
A Software-Only Video Production Switcher for the Internet MBone

Tina Wong� Ketan Mayer-Patel David Simpson Lawrence A. Rowe

Computer Science Division

University of California, Berkeley

ftwong,kpatel,davesimp,larryg@cs.berkeley.edu

ABSTRACT

In this paper, we describe the design and imple-

mentation of a software video production switcher,

vps, that improves the quality of MBone broad-

casts. vps is modeled after the broadcast televi-

sion industry's studio production switcher. It pro-

vides special e�ects processing to incorporate audi-

ence discussions, add titles and other information,

and integrate stored videos into the presentation.

vps is structured to work with other MBone con-

ferencing tools. The ultimate goal is to automate

the production of MBone broadcasts.

1 INTRODUCTION

Live programs are produced and broadcast world-

wide on the Internet MBone using IP Multicast [1]

and the MBone [2] conferencing tools (e.g., vic [8],

vat [7], wb [3], sdr [5] etc.). Some examples are

the NASA Space Shuttle Missions, conference pre-

sentations (e.g., Sixth International WWW Confer-

ence), and live music performances. These broad-

casts usually have audiences ranging from tens to

hundreds of viewers distributed world-wide.

We have broadcast the weekly Berkeley Multime-

dia and Graphics Seminar on the MBone since early

1995. The seminar is produced using the LBL/UCB

MBone tools vic and vat to capture and transmit

video and audio streams, respectively. The shared

whiteboard tool wb is used to distribute postscript

slides. A second wb is used by the broadcast direc-

tor (hereafter, director) to communicate with par-

ticipants in order to debug problems with the trans-

mission and monitor video and audio quality. We

are also testing a oor control tool qb [6] to facili-

tate question asking. The current broadcast uses a

�T. Wong is supported by a GAANN fellowship.

single camera that mainly focuses on the speaker,

and occasionally pans to show other materials such

as slides on the overhead projector, a demo running

on a workstation, or members of the local audience.

This single camera approach is the most common

con�guration seen in low-budget, small-scale broad-

casts on the MBone.

We are working on tools to improve the quality

and simplify the production and control of MBone

broadcasts. This paper describes the design and

implementation of a software-only video production

switcher (vps) that can be used to improve the

quality of an MBone broadcast. vps is modeled

after a studio production switcher [9] used in the

broadcast television industry. A studio production

switcher is a custom-designed hardware device that

provides an array of real-time editing and special ef-

fects functions. A director can select one of several

picture sources (e.g., cameras, videotapes, and still

image displays) to be the output. Other sources are

generated by the device by applying special e�ects

processing to one or more streams such as inserting

titles into a picture, superimposing one picture on

another, chroma-keying, and wiping or fading from

one picture to another.

vps will enhance the quality of an MBone broad-

cast by providing e�ects available in a hardware

switcher. Speci�cally, we want to display local and

remote audience discussions and feedback, add ti-

tles and credits, integrate stored analog and dig-

ital videos into the presentation, and incorporate

special e�ects to improve the visual images and

retain audience attention. Ultimately, our goal is

to automate the production process by integrating

vps with a broadcast management system [13] that

maintains room, equipment and broadcast con�gu-

rations, observes event schedules, and launches and

monitors the MBone tools required to produce a

2

wb

mbr

vps MBONE
INTERNET

vic

vat qb

rtpgw

video capture

drawing tool

audio capture

recording tool

floor control

production
switcher

video
transcoding

MBONE
STUDIO

Figure 1: vps in an MBone Broadcast.

broadcast. Figure 1 shows how vps �ts into the

context of a typical MBone broadcast. The Stu-

dio MBone is a local domain network connecting

the processes required to produce the broadcast. It

can support high data rates (e.g., 5 to 30 Mbs) and

good quality video streams (e.g., MJPEG video).

The public MBone is the Internet and it runs at a

considerably lower speed.

A hardware production switcher is a highly de-

veloped technology that could be used in an MBone

broadcast. However, this solution has several limi-

tations. First, video sources must be converted to a

switch-speci�c analog format before being passed to

the switcher and converted back to a digital format

and encapsulated as RTP data [11] after processing

so that it can be sent to the MBone. vps avoids

these conversions by operating on video streams in

the RTP representation. Second, a hardware sys-

tem is not extensible. vps is designed in a modular

manner to allow new e�ects to be added to the sys-

tem. Third, vps can be controlled by other soft-

ware to automate decisions by a director through

reactive software heuristic technologies. Finally,

a hardware switcher has only one user interface.

vps can be operated by many GUIs ranging from

a simple interface designed for a speaker to a so-

phisticated interface designed for a skilled director.

