Exploiting Spatial Parallelism
For Software-only Video Effects Processing

Ketan Mayer-Patel

Lawrence A. Rowe

{kpatel,rowe}@cs.berkeley.edu

Computer Science Division, EECS

University of California, Berkeley
Berkeley, CA 94720

Abstract

Video effects play an important role in adding pro-
duction value to video programs. The use of video
effects with Internet Video sources, however, is still
uncommon because traditional hardware-based solu-
tions are poorly suited to the Internet environment.
In previous work, we described a parallel, software-
only video effects system designed for Internet Video
and explored the use of temporal parallelism. This
paper explores the use of spatial parallelism. In par-
ticular, an intermediate semicompressed video format
is desribed that was designed to exploit spatial paral-
lelism, and performance measurements are reported
on the use of this representation.

1 Introduction

Experience from the television, video, and film in-
dustries shows that visual effects are an important
tool for communicating and maintaining audience in-
terest [11]. Titling, for example, is used to identify
speakers and topics in a video presentation. Com-
positing effects that combine two or more video im-
ages into one image are used to present simultane-
ous views of people or events at different locations.
Blends, fades, and wipes are transition effects that
ease viewers from one video source to another.

The use of video effects with Internet Video (IV)
sources is uncommon. Live Internet broadcasts of
conferences, classes, and other special events require

improved production values that video effects pro-
vide.

Traditionally, video effects are created using a
video production switcher (VPS). A VPS is a spe-
cialized hardware device that manipulates analog or
digital video signals to create video effects. It is usu-
ally operated by a technician or director at a con-
trol console. Unfortunately, traditional video effects
processing hardware is poorly matched to the IV en-
vironment. IV sources are characterized by variable
frame rates, bit rates, and jitter. Traditional hard-
ware, whether analog or digital, depends on constant
frame rates, constant bit rates, and tightly synchro-
nized signalling.

We are developing a software-only video effects
processing system designed for the IV environment.
A software-only solution using commodity hardware
provides the flexibility required to handle IV. Vari-
able frame rates, packet loss, and jitter can be dealt
with gracefully with dynamic adaptation. A software
system can be written to handle IV formats already in
use (e.g., JPEG, H.263, etc) and extended to handle
new formats. And, standard IV multicast communi-
cation protocols (e.g., RTP [14]) can be used. Using
general-purpose processors allows a software system
to benefit from continuous improvements in processor
and networking technology.

The key to a software-only solution is to exploit
parallelism because the computation required for
many effects (e.g., chroma-key, complex transforma-
tions, etc.) is beyond the capability of a single pro-

cessor. Even as processors become faster, the de-
mand for more complicated effects, larger images,
and higher quality will increase. Improvements in
processor and networking technology will only be met
with greater application demands.

Fortunately, video processing contains a high de-
gree of parallelism. Three types of parallelism can be
exploited for effects processing: functional, temporal,
and spatial. Functional parallelism decomposes the
video effect task into smaller subtasks and maps them
onto the available computational resources. Tempo-
ral parallelism can be exploited by demultiplexing the
stream of video frames to different processors and
multiplexing the processed output. Spatial paral-
lelism can be exploited by assigning regions of the
video stream to different processors.

In previous work, we outlined the design and ar-
chitecture of a software-only parallel video processing
system and explored issues related to exploiting tem-
poral parallelism [8]. This paper explores issues re-
lated to spatial parallelism. Specifically, an interme-
diate semicompressed video format is described that
was designed to exploit spatial parallelism. Perfor-
mance measurements are reported on the use of this
representation.

The paper is organized as follows. Section 2 re-
views related work. The overall system architecture
and design is described in Section 3. Issues related
to exploiting spatial parallelism are discussed in Sec-
tion 4. The intermediate semicompressed video for-
mat is described in Section 5. Performance measure-
ments are reported in Section 6. Finally, Section 7
summarizes the paper.

