix

switch.1 Two capture machines take video from any

connected input device. Moreover, they can receive the

same input simultaneously. The capture machines dig-

itize the audio and video signals for transmission into

two multicast sessions (i.e., one for video and one for

audio), which we call the studio session.2

Special-Effects 

Material

Stored

Video

Capture Machine

Video and Audio

Capture Machine
Matrix
Switch

Moderator

Remote Viewer

Remote Viewer

Remote Viewer Video Audio

VCR

Speaker Camera

Audience Camera

Presentation PC

Elmo

Studio
Session dc Broadcast

Session

Classroom Sources

Session
Moderated

System

Figure 2: Infrastructure used to produce the MIG Seminar
webcasts.

The studio session is analogous to the routing switcher

and control room in a conventional television studio. As

in television, webcast production sends all sources to

one location, the studio session. The producer/director

previews all sources and selects a subset of the streams

that de�ne the webcast. The selected streams are sent

to the broadcast session. Thus, for a viewer to see the

slides and the speaker, the producer sets the matrix

switch to the correct con�guration and broadcasts the

1A matrix switch is a crossbar switch that can send
any input to multiple outputs. A typical switch routes
both audio and video signals although the signals can
be controlled independently. Matrix switches are also
called routing switches.
2A multicast session contains only one media format. It
is speci�ed by a multicast address and port pair.

two capture machine streams. Video special-e�ects can

be added to the webcast by placing an e�ects proces-

sor on the edge of the studio session. It takes one or

more streams from the studio session, renders the ef-

fect, and sends the new stream back into the studio ses-

sion. Stored playback material (e.g., a prede�ned open-

ing segment) and remote participant video are other

examples of sources available in the studio session.

Production of a high quality webcast is a complex

operation. In a previous paper, a Broadcast Manager

application was described that automated the tasks re-

quired to initiate a webcast [23]. For example, the MIG

Seminar webcast requires that more then ten processes

be started on di�erent hosts with appropriate arguments

(e.g., multicast addresses and port numbers, media for-

mats, bit-rates, and quality settings).

The Director's Console (dc), described in this paper,

is designed to control a webcast during live production.

It controls the webcast sources, adds e�ects to these

streams, and determines the �nal output. Dc is imple-

mented as a system of distributed processes organized

with a service model, which adapts to di�erent physical

infrastructure and to di�erent broadcast con�gurations.

The remainder of this paper presents the design and

implementation of dc. Section 2 describes the webcast

production model. Section 3 describes the system archi-

tecture. Next, the user interface is described in Section

4. Section 5 describes the implementation. Section 6

discusses our experiences developing and using the tool

and suggests future work. Section 7 describes related

research. And lastly, section 8 concludes the paper.

2. WEBCAST PRODUCTION MODEL
A webcast di�ers from traditional television on sev-

eral important dimensions. This section describes some

of these di�erences and develops a production model

for webcasts. The design and implementation of dc re-

ects this production model. We begin by examining

the types and number of data streams that may be in-

volved in a webcast. Next, the source infrastructure

used in a webcast is described. Finally, the receivers of a

webcast are characterized. In each case, di�erences be-

tween the webcast environment and a conventional tele-

vision broadcast environment are highlighted and used

to motivate developing tools that meet these webcast-

speci�c needs.

Unlike a television broadcast that is limited to one

video and audio stream, a webcast can be comprised of

multiple video and audio streams along with associated

hypertext documents. The number of streams may also

be dynamic. For example, during the webcast for the

Berkeley MIG seminar, one video stream may be ini-

tially used when the speaker is presenting his material

and another video stream showing the audience may be

added to the webcast during the question and answer

period at the end of the seminar. In a traditional televi-

sion broadcast, switching between a view of the speaker

and a view of the audience might be used during the

question and answer period. This technique could also

be used during a webcast, but providing both streams



simultaneously is another possibility because webcasts

may have more than one video stream.

The infrastructure available to a webcast is an IP-

based data network with cameras and microphones at-

tached to PC's that capture, digitize, possibly compress,

and transmit the media streams. A television broadcast,

in contrast, requires expensive, special-purpose hard-

ware operated by trained technicians. The sophisti-

cation of a webcast production environment may vary

from a single video and audio stream to a situation like

the Berkeley MIG seminar where multiple video and au-

dio streams, an e�ects server, remote participants, and

auxiliary hypertext streams are used. The tools used

to produce a webcast are required to accommodate het-

erogeneity in the production infrastructure.

The receivers of a webcast are also heterogeneous. For

example, in the Berkeley MIG Seminar, a high quality

version of the webcast is sent to viewers on the local

campus and Internet2 connected sites that have high

bandwidth connections and experience little delay. A

low quality version of the webcast is sent to Public In-

ternet viewers that may have limited bandwidth con-

nections. The director must manage two di�erent trans-

missions of the same material. These transmissions may

di�er in bandwidth and quality and may also di�er in

the number and type of streams sent. In a television

broadcast, only one version of the program is transmit-

ted and the capabilities of the receivers (i.e., television

sets) are standardized.