Moreover, interfaces can be customized for di�erent

users.

This paper describes the design of vps including

the GUI interface and the implementation of the

current system. It is organized as follows. Section

2 presents an example of vps in use. Section 3 de-

scribes the vps software architecture. The imple-

mentation of vps is described in section 4. Section

5 talks about future work and section 6 summarizes

the paper.

2 AN EXAMPLE SCENARIO

We describe how vps can improve the quality of an

MBone broadcast by illustrating its use through an

example scenario.

Before beginning the scenario, we �rst describe

the two GUI interfaces to vps: the director's con-

sole and the speaker's console, shown in Figures 2

and 3, respectively. The director's console produces

the content of the broadcast. The main window of

this console has an editor area at the top and a pre-

view area at the bottom. The director uses the edi-

tor area to choose a speci�c e�ect editor and to con-

�gure the parameters of that e�ect. The preview

area shows thumbnails of video sources including

the results of applying an e�ect. The director can

click on a thumbnail to see more information about

that video. The output window of the director's

console shows the current video being broadcast.

This window also describes the broadcast multicast

session, if applicable. The speaker's console allows

the speaker to incorporate stored videos into the

lecture. It has a preview area similar to the direc-

tor's console. The speaker clicks on a thumbnail

3

Figure 2: The Director's Console.

to select and and bring up a VCR-like player to

playback a video.

The following shows how vps can be used in this

scenario. Suppose a seminar is being conducted on

the Berkeley campus. Students on campus attend

the seminar in the lecture room, and remote viewers

join in virtually by watching the broadcast on the

MBone.

Figure 3: The Speaker's Console.

Viewing Sources and Monitoring the Broadcast

Suppose there are two cameras in the seminar room:

one focusing on the speaker and one facing the au-

dience. Suppose further that participants at several

remote locations also have digital cameras attached

to their workstations, and the speaker has several

videos to accompany her lecture. The director uses

these videos 1 to produce the content of the broad-

cast. He previews them in the preview area of the

director's console. He also monitors the broadcast

with the output window. New video sources can be

added at any time during the broadcast. For ex-

ample, a remote viewer who joins late can still be

a vps source and part of the lecture broadcast.

Beginning a Lecture

A short time before the lecture starts, the direc-

tor switches from a still image that identi�es the

program to a picture showing the speaker. He uses

the cut editor of the director's console to select this

picture and switch sources. He then uses the subti-

tle editor to insert the seminar title and the speaker

name onto the picture. After a minute or so, the di-

rector removes the titles by switching to the original

picture. Figure 4 shows screen shots that illustrates

the opening of the lecture.

1These videos might be stored on a video �le server or

replayed on a VCR.

4

Figure 4: Producing Opening Phase of Lecture.

Playing Stored Video

At some point in the lecture, the speaker wants

to show a video. She uses the speaker's console

to select and play the video. Depending on her

pace, she can use the VCR-like controls to play,

stop, rewind, fast-forward or restart the video.

The director's console provides the same playback

facilities so the director can assume this task. See

Figure 5 for a screen shot of the VCR-like player.

Incorporating Audience Discussions

A local audience member raises his hand to notify

the speaker that he has a question. A few remote

viewers also indicate their desire to ask a question

or comment by entering a request into the oor con-

trol tool. The oor moderator signals a remote

viewer to ask her question. The director notices

that a video of this remote viewer is available be-

cause it is being previewed on the director's console.

The oor control tool might send a \grant oor"

message to all tools. The director's or speaker's

5

Figure 6: Incorporating Audience Discussions.

Figure 5: VCR-like Player.

console can display a thumbnail in the preview

area when it receives this message if it includes a

video source or still image. vps could automat-

ically switch to a stream that showed the speaker

and questioner in side-by-side windows. This exam-

ple illustrates automatic switching. This action can

also be invoked manually by using the picture-in-

picture (PIP) editor. See Figure 6 for screen shots.