2 Related Work

Several hardware systems have been developed to ex-
plore parallel video effects processing. The Cheops
system developed by Bove and Watlington at MIT
is composed of interconnected special-purpose hard-
ware components that implement specific functions
(e.g., discrete cosine transform (DCT), convolution,
etc.) [1]. The IBM Power Visualization System is
a parallel processor composed of up to 32 identical
processors interconnected by a global bus [4]. It was

designed specifically to support the IBM EFX suite
of editing, effects, and compression software. The
Princeton Engine is a parallel processor composed of
up to 2048 custom-designed processing elements [2].
Many other hardware systems have also been devel-
oped [6, 7, 13]. The system proposed here differs
fundamentally from these systems by not assuming
any particular underlying parallel architecture and
concentrating on a software-only solution.

More recent work by Bove and Watlington de-
scribes a general system for abstractly describing me-
dia streams and processing algorithms that can be
mapped to a set of networked hardware resources [16].
In this system, hardware resources may be special-
purpose media processors or general-purpose proces-
sors. The system is centered around an abstrac-
tion for media streams that describes any multi-
dimensional array of data elements. The system
achieves parallelism by discovering overlaps in access
patterns and scheduling subtasks and data movement
among processors to exploit them. The system uses
a general approach that is not specific to video or
packet video formats and that is independent of net-
working protocols. This research shares some of the
same goals and solutions that we are working to-
ward. Our system is different in that we are tak-
ing advantage of representational structure present
in compressed video formats, and we are constrained
to standard streaming protocols for video on the In-
ternet (i.e., RTP).

Dali is a low-level set of image operators that oper-
ate on a specific representation of data elements [15].
We are using Dali as the language to express primitive
effects processing tasks. The semicompressed mem-
ory representation available in Dali was a starting
point for developing the intermediate video format
used in exploiting spatial parallelism in our system.

Our system is built on top of the MASH toolkit.
MASH is a flexible software environment for build-
ing distributed continuous media applications [10]. Tt

supports existing Internet protocols including RTP,
RTCP, RTSP and SRM [14, 5, 12].

Effects Processor

»

X
Effects Server >

Live Internet/

High Level
Effect Specification %

FX Compiler
Processed
Video Output

Directed Graph
Representation

Control Interface

Q
£
i
)
)
£
<]
(]

|
Video Source T .o Description :
|
:
Live Internet Video Archive !
Video Source Server |

. ! FX Mapper
Video Description of :
Available Resources
Control -=------- !
|
|
. . ! Subj am | Subj N
Figure 1: System Architecture ! e o
e } l e o o l

. E |

3 Syst em AI'Chlt ecture s i | FX Processor FX Processor
m I
I
I
This section briefly describes the design and architec- i

1 1 . Control & Data -

ture of the system we are building. A more detailed ST =T
|
|

description of this design is given in a previously pub- i beveen |

lished paper [8]. v, |
The overall system architecture is shown in Fig- S
ure 1. The oval labeled “Application” represents
an application that requires video effects processing.
The application sends a specification of the desired
video effect to the “Effects Server.” The ovals la-
beled “Effects Processor” represent general-purpose
computers. The “Effects Server” allocates system re-
sources, maps effects onto available processors, and
provides the application with a means to control the Multiply by
effect (i.e., change any relevant parameters). 1-p
The system is composed of three major software
components: the FX Compiler, the FX Mapper, and
the FX Processor. The relationship between these
components is illustrated in Figure 2. Placing these
components in the overall system architecture de-
picted in Figure 1, the FX Compiler and FX Mapper
are part of the “Effects Server” and the FX Processor ¢
is the software executing on an “Effects Processor.” Cross-Dissolved
The FX Compiler translates a high-level descrip- Output
tion of a video effect into an intermediate represen-
tation. Qur target representation is a directed graph Figure 3: Cross-Dissolve Directed Graph
of video operators (i.e., a data flow graph). Figure 3 Representation
shows a cross-dissolve video effect expressed as di-

Figure 2: Software Architecture

Video A Video B

Video A Video B

Multiply left Multiply left Multiply right Multiply right
half by p half by /-p half by p half by /-p

Add left Add right
halves halves

Processor 1 Processor 2

Processor 3

RS
Reconstruct
and transcode

Cross-Dissolved
Output

Figure 4: Spatial Partition of Cross-Dissolve Graph

rected graph of primitive operators.