Dc was developed to manage and control the produc-

tion of live webcasts. It uses a general webcast model

composed of three stages: source, webcast, and trans-

mission as shown in �gure 3. Sources are the streams

available in the studio session. From this set of sources,

a subset is selected for the broadcast. The speaker and

content stream, for example, can be chosen from the

video sources in the classroom or any source available in

the studio session (e.g., speaker camera, audience cam-

era, stored material, or presentation PC). Finally, multi-

ple copies of the webcast, called transmissions, are pro-

duced using di�erent technologies (e.g., Real Networks,

Windows Media etc.) and transport parameters (e.g.,

bit-rates and formats). These transmissions are selected

to match the expected capabilities of the audience.

Transmission

Broadcast Set Medium Quality Low Quality

Audience Computer

Content ComputerStored Material

Speaker Camera

Sources Broadcast

Figure 3: The webcast production model.

3. INTERNET WEBCASTING SYSTEM
ARCHITECTURE

The Internet webcasting system architecture is based

on the premise that producing a webcast is too complex

and computationally intensive for a single application

or processor. A collection of distributed processes is re-

quired. The webcasting service model divides the pro-

cesses into clients and services. Services provide func-

tionality for the webcast. For example, one service can

be responsible for controlling a camera while another

service is responsible for computing video e�ects. Client

applications are processes that use services.

Figure 4 shows the distribution of services used to

produce the Berkeley MIG Seminar webcast. Notice

the similarity between the software architecture shown

in this �gure and the physical infrastructure shown pre-

viously in �gure 2. Dc is a client application that uses

services to produce the webcast. The speci�c services

shown in the �gure are described below. Services send

streams into the studio session. Dc receives the streams

in the studio session, selects a subset for webcast, and

transmits those streams into the broadcast session. Rtc

services are transcoders that forward and optionally con-

vert streams in the broadcast session to the transmission

sessions.

rvc

Studio
Session

Media Stream Communication Channel

Session
Broadcast

dc
rtc

rtc

Session

Session

Medium
Quality

Low
Qualityrvc

room405

replay

replayproxy

specialfxproxy

specialfx 

Services

Figure 4: Webcast Architecture.

The distributed service architecture has many bene-

�ts over a monolithic application. First, independent

services can be developed and deployed rapidly since

modi�cations are not required to existing services. Sec-

ond, clients adapt to the existence of speci�c services.

They discover services dynamically so they can accom-

modate a constantly changing infrastructure. Third, the

services used by clients can change from one webcast to

the next. Fourth, a client depends on the collection

of services but not on one service alone. A fault with a

single service will not cripple the client. And lastly, pro-

cessing load can be distributed to a set of commodity

machines instead of a single server.

The webcasting service model is an extensible archi-

tecture that supports integration and control of ser-

vices. New services are integrated into the infrastruc-

ture through a discovery protocol. Clients follow this

protocol to locate services. The model also speci�es pro-

tocols to incorporate user interfaces that can be used to

control the service.

3.1 Service Model
This section describes the protocols that embody the

service model. First, a general description of the service

architecture is presented. Second, the service discovery



protocol is explained. And lastly, we explain how a ser-

vice provides a control interface to a client application.

The service model is composed of three components:

service abstractions, a service discovery service, and a

client API. Services are processes that provide useful

functionality for clients. Clients are processes that use

services. The Service Discovery Service (SDS) is a di-

rectory service that allows a client to locate desired ser-

vices. For example, dc discovers available services when

it is executed and uses services selected by the webcast.

A simple webcast may only need a single camera ser-

vice while the Berkeley MIG Seminar webcast requires

two camera services, an archive playback service for the

opening segment, and a special-e�ects service. The ser-

vice model allows dc to con�gure the services required

for the particular broadcast.

SDS is a service that lists available services in the in-

frastructure through a soft-state protocol [17]. A push-

pull protocol is used to gather and retrieve information.

Services push information to the SDS service and clients

pull information from the SDS service. Idle services

periodically announce their presence to a well-known

multicast address. This information is cached by the

SDS service. A timer is associated with the information

when it is received. The timer is decremented every

half-second. Periodic updates by the services reset the

timer. If the timer goes to zero, the service is assumed

to be unavailable (i.e.- killed or busy).

Clients query the SDS service cache to locate a desired

service. The query can request a speci�c service or a

collection of services (e.g., \all services in 405 Soda").

The SDS process responds with data that satis�es the

query. Clients periodically query the SDS service to

discover new services.

The service information returned to the client includes

the contact and attribute information required to access

and use the service. Service attributes provide informa-

tion about the service (e.g., location, functionality, etc.)

and are used to distinguish service types. Contact in-

formation includes an IP address and port number pair

that can be used by the client to initiate communication

with the service.

A client application uses the IP address and port

number pair to create a TCP connection with a ser-

vice. An ad-hoc, non-blocking Remote Method Invoca-

tion (RMI) mechanism is implemented that allows the

client to invoke methods on service objects.