Finishing a Lecture

At the end of the lecture, the director uses the fade

editor to execute a fade transition from the speaker

to a black screen. On the black screen, he uses

the subtitle editor to put up acknowledgments and

credits to thank the speaker, people organizing the

seminar, and an advertisement for the next event.

Figure 7 shows an example.

3 SOFTWARE ARCHITECTURE

This section describes the vps architecture. vps is

composed of multiple processes: a video �le server,

a broadcaster, one or more e�ects (fx) processors

managed by an fx server, and two user inter-

faces. These processes exchange control messages

and transmit video data to each other using RTP

over IP Multicast on the Studio MBone, and receive

data from the public MBone. Figure 8 illustrates

the processes in this software architecture.

vps is decomposed into multiple processes in or-

der to build a distributed system which can uti-

lize more resources, facilitate future extensions in

e�ects processing, and make modi�cations to the

user interfaces. The system is implemented with

the Continuous Media Toolkit (CMT) [4] which is

described in more detail in section 4.

3.1 Studio MBone

The Studio MBone is an RTP session [11] with

a single multicast group and two port numbers 2

on which vps processes transmit video data and

control messages. This multicast address is well

known to the processes and can be con�gured as a

command-line argument at system startup. One

2This multicast address can be chosen through the session

directory protocol[5] to avoid conicting with other multicast

groups. Since the Studio MBone spans Berkeley, we only

need to allocate a multicast address not in use on campus.

6

Figure 7: Producing Closing Phase of Lecture

port number is used for data and the other for

control. Administrative scoping or the time-to-live

(ttl) �eld in the RTP session is set to reach all pro-

cesses in the system. For our broadcasts, the Studio

MBone spans our building.

We designed the system so that control messages

serve as an interface among the processes. Conse-

quently, internal changes to a process do not a�ect

other processes as long as these messages remain

the same. Control Messages provide coordination

among vps processes. In the current system, mes-

sages ow from the user interfaces to the other pro-

cesses. They request e�ects processing from the

fx server, con�gure parameters at the broadcaster,

notify the broadcaster to switch to another video

source, and control video playback at the video �le

server. Table 1 lists the control messages used in

the current system. Although these messages could

be unicast to the appropriate destinations, we be-

lieve multicast will be more e�cient when the sys-

tem is integrated with other MBone tools. For ex-

ample, as the oor control tool grants the oor to

7

an audience member, it multicasts a message on the

Studio MBone so the responsible vps processes can

react to the message by switching to the correct

video to broadcast and/or requesting e�ects pro-

cessing. The Studio MBone is connected to the

public MBone by a multicast router. This way,

streams from remote participants are automatically

passed to the Studio MBone.

Available video streams are source videos and

result streams from e�ects processing. They are

multicast on the Studio MBone instead of unicast

because multiple processes usually need the same

video at one time. For example, the result of an fx

processor is needed by the preview area at the direc-

tor's console, another fx processor for other kinds

of processing, and the broadcaster to output to the

MBone, all at the same time.

3.2 Stored and Live Video Server

The video �le server process serves stored digital

videos to other vps processes. Stored video play-

back is controlled by the user interfaces which send

control messages to the server. The server plays a

video by multicasting the appropriate streams on

the Studio MBone.

Live videos originating from the local studio (e.g.,

camera feeds from the lecture room) or from other

video feeds (e.g., cable or satellite receivers) are

\served" by the Studio MBone in the sense that

the streams are multicast on the associated RTP

session. Live videos from remote participants (e.g.,

cameras attached to student workstations) are sent

on a separate RTP session on the public MBone.

These streams are multicast on di�erent addresses

so that local data and control messages are not for-

warded to the public MBone in order to avoid wast-

ing valuable bandwidth. We distinguish each video

source within an RTP session with the unique syn-

chronization source identi�er �eld (ssrc) speci�ed

in the RTP header.

3.3 Broadcaster

The broadcaster process multicasts the vps output

to the public MBone at the address and port num-

ber advertised for the broadcast. The director using

the director's console selects a video to be the out-

put and sends a control message to tell the broad-

caster to carry out the switching between streams.

3.4 FX Processor and FX Server

An fx processor manipulates one or more video

streams to generate special e�ects. The e�ects sup-

ported by the current vps are fade, mix, picture-

in-picture (PIP) and subtitle. The fade and mix

e�ects are implemented in the compressed MJPEG

domain which means the streams are not fully-

decoded before being processed [12]. PIP and sub-

title are implemented in the uncompressed YUV

domain which means the streams must be fully-

decoded before being processed. More details about

the e�ects processing algorithms are presented in

the next section.

There can be more than one fx processor de-

pending on the computing resources available.

The collection of fx processors are managed by

the fx server. It communicates with the other

vps processes, accepting processing requests from

the director's console and assigning them to an fx

processor. Fx processors are scheduled using round

robin scheduling to ensure load balancing. The re-

sult of e�ects processing is multicast onto the Stu-

dio MBone so all vps processes can utilize it. For

example, the director's console previews the result

before it is being switched to the output, and an-

other fx processor uses the result as an input to a

di�erent e�ect.

This design was chosen so the fx server and fx

processors can be easily extended without requiring

the other to be signi�cantly rewritten or a�ecting

other vps processes. Changes in the load balancing

policy in the fx server do not a�ect the internals of

the fx processors. Likewise, modi�cations to the

processors, such as implementing e�ects processing

in the raw or compressed domain, are isolated.

To add a new type of e�ects processing such as

chroma-key which is common in television weather

forecasts, we would need to include the code to im-

plement this processing into the fx processor, ex-

tend the control messages so that the director's

console can request the e�ect, and implement a

chroma-key editor so the director can control the

e�ect.

3.5 User Interfaces

As described in the scenario, there are two user

interfaces in vps. The director's console is the main

control center which provides a set of primitives to

manipulate vps, and the speaker's console which

8

control
video

MBONE
INTERNET

vic rtpgw

speaker’s
console

UI

fx processor fx processor

broadcaster

console

UI

. . .

. . .

STUDIO MBONE

director’s

fx server

server
video file

Figure 8: vps Software Architecture.

sender receiver control name parameters

Director's Console Fx Server Processing FX Name, Fx Params

Director's Console Video File Server Playback File ID, Playback Speed

Speaker's Console Video File Server Playback File ID, Playback Speed

Director's Console Broadcaster Switch Video ID

Director's Console Broadcaster Configure address/port/ttl

Table 1: Control messages.

allows the lecturer to integrate stored video into the

presentation. Two separate interfaces are provided

so that the production process and the lecture can

be going on in di�erent rooms. They are written in

Tcl/Tk [10] and OTcl [14] and are easy to modify

to incorporate better UI designs, as we get more

experience using them, and new editors when new

e�ects are included.

The thumbnail previews in the director's and

speaker's console are \optimized" in the sense that

they are updated infrequently to avoid expensive

decoding of each frame in the video. The current

implementation displays one frame every one hun-

dred frames of the video. When e�ects processing

is requested by the director, the director's console

sends a control message to the fx server to request

the processing as described above. The resulting

stream is sent back on the Studio MBone so the di-

rector's console can display it in the preview area.

When a transition is requested, the director sends

a control message to the broadcaster process to ex-

ecute the switch.

3.6 Automating the Production Process

Several aspects of the production process can be

automated. The director's console can follow a pre-

pared script and send control messages for switch-

ing and e�ects processing at speci�ed times. For

example, the script shown in Table 2 can be used

to automate a broadcast. The �rst part of the script

de�nes variables to be used later on; startTime is

the advertised starting time of the broadcast (April

15, 1997, 1:00 p.m.), endTime is the end time (3:00

p.m. the same day), and speakerStream is the

camera facing the speaker (ssrc 326232628 in the

RTP session 234.1.2.3/1234). The second part of

the script automates the opening and closing phases

9

of the broadcast. It �rst tells the broadcaster pro-

cess to switch speakerStream to the MBone at

startTime. Then, it requests subtitle processing

on speakerStream with a text string and assigns

the resulting stream to the variable titledStream.

At time startTime + 30 seconds, it switches to

the stream speci�ed by titledStream. It then

switches back to the original video speakerStream

at startTime + 60 seconds. Similar actions are are

executed in the closing phase. A potential prob-

lem here is that the estimated times are not always

accurate, as the lecture can start late and run over-

time. These situations should be accounted for in

the design of the automation engine.