After initializing and establishing communication with

a service, the client application displays a user interface

to control the service. The control interface must be

provided to the client by the service. Otherwise, the

introduction of a new service will require either: 1) that

the client source code be modi�ed or 2) the service con-

trol interface be limited to a few prede�ned interfaces.

Our experience with webcasting is that the infrastruc-

ture varies from room-to-room and is constantly chang-

ing. Consequently, the service interface must be incor-

porated into the de�nition of the service.

Dc uses the GetUIControl method to obtain the inter-

face code segment from the service. This code segment

when evaluated will display the control user interface

and handle input. Dc is implemented in Tcl/Tk so the

code segment is a script that creates the interface and

input event mappings. The code segment has two ar-

guments: a window and a socket. The service interface

widgets are displayed in the window, and the socket is

the TCP connection to the service process. Dc supplies

the arguments when it evaluates the code segment. The

socket is used to handle user interface events. For exam-

ple, a StartReplay method is invoked the on a replay

service object when the Start button is pressed in the

replay dialog box shown in �gure 7.

3.2 Webcast Services
This section describes the services listed in table 1

that we developed to produce the Berkeley MIG Semi-

nar webcast. The Remote Video Capture service (rvc)

controls a video capture device. This service is essen-

tially a server version of the vic Mbone tool [12]. Rvc

encodes analog video signals into RTP packets and pro-

vides format and bit-rate interface controls. For the

MIG Seminar webcast, two rvc services are used to pro-

duce two streams. The studio classroom has two capture

machines each connected to an AMX control system3

and an audio/video matrix switcher. Audio/video de-

vices are connected to the AMX system and the matrix

switcher. Rvc uses an RPC interface to issue commands

through the AMX system to the matrix switch and me-

dia devices. For example, the rvc service can send com-

mands to the AMX system to switch the video feed from

the VCR to the speaker camera and commands to move

the speaker camera to the right.

The room405 service provides an interface to non-

media services in the classroom that can be operated

through the AMX system. The current services in-

clude: room lights, raising/lowering projection screens,

and turning on/o� an \On-Air" indicator light outside

the classroom.

The replay service manager and replayproxy services

allow archived material to be played into a webcast.

A short opening video segment (approximately 20 sec-

onds) is played at the beginning of the webcast. To

play this opening, the director contacts the replay ser-

vice manager and speci�es the video to be played. The

replay service instantiates a replayproxy service which

is responsible for controlling this particular video. We

currently use the MARS multimedia archive system to

archive and play stored material on-demand [18]. The

replayproxy service starts a MARS playback process,

connects to dc, and acts as a proxy between dc and the

MARS server. The proxy implements the VCR controls

presented in the replayproxy control interface.

The specialfx service manager and specialfxproxy ser-

vices are similar to the replay service manager and re-

playproxy services except they control video e�ects pro-

cesses. The specialfx service manager starts the spe-

cialfxproxy service that starts video-e�ects processes [10].

The proxy service acts as an intermediary between the

client application and the processes that implement the

special e�ect.

3
http://www.panja.com/integrator/amx/



Service Lines Functionality

rvc 1768 Capture Machine. Digitizes analog audio and/or video, compresses it, and frames the digital media
into RTP packets. Provides controls for both the digitization process and the device(s) connected
to the capture machine (e.g., camera, mixer, VCR).

room405 229 Room 405. Controls environment parameters in the room (e.g., light controls, screen raise/drop).
replay 320 Archival Playback Manager. Archive catalog interface and playback service management.
replayproxy 612 Archival Playback Service. Streams archived media into a session. It provides controls to play,

pause, and seek in the video.
specialfx 365 Special E�ects Manager. E�ects system manger and interface for specifying e�ects services.
specialfxproxy 1402 Special E�ects Service. Controls a particular e�ects service.
rtc 411 Trancoding Service. Transcodes media streams at di�erent bit-rates and formats from one session

to another.
null service 202 Overhead needed by all services.

Table 1: Table of services with their line numbers and functionality.

The rtc service is a transcoding service that is still

under development. It will take streams from one mul-

ticast session, transcode them to di�erent bit-rates and

formats, and send them into another multicast session.

Rtc is a server version of the rtpgw service [2].

4. DC APPLICATION
This section describes the user interface of dc. The in-

terface organization is shown in �gure 5. The main win-

dow contains four panels: sources, preview, broadcast,

and transmission. The sources panel displays sources

in the studio session. The preview panel allows the di-

rector to preview and prepare sources before they are

webcast. Streams in the webcast are displayed in the

broadcast panel. The transmission panel, which is in

development, will control webcast transmissions. An

example is displayed in �gure 6 where a screen dump of

dc is shown.

Main Window

Window

Video
Window

Video
Window

Video
Window

Preview
 Panel

B
roadcast Panel

Sources Panel

T
ransm

ission Panel

Video

Figure 5: Dc user interface organization.

This section begins with a discussion of the sources

panel. Second, the video window abstraction used in

the preview and broadcast panels is described followed

by a description of these two panels. Lastly, we discuss

the integration of video-e�ects into dc.

4.1 Sources Panel
The sources panel serves as a starting point for the

webcast. It contains mechanisms to start and display

sources transmitting into the studio session.4

4In the television community, a source is de�ned as cam-
eras and other devices that produce video signals. In
webcasts, however, the medium of transport is packets

T
it

lin
g 

E
ff

ec
ts

 C
on

tr
ol

Camera Control

Archive Replay Control

Remote
Viewer

Auxillary

Audience

Speaker

Content

Replay

Effects

Control
Serivce

Service Menu

Set

M
ed

ia
 S

er
vi

ce
 S

et

Figure 6: A screen dump of the Director's Console during a
production.

A column of small, slowly refreshing thumbnail im-

ages represent sources as shown in �gure 6. Below these

thumbnails are buttons that represent control services.

Services perform computations or actions on behalf of

an application. These services can be media or con-

trol services. A media service produces a packet stream

(e.g., audio or video). A control service provides an in-

terface to control an entity (e.g., room lights, a oor

control application, etc.).

The Service pull-down menu at the bottom of the

sources panel allows the director to add a media or con-

trol service interface to the sources panel. The video

sources displayed in the sources panel are called the

Media Service Set. The control interfaces are called the

Control Service Set. The Control Service Set shown in

�gure 6 includes three services (i.e.- Room405, SpecialFx,

rather than analog signals. Sources are therefore better
de�ned to be packet streams. Under this de�nition, the
capture machine in �gure 2 is the source, not the cam-
eras or other devices connected to the matrix switch.



Figure 7: An example control service dialog. This dialog
allows the director to start an archive replay source. The two
entry boxes specify the archive material and audio session.

and Replay) that display dialog boxes to control enti-

ties or instantiates a media service. The Room405 but-

ton displays various room controls (e.g., light controls,

projection screens). The SpecialFx button displays a

dialog that instantiates a video-e�ect services and adds

it to theMedia Service Set.5 The Replay button, shown

in �gure 7, allows the director to add a stored material

playback stream to the Media Service Set.

Services are presented to the director through the

Service pull-down menu, which displays a hierarchi-

cal menu based on the service location. The hierarchy

has the following structures:

organization/building/room/service

and

Locationless/service

Figure 8 shows the hierarchical structure for two ser-

vices.

Special-Effects

Presentation PC

Audience Camera

Speaker Camera

Berkeley

McLaughlin

517

523

Soda

405

Berkeley

LocationlessLocationless

ArchiveReplay

Figure 8: Examples of service menu hierarchical structure.
The hierarchy on the left shows a location dependent service
and the hierarchy on the right shows a location independent
service.

Selecting a menu item initiates the service. A media

service transmits a stream to the studio session when

initiated. If it is a video stream, a thumbnail computed

from the stream is added to the sources panel. A con-

trol service adds a button to the Control Service Set

displayed below the column of thumbnails.

The Service pull-down menu changes to reect the

current environment. If, for example, a remote camera

is installed during a webcast, the service process associ-

ated with the camera will announce its existence. The

dc will detect this new service through the service dis-

covery protocol and add it to the Service pull-down

menu.

4.2 Video Window
Thumbnails provide an excellent summary of avail-

able video sources, but a director typically wants to

5A service is created for each special-e�ect that can be
applied during a webcast. Multiple instances of an e�ect
can be created and used simultaneously.

preview and prepare the stream before switching to it

(e.g., position a replay). Consequently, dc has preview

windows for streams being prepared. The previews are

displayed as a video window in the preview panel imme-

diately to the right of the sources panel. Video windows

are also used to display streams in the broadcast panel.

A video window displays a CIF-sized image at higher

frame rate than a thumbnail.6 The interface controls be-

low the video window allow the director to control the

stream and source being displayed. The speci�c control

interface depends on the source. For example, the con-

trol interfaces for a computer-controlled camera includes

focus and position controls (e.g., pan/tilt or left/right

position). A playback source has VCR-controls (e.g.,

play, pause, position, etc.). Other video sources have

di�erent control interfaces depending on the source.

The control interface will change when the service

state changes. Consider the capture machine service

connected to the matrix switch in �gure 2. It can pro-

duce a stream from any one of many devices, each of

which may have its own controls. Consequently, the

capture machine control interface needs controls for the

video switch and controls for the currently selected video

device. When the director switches the capture machine

from the VCR to a camera, camera interface controls re-

place the VCR controls below the video window.

4.3 Preview and Broadcast Panels
To prepare a source for broadcast, the source is �rst

displayed as a video window inside the preview panel. A

source can be previewed by selecting a thumbnail with

the mouse, dragging it to the preview panel, and drop-

ping it. Dropping the thumbnail on an existing video

window displays the new source in place of the previ-

ously displayed source. More than one video window

can be displayed within the preview panel. Dropping

the thumbnail in the preview panel but not over a video

window instructs dc to create a new video window and

display the source in it. A video window can be removed

from the preview panel by selecting it with the mouse,

dragging it outside the preview panel, and dropping it.