4 IMPLEMENTATION AND DISCUSSION

This section discusses our current implementation

and related issues.

4.1 Status

vps is implemented using the Continuous Media

Toolkit (CMT). CMT is a portable toolkit of

reusable objects operating on media streams that

simpli�es the development of multimedia applica-

tions. The toolkit includes video �le and playback

objects in MJPEG and H.261 formats, communi-

cation objects for unicast (UDP), multicast (RTP),

and blocking and non-blocking RPC, synchroniza-

tion objects to control application behavior, and

�lter objects that implement e�ects processing on

YUV and MJPEG data. Each process in vps is

composed of CMT objects connected by the Tcl

scripting language. The vps code is structured into

a hierarchy of classes using OTcl, an object-oriented

extension to Tcl developed at MIT. The Tk toolkit

is used to build the user interface.

The current implementation is a prototype of the

described system. We implemented e�ects process-

ings in the YUV and MJPEG domains. The au-

tomation engine is in its design phases and works

closely with the broadcast management system de-

scribed in the introduction. To demonstrate the

system's feasibility, this prototype sends video data

unicast (UDP) over the network and control mes-

sages via RPC. The implementation is being up-

dated to use IP Multicast for both video data and

control messages. At the writing of this paper, the

system has gone through two major revisions. The

most recent version has approximately 5000 lines of

OTcl code.

4.2 Special E�ects Processing

The PIP and subtitle e�ects are applied in the un-

compressed domain, and have YUV streams as in-

puts and outputs. The mix and fade e�ects are

generated in the compressed JPEG domain, which

process MJPEG streams and output in the same

format. The algorithms that manipulate images in

the compressed domain are fully described in [12].

To investigate the performance of the current ef-

fects implementation, we conducted experiments

to determine the latency of each e�ects on each

frame. We also measured the performance of the

MJPEG to YUV decoding operation. The MJPEG

and YUV streams used in the measurements are

CIF (320x240) sized videos, and are served from lo-

cal disks to isolate the measurements from network

overhead. The measurements were carried out on a

200 MHz Pentium Pro with 32MB of memory and

2GB of disk space.

The results are presented in Table 3. In our im-

plementation, the generation of various e�ects is

inexpensive; it takes approximately 15 to 20 ms

to process each frame in YUV. The decoding from

MJPEG to YUV is more computationally intensive

and thus takes on average 45 ms. Adding the de-

coding times to the processing times, it takes about

65 ms to complete the YUV processing on each

frame. When compared to the mix e�ect imple-

mented in the compressed domain, we see that it

takes on average of 65 ms for processing YUV data,

but only 20 ms for processing in the compressed do-

main. Clearly, e�ects processing in the compressed

domain is much faster than converting a stream to

YUV, applying the transformation, and converting

back to MJPEG [12]. These measurements only

account for the raw computation time needed to

generate the operations; we did not look into how

other bottlenecks in the vps system can a�ect the

performance of e�ects processing. Other possible

I/O bottlenecks may exist in the kernel when the

system transmits or receives streams over the net-

work.

The e�ects processing o�ered in the current sys-

tem are simple; they mainly involve memory copies

and/or simple calculations. For more complex ef-

fects that require greater computation power, such

10

set vps [new VPS : : :]

set startTime [new Time ``4 15 1997'' ``13:00'' GMT]

set endTime [new Time ``4 15 1997'' ``15:00'' GMT]

set speakerStream [new LiveStream ``234.1.2.3'' 1234 326232628]

: : :

at $startTime ``$vps cut $speakerStream''

set introText ``Berkeley Graphics ...''

at $startTime + 1 ``set titledStream [$vps subtitle $speakerStream $introText]''

at $startTime + 30 ``$vps cut $titledStream''

at $startTime + 60 ``$vps cut $speakerStream''

: : :

at $endTime ``$vps fade $speakerStream black''

set creditsText ``Credits ...''

at $endTime + 1 ``set endStream [$vps subtitle black $creditsText]''

at $endTime + 30 ``$vps cut $endStream''

Table 2: OTcl script to automate production process.