The broadcast panel has the same interface as the

preview panel. A video window displayed in the broad-

cast panel, however, is a stream in the webcast. Data

packets from streams in the broadcast panel are relayed

through dc into the broadcast session where audiences

view the webcast. Multiple streams are webcast by hav-

ing several video windows within the broadcast panel.

The director switches the source in the webcast stream

by dragging and dropping a thumbnail or video window

in the preview panel to the broadcast panel. The broad-

cast panel behaves the same way as the preview panel

- dropping on a video window switches the stream and

dropping elsewhere creates a new video window (i.e., a

new stream in the webcast).

4.4 Video-Effects Sources
6Thumbnails are updated once per second and video
windows are updated as speci�ed in the stream being
displayed.



Television video-e�ects are implemented by a video

production switcher (VPS). A VPS can switch from n

inputs to one output that is typically the broadcast out-

put. A VPS can apply e�ects on the input(s) as the

data is routed to the output. Commercial systems use

custom-designed hardware to meet the processing re-

quirements of broadcast quality video. Some VPS sys-

tems can layer e�ects on top of other e�ects (e.g., fading

from one stream to another with titling). However, the

number of layers is bounded, and most VPS systems do

not allow new e�ects to be added.

The Parallel, Software-only Video-e�ects Processing

System (PSVP), which runs on a Network of Worksta-

tions, was developed by our research group to provide

a low-cost, extensible video-e�ects system [10]. PSVP

produces an e�ect by decomposing it into a collection

of processes that read RTP packets from a multicast

session, compute an e�ect, and write RTP packets back

into the multicast session.

Dc invokes and controls an e�ect through the ser-

vice infrastructure. E�ects services (see �gure 2) input

streams from the studio session, render an e�ect, and

output a new \e�ects stream." E�ects streams are ordi-

nary sources as far as dc is concerned with controls for

the e�ect. Thus, e�ects can be cascaded by piping the

output of an e�ect to the input of another e�ect service.

A titling e�ect is shown in the Berkeley MIG Seminar

webcast shown in �gure 1. Adding a new e�ect to the

webcast requires only that a new service be installed in

the infrastructure.

5. DESIGN AND IMPLEMENTATION
Dc and the service processes are implemented as Mash

applications. Mash is a multimedia toolkit for develop-

ing distributed collaboration applications [13]. It pro-

vides the basic objects needed to create multicast appli-

cations (e.g., media stream receivers/transmitters, me-

dia codecs, etc). Mash is a split architecture software

system. Routines that are performance sensitive (e.g.,

media coding and decoding, network transmitting and

receiving, etc.) are implemented in C++. User-interface

abstractions and performance insensitive code is imple-

mented in the Tcl/Tk scripting language. Mash also

uses the Object Tcl (Otcl) extension for object-oriented

programming.

Dc and the service programs make extensive use of

the following packages written in Mash:

� Active Service Framework.

The AS framework provides a programmable sub-

strate on which to build arbitrary network ser-

vices [1]. These services reside in one or more

pools of active service nodes. Client applications

instantiate service agents on one or more nodes.

The framework ensures fault-tolerance and load-

balancing for clients. The replayproxy and spe-

cialfxproxy services use the AS framework to in-

stantiate MARS and PSVP system services, re-

spectively.

� Scalable Naming and Announcement Protocol.

SNAP is a framework for selective reliable mul-

ticast. It provides a hierarchical naming system

and a scalable session announcement protocol [16].

The SDS service uses SNAP to deliver reliable

messages between clients, services, and SDS servers

for the service architecture. In addition, SNAP

provides containers for messages. Container names

are organized into a hierarchical name space. Cli-

ents connect to a SNAP multicast and session reg-

ister callback procedures for containers when a

message is transmitted to that container. This

facility supports a general-purpose �ltering mech-

anism for messages sent to a multicast session.

The webcasting service architecture uses UPDATE,

QUERY REQUEST, and QUERY RESPONSE SNAP con-

tainers for service announcements, client queries,

and SDS service query results, respectively.

Broadcast Window

Demultiplexer
Receiver/

Duplicator
Packet

Duplicator
Packet

Decoder

Decoder

Decoder

Decoder

Render

Render

Render

Render

Render

Render

Render

Render

Studio
Session

Thumbnail

Thumbnail

Thumbnail

Audience

Speaker

Archive

Slides

Speaker

Audience

Archive

Slides

Multiplexer
Transmitter/

Session
Broadcast

dc Thumbnail

Broadcast Window

Preview Window

Preview Window

Figure 9: Dc Architecture.

The internal architecture of dc is shown in �gure 9.

A network agent receives packets from the video studio

session and demultiplexes them to a handler for each

stream. A stream may be displayed in one or more win-

dows and, if it is in the broadcast set, the packets are

sent to the multicast session for the broadcast. A stream

is always displayed in a thumbnail so the packets must

be decoded and rendered to a thumbnail window. If

the stream is also being displayed through one or more

video windows, the decoded packets are passed to addi-

tional renderers for each window. Packets for streams

selected for broadcast are duplicated before they are

passed to the decoder. The duplicate packets are sent

to the broadcast session.