Operation Latency (ms) Std. dev (ms)

MJPEG ! Decode ! YUV 44.62 9:64� 10�8

MJPEG ! Mix ! MJPEG 18.62 9:78� 10�7

YUV ! Mix ! YUV 20.65 2:42� 10�4

YUV ! PIP ! YUV 14.95 2:21� 10�4

YUV ! Subtitle ! YUV 19.62 5:96� 10�4

Table 3: Measurements results.

as chroma-key, we need to resort to more sophisti-

cated algorithms. Also, for larger image sizes, such

as SCIF video (640x480), it takes at least four times

as long to process each frame for many e�ects. Sec-

tion 5 discusses future work that will address the

ability to execute more complex e�ects in a way

that maintains an acceptable throughput data rate.

the Another issue to consider is H.261 video [8];

this is the format almost exclusively used in pub-

lic MBone broadcasts. Although streams originat-

ing in the Studio MBone are higher bitrate streams

such as MJPEG, the fx processors need to be en-

hanced to handle H.261 streams from the public

MBone as well.

5 FUTURE WORK

Future work with the software-only video produc-

tion switcher will be concentrated on the fx server

and fx processor. The current vps implementation

is able to realize simple e�ects with objects written

speci�cally to perform the desired e�ect on a par-

ticular format of video. This approach is inexible

and requires that a new object to be written for

each new video format and desired e�ect. In addi-

tion, the complexity of an object increases with the

complexity of the desired e�ect.

A more exible approach is to represent complex

e�ects as a combination of simpler functions. Ob-

jects written to perform these basic functions can

be reused and recombined into di�erent complex ef-

fects. As an example, Figure 9 shows a mix e�ect

represented as a combination of simple multiplica-

tion and addition functions.

Another requirement of the fx server in the

vps system is the ability to maintain an accept-

able level of throughput independent of the com-

plexity of the desired e�ect. To meet this require-

ment, the fx server must exploit parallelism. Three

types of parallelism are available: temporal, spa-

11

Add

Video 1

Video 2

Mixed Video

Multiply
0.5

Multiply
0.5

Figure 9: Mix e�ect as combination of simple functions.

tial, and functional decomposition. Temporal par-

allelism can be exploited by creating and controlling

fx processors to process frames of a video stream

independently. For example, the fx server may

use one fx processor to process all odd numbered

frames and another fx processor to process all even

numbered frames. Spatial parallelism can be ex-

ploited by splitting the input video streams along

spatial boundaries, utilizing separate fx processors

to process each region independently, and recom-

bining the resulting streams into one video stream.

Functional decomposition takes advantage of rep-

resenting complex e�ects as a combination of sim-

pler functions. The fx server can decompose this

representation into two or more stages and utilize

separate fx processors for each stage.

The use and management of parallelism to real-

ize complex e�ects will be internal to the fx server.

The vps interfaces with the fx server only to spec-

ify what desired e�ect is required. The details of

realizing the e�ect by exploiting the available par-

allelism is left to the fx server. The fx server must

address two issues when executing a desired e�ect.

First, how many fx processors will be required to ex-

ecute the e�ect and achieve an acceptable through-

put? Second, what type of parallelism should be

exploited?

To arrive at answers for these questions, we

plan on using a hierarchical con�guration structure

within the fx server. At the topmost level of the

hierarchy, the desired e�ect and the input video

streams are represented as they were provided by

the vps system to the fx server. The fx server eval-

uates the desired e�ect to determine if a single fx

processor can realize the e�ect with an acceptable

throughput. If this is not possible, the fx server

decomposes the desired e�ect into two or more sep-

arate pieces by exploiting one of the three types of

parallelism available. Each sub-piece is then recur-

sively treated as a new e�ect to be realized. The

question of what type of parallelism is to be ex-

ploited is answered at each level of this con�gura-

tion hierarchy, allowing for a hybrid mix of tem-

poral, spatial, and functional decomposition. The

question of how many fx processors is required is

answered by the number of leaves in the con�gura-

tion hierarchy.

A number of optimizations to improve perfor-

mance must be made when constructing the con-

�guration hierarchy and executing the e�ect. One

optimization is to balance the time spent building

the con�guration hierarchy and the time spent ac-

tually performing the e�ect. In most cases, a de-

sired e�ect will only be required for a �nite period

of time. For example, a fade e�ect may be used to

transition between two di�erent camera views and

will only be required for a relatively short period

of time. When an e�ect is requested, the fx server

must evaluate a number of di�erent possible con-

�guration hierarchies that could be used to execute

the e�ect. Essentially, this task amounts to search-

ing the space of possible con�gurations and pre-

dicting the performance of each. The time spent in

constructing and evaluating these hierarchies must

be proportional to how long the e�ect will last. To

this end, accurate heuristics and cost models to pre-

dict the performance of various con�gurations need

to be developed.

Another optimization is to dynamically balance

the number of fx processors used by several di�er-

ent con�guration hierarchies. Several separate ef-

fects may be required by the vps at the same time.

For example, the vps may be used to execute a fade

transition between one camera view and the result

12

of a chroma-key e�ect using a di�erent camera view

and a still image. The chroma-key e�ect and the

fade e�ect will be two separate e�ects that are ac-

tive at the same time. Although each e�ect will

have its own con�guration hierarchy within the fx

server, the computing resources available must be

shared between them. As new e�ects are requested,

the number of fx processors used by e�ects already

being executed must be dynamically changed to ac-

commodate the needs of the new e�ect. Similarly,

as e�ects are completed, fx processors that are no

longer in use must be distributed to e�ects that are

still under way.

6 SUMMARY

The deployment of IP Multicast and MBone con-

ferencing tools make it possible to produce and

broadcast live programs on the Internet. In this

paper, we described the design and implementa-

tion of a software-only video production switcher,

vps, that enhances the quality of MBone broad-

casts. vps provides special e�ects processing to in-

corporate audience discussions, add titles and cred-

its, and integrate stored videos into the presenta-

tion. We showed an example scenario of vps in

use. We also discussed the software architecture of

vps. The developed prototype has demonstrated

the feasibility of vps. Future work will improve

special e�ects processing.

ACKNOWLEDGMENTS

The �rst prototype of this system was designed and

implemented as a class project by David Simpson

and Richard Fromm. Soam Acharya implemented

the mix and fade e�ects in the compressed domain.

References

[1] S. Deering and D. Cheriton. Multicast rout-

ing in datagram internetworks and extended

lans. ACM Transactions on Computer Systems

(TOCS), 18(2):85{110, May 1990.

[2] H. Eriksson. Mbone, the multicast back-

bone. Communications of the ACM, 37(8):54{

60, August 1994.

[3] S. Floyd, V. Jacobson, C. Liu, S. McCanne,

and L. Zhang. A reliable multicast framework

for light-weight sessions and application level

framing. In ACM SIGCOMM, pages 342{356,

August 1995.

[4] Plateau Multimedia Research Group.

The berkeley continuous media toolkit.

Documentation available at URL

http://bmrc.berkeley.edu/projects/cmt/cmt.html.

[5] J. Handley and V. Jacobson. Sdp: Session

description protocol. Internet Draft, work in

progress, November 1995.

[6] R. Malpani. Floor control for large-scale

mbone seminars. Master's thesis, University

of California, Berkeley, CA, 1997. Submitted

for publication to ACM MM '97.

[7] S. McCanne and V. Jacobson. vat: The lbnl

audio conferencing tool. 1995. Available at

URL ftp://ftp.cs.berkeley.edu/ucb/sggs/.

[8] S. McCanne and V. Jacobson. vic: A exi-

ble framework for packet video. In ACM Mul-

timedia, pages 511{522, San Francisco, CA,

November 1995.

[9] G. Millerson. The Technique of Television Pro-

duction. Focal Press, 12 edition, 1990.

[10] J. K. Ousterhout. Tcl and the Tk Toolkit.

Addison-Wesley, 1994.

[11] H. Schulzrinne, S. Casner, R. Freder-

ick, and V. Jacobson. Rtp: A trans-

port protocol for real-time application, Jan-

uary 1996. RFC 1889. Avaiable at URL

ftp://ds.internic.net/rfc/rfc1889.txt.

[12] B. Smith and L. Rowe. Algorithms for manip-

ulating compressed images. IEEE Computer

Graphics and Applications, September 1993.

[13] A. Swan. An internet mbone broadcast man-

agement system. Master's thesis, University of

California, Berkeley, CA, 1997. Submitted for

publication to ACM MM '97.

[14] D. Wetherall and C. Lindblad. Extending

tcl for dynamic object-oriented programming.

In Proceedings of the Tcl/Tk Workshop'95,

Toronto, July 1995.