The dc application is approximately 2,800 lines of

code, which includes 430 lines of C++ and 2,400 lines of

Tcl/Tk code. C++ is used to duplicate packet bu�ers

for broadcast and relay them to the transmitter. The

breakdown of the Tcl/Tk code is shown in table 2.

The code length does not include inherited objects and

consequently may appear skewed. For example, the

agent-broadcast object inherits transmission function-

ality from the MASH video-agent object. So even

though dc only shows 48 lines of code, video-agent in-

cludes over 1,000 lines of code.

Services are implemented only with Tcl/Tk code. Ta-

ble 1 above shows the number of lines for each service.

The null service shows the code needed by all ser-

vices. It contains code to interface with the SDS service

and clients but has no functionality. The proxy ser-

vices act as intermediaries between clients and backend



Name Lines Functionality

agent-broadcast 48 Network agent transmitting to the broadcast session.
agent-studio 119 Network agent responsible for receiving packets from the studio session and

demultiplexing the packets into its constituent streams.
application-dc 224 Application object responsible for creating and organizing other objects in

the dc .
session-dc 129 Objects used to discover services.
ui-dc 118 The main window object of dc. Creates the panel objects that reside within

it.
ui-dcbroadcast 212 Object responsible for broadcast panel.
ui-dcpreview 177 Object responsible for preview panel.
ui-dcthumbnail 475 Object responsible for thumbnail panel. It is responsible for new services.
ui-dcthunbnailservice 284 Control service objects.
ui-dcthunbnailvideo 89 Media service objects.
ui-dcvideo 248 Video Window Object.
dc-link 324 RMI mechanism used to send commands between dc and services.

Table 2: Table listing dc code. Each object name is followed with code length and a summary of its function.

servers which explains why replayproxy can be writ-

ten in only 612 lines. The majority of the replayproxy

service is in the MARS backend process. This exam-

ple shows the power of Tcl/Tk as a \glue language" for

building interfaces between disparate applications.

6. DISCUSSION AND FUTURE WORK
A quick prototype for dc was implemented by Wu

in the Fall, 1998. It provided a remote control inter-

face to the AMX control system so the Berkeley MIG

Seminar broadcast engineer could control which video

source was routed to the capture machines. The need

for a new dc that supported multiple streams, interfaces

to more services, and dynamic extensibility was imme-

diately obvious. The design and implementation of the

current version of dc was completed during the Spring

and Summer of 1999. This version was used to pro-

duce the seminar webcasts beginning in the Fall, 1999

semester. Although the system has performed well be-

yond initial expectations, it can still be improved. This

section discusses several changes and improvements.

A webcast becomes more and more di�cult to man-

age as the number of services increases. The special-

e�ects service alone can double the number of input

streams and interface controls. Our goal is to have one

person produce several webcasts simultaneously. Con-

sequently, the need for automation is apparent. Au-

tomation eliminates the need for the director to perform

mundane manual tasks. One particularly time consum-

ing chore is camera tracking. As the speaker moves

about the stage, the camera must be moved to ensure

he or she is correctly framed. Automatic camera track-

ing is a well-known technique for solving this problem

that should be incorporated into the webcasting system

[7].

A second example is stream switching. Take the case

of a webcast composed of speaker and content streams.

If an audience member asks a question, the content

stream should be switched to the audience camera and

the camera should be moved to show the person ask-

ing the question. The fact a question has been asked

is known because the audio mixer detects that the in-

put from an audience microphone is above a threshold.

Our studio classroom has three audience microphones

mounted in the ceiling on the left, center, and right

sides of the room. The mixer adds the output of the

speaker microphone to the room audio and routes it to

the webcast audio stream. Consequently, the mixer can

identify the side of the room from which the question

comes. We need a mechanism for the mixer to signal the

webcast control system that an audience question from

a speci�c area of the room has occurred. An intelligent

control system that implements a policy speci�ed by

the director can automatically execute the commands

to switch to the audience camera and position the cam-

era to the appropriate area in the room. In addition, the

bandwidth allocation between the speaker and content

stream can be changed to reect this new con�guration.

Low-bandwidth transmissions allocate more bandwidth

to the speaker because slides are often static relative to

the speaker. However, bandwidth should be diverted

from the speaker to the content stream when switching

from slides to the audience. Lastly, automation can be

used to log events, such as stream switching, to assist

video query, summarization, and automated authoring

of multimedia titles derived from a lecture [15].

Automation relies on two mechanisms: 1) the ability

to monitor events produced by other processes in the

webcast and 2) the ability to invoke commands in lieu

of the director. The bandwidth-allocation agent, for

example, monitors switching events and responds with

commands to the transcoder to either increase or re-

duce bit-rates. The current dc architecture cannot sup-

port such agents because it uses unicast communication

channels to services. Thus, communication, both events

and commands, between clients and services cannot be

monitored or forwarded to other participants. However,

using multicast for the communication channel will re-

move this limitation. An appropriate logical decompo-

sition of the events can be created using SNAP contain-

ers so automation agents can monitor only the events

in which they are interested. The bandwidth-adjusting



agent can wait for an event like \Switch Content Stream

to Audience Camera" and respond with commands to

reduce speaker bandwidth and increase content band-

width.

A second area in which dc can be improved is secu-

rity. We ignored many security issues during the de-

velopment of dc because we used rapid prototyping to

the system. In retrospect, we note many security weak-

nesses that will need to be addressed. First, the SDS

service allows any process to present itself as a service.

It also gives any process information about all exist-

ing services. Rather than duplicating e�ort, we plan to

replace the prototype SDS service with the Ninja SDS

System that is better designed for security [6]. A sec-

ond security issue arises because Tcl/Tk code is trans-

ferred from services and evaluated in the client without

checks. Thus, a malicious service can kill a client appli-

cation by simply sending an exit command. Moreover,

the Tcl/Tk code segment is di�cult to write correctly.

So, even a trusted service might cause harm through

carelessness. One approach to solve these problems is

to implement a certi�cate system that ensures the cor-

rectness and trust of the code. Another approach is to

create a description language for user-interfaces simi-

lar to the document language proposed by Hodes and

Katz [9]. Rather than sending code, services transfer

a description of the user-interface. By restricting the

description language, clients can limit the access to ser-

vices and thereby protect themselves. A third approach

is to sandbox the code as is done in Janus [8]. The

code runs in a con�ned area with limited access to re-

sources (e.g., socket communications can be limited to

the parent service or �le writes can be prohibited).

A third area in which dc can be improved is in audio

control. Audio has been largely neglected by the current

dc prototype. However, many of the design principles

used for video also apply to audio. Audio devices can be

viewed as a service that can be switched in conjunction

with or independently from video. Audio e�ects can be

applied just as in video. However, the biggest problem

we must solve is to provide seamless interaction with

remote participants. Solving this problem will require

changes in the studio classroom to provide visual feed-

back or information about remote participants (i.e., to

provide a sense of presence [4]) and an audio control sys-

tem that can handle echo cancellation with long delays

resulting from Internet communication.

A fourth area in which dc can be improved is con-

trolling commercial webcast transmissions. We began

simulcasting the Berkeley MIG Seminar using Real Net-

works because the unicast transport used in commercial

systems is easier to deploy than the multicast transport

used in the Mbone. Integrating these technologies into

dc will enable a wider webcast audience. In addition,

viewers will bene�t from the exibility and versatility of

dc. For example, the Synchronized Multimedia Interac-

tion Language (SMIL) developed by the World Wide

Web Consortium can be used to view webcasts with

multiple streams like those produced by dc [22].

A �fth area in which webcasts produced by dc can

be improved is interactivity. Many webcasts follow the

television model of broadcasting in which there is no

audience interaction. The Internet, however, is capa-

ble of audience participation. Nowhere is this capa-

bility more important than in distance learning where

the student's ability to ask questions during a lecture

is critical. Many mechanisms for student participation

exist (e.g. chat sessions, video conferencing, and inter-

active response systems), but more research is needed to

determine the most appropriate models for integration

with live webcasts. Moreover, moderation techniques

will need to be developed to handle non-trivial numbers

of participants. For example, if 200 people want to ask

a question simultaneously, who gets control and how is

the interaction moderated?

Lastly, our experience suggests that future studio class-

rooms should use equipment directly connected to the

Internet. Rather than connecting cameras and micro-

phones to matrix switches and mixers and using a con-

trol system like the AMX, a better solution will connect

the devices directly to the network. Switching and con-

trol are easier to implement. And, production control

will be better if all devices are available at any time

rather than just a subset of devices through a matrix

switch.

7. RELATED WORK
This section describes related work on broadcast pro-

duction and control.

Several projects have developed software interfaces

to a video production system. NBC's GEnesis project

monitors and controls program streams with a software

system built with Tcl/Tk [3]. GEnesis provides a graph-

ical user interface to control broadcast schedules that

vary over time and region. For example, a live sports

event has commercials that vary depending on the lo-

cation. The system employs a database to store and re-

trieve schedules, and device controls are accessed with

a string protocol over sockets. Operations are imple-

mented by sending commands to conventional broad-

cast equipment. Both dc and GEnesis control remote

devices, but they are solving di�erent problems. Dc

concentrates on the production of video streams rather

than the scheduling of existing streams.

The Berkeley Multimedia Research Center developed

several prototypes before dc. The Software-Only Video

Production Switcher project introduced video-e�ects pro-

cesses to our production environment [21]. It used re-

mote processes that received and transmitted streams

from a studio session. It employed a message protocol

to control these remote processes. However, the user

interface was hard-coded into the broadcast application

and there was no notion of modular services. More-

over, only a single stream was produced from the sys-

tem. This system was an early prototype for the PSVP

e�ects system.

8. CONCLUSION
Fundamental di�erences between the underlying in-

frastructure of webcast and traditional television pro-

hibits using a television production model for webcasts



without modi�cation. We propose a webcast production

model that addresses these di�erences. The model is

composed of three stages: sources, broadcast, and trans-

mission. We have developed the Director's Console, a

webcast production tool, to demonstrate the e�ective-

ness of this model. Dc is of a distributed client/server

system organized under a webcast service architecture.

The service architecture provides fault tolerance and dy-

namic adaptation to a changing physical infrastructure.

9. ACKNOWLEDGMENTS
We would like to thank Irene Hsu, Peter Pletcher,

Oliver Crow, Paul Huang, Tim Fitz, and the rest of

the BMRC Researchers for their invaluable help during

development of the project. Thanks also go to Richard

Fateman, Chris A. Long, and other readers for their

input on this paper.

10. REFERENCES

[1] E. Amir, S. McCanne, and R. Katz. An Active Ser-

vice Framework and its Application to Real-time

Multimedia Transcoding. In Proc. of ACM SIG-

COMM '98, Vancouver, Canada, August 1998.

[2] E. Amir, S. McCanne, and H. Zhang. An

Application-level Video Gateway. In Proc. of ACM

Multimedia 95, San Francisco, CA, November 1995.

[3] S. Angelovich, K. Kenny, and B. Sarachan. NBC's

GEnesis Broadcast Automation System: From

Prototype to Production. In Proc. of the 6th An-

nual Tcl/TK Conference, 1998.

[4] D. Boyer and M. Lukacs. The Personal Presence

System { A Wide Area Network Resource for the

Real Time Composition of Multipoint Multimedia

Communications. In Proc. of the Second ACM In-

ternational Conference on Multimedia '94, pages

453{460, San Francisco, CA, October 1994.

[5] D. Culler, et al. Parallel Computing on the Berke-

ley NOW. In 9th Joint Symposium on Parallel Pro-

cessing, 1997.

[6] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and

R. Katz. An Architecture for a Secure Service Dis-

covery Service. In MOBICOM '99, Seattle, WA,

August 1999.

[7] D. B. Gennery. Visual Tracking of Known Three-

Dimensional Objects. International Journal of

Computer Vision, 7(3):243{270, April 1992.

[8] I. Goldberg, D. Wagner, R. Thomas, and E. A.

Brewer. A Secure Environment for Untrusted

Helper Applications: Con�ning the Wiley Hacker.

In 1996 USENIX Security Symposium, 1996.

[9] T. Hodes and R. Katz. A Document-based Frame-

work for Internet Application Control. In 2nd

USENIX Symposium on Internet Technologies and

Systems, Boulder, CO, October 1999.

[10] K. Mayer-Patel and L. A. Rowe. Exploiting Spatial

Parallelism for Software-only Video E�ects Pro-

cessing. In Proc. of The Sixth Annual ACM Inter-

national Multimedia Conference, September 1998.

[11] S. McCanne. Scalable multimedia communication

with internet multicast, light-weight sessions, and

the mbone. IEEE Internet Computing, 3(2):33{45,

1999.

[12] S. McCanne and V. Jacobson. vic: A Flexible

Framework for Packet Video. In Proc. of ACMMul-

timedia 95, San Francisco, CA, November 1995.

[13] S. McCanne, et al. Toward a Common Infrastruc-

ture for Multimedia Networking Middleware. In

Proc. of NOSSDAV 97, St. Louis, Missouri, August

1997.

[14] G. Millerson. The Technology of Television Prodcu-

tion. Butterworth-Heinemann, 12th edition, March

1991.

[15] S. Mukhopadhyay and B. C. Smith. Passive Cap-

ture and Structuring of Lectures. In Proc. of

ACM Multimedia 99, pages 477{487, Orlando, FL,

November 1999.

[16] S. Raman and S. McCanne. Scalable Data Naming

for Application Level Framing in Reliable Multi-

cast. In Proc. of ACM Multimedia '98, Bristol, UK,

September 1998.

[17] S. Raman and S. McCanne. A Model, Analysis, and

Protocol Framework for Soft State-based Commu-

nication. In Proc. of ACM SIGCOMM '99, Cam-

bridge, MA, September 1999.

[18] A. Schuett, S. Raman, Y. Chawathe, S. McCanne,

and R. Katz. A Soft-State Protocol for Accessing

Multimedia Archives. In Proc. of NOSSDAV 98,

Cambridge, UK, July 1998.

[19] H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-

cobson. RFC 1889, RTP: A Transport Protocol for

Real-Time Applications, January 1996.

[20] The Standard. Streaming media numbers start

to ow. http://www.thestandard.com/article/dis-

play/0,1151,8419,00.html.

[21] T. Wong, K. Mayer-Patel, D. Simpson, and L. A.

Rowe. A Software-Only Video Production Switcher

for the Internet MBone. In Proc. SPIE-Multimedia

Computing and Networking 1998, San Jose, CA,

January 1998.

[22] World Wide Web Consortium. Synchronized Mul-

timedia Integration Language (SMIL), November

1999. http://www.w3.org/AudioVideo/.

[23] D. Wu, A. Swan, and L. A. Rowe. An Internet

Mbone Broadcast Management System. In Proc. of

Multimedia Computing and Networking, SPIE 99,

San Jose, CA, January 1999.