The FX Mapper takes the intermediate represen-
tation and maps it onto the available resources. It
produces effect “subprograms” that will be executed
on a particular computational resource. We express
these subprograms as Dali scripts. Again consider the
cross dissolve example illustrated in Figure 3. Fig-
ure 4 shows a possible partitioning using spatial par-
allelism. Each input frame is sent to both processors.
But a processor only operates on a subregion which
in this case is the left or right half of the frame. The
graph is augmented with an operator to reconstruct
output frames from the partial results (i.e., left and
right halves).

The FX Processor instantiates the effect subpro-
gram, opens the appropriate input sockets, executes
the subprogram when presented with data, and re-
sponds to control signals sent from the application.

Our system relies only on a set of general-purpose
processors connected by a local area network. It does
not rely on any specialized parallel architecture. If,
however, processors are tightly coupled with either

shared memory or a high-speed low-latency intercon-
nect, optimizations can be made to improve perfor-
mance.

4 Spatial Parallelism

There a two basic problems that must be solved to
exploit spatial parallelism. First, each FX Processor
must acquire the appropriate input data to compute
a share of the solution. Second, the results of all
FX Processors must be recombined to form a sin-
gle output frame. Control over which processor will
produce which subregion and how the subregions are
calculated are separate issues not discussed in this
paper. The following subsections outline the issues
that must be resolved when dealing with these two
problems and our solution.

4.1 Input Distribution

The problem of distributing the input video is heav-
ily dependent on the computation being done and the
format of the input video sources. For some effects,
computation of an output subregion requires access
to the directly corresponding subregions of the in-
puts. For example, when performing a cross-dissolve
(i.e. fade) between two input video sources, any sub-
region of the output only requires the corresponding
subregions of the two inputs. Other effects, however,
have more complex relationships between inputs and
outputs. An affine transformation (i.e., scale, rota-
tion, translation, etc.) may require any portion of
the input video frame to compute a particular subre-
gion of the output. The relationship between inputs
and outputs in these kinds of effects are generally
captured by user-specified parameters (e.g., angle of
rotation, center of rotation, or scaling factor). These
parameters may also vary in time (e.g., fading from
one stream to another). Since many effects are the
result of applying two or more transformations, track-
ing the inverse relationship between output subregion
and required input regions can become complex.
Even if the required region of the input video is eas-
ily computed, the input video format may not lend
itself to a simple extraction of that region. Motion-

JPEG (M-JPEG) video streams, for example, code
only the difference between the DC coefficients of suc-
cessive 8x8 DCT blocks. Thus, the value of any given
block’s DC coefficient depends on the value of the DC
coefficients of all blocks that came before it. MPEG
video streams use motion vectors that may require
the value of pixels outside the region of interest. If
the region of interest changes, formats that use con-
ditional block replenishment such as the widely used
H.261 video format may require decoding a block sev-
eral frames in the past which was not in the region
of interest to determine the pixel values of a particu-
lar block in the present which now is in the region of
interest [9].

One possible approach is to translate the input
video into an intermediate format that facilitates ex-
tracting only the necessary regions. Once transcoded,
this intermediate video stream can be multicast to
the processors involved in computing the video ef-
fect. Each processor extracts only the required in-
formation. We rejected this approach for several rea-
sons. First, it adds more latency as each input stream
must be transcoded and retransmitted. Second, we
still have the problem of maintaining the inverse rela-
tionship between output subregion and the necessary
input regions.

Our approach to this problem is to have each pro-
cessor receive and decode each of the input video
streams in its entirety. This approach keeps the in-
put video decoding process as simple as possible at
the expense of decoding unnecessary regions of the
input video streams and replicating decoding effort
at each of the participating processors. We believe
these costs are outweighed by the advantage of not
having to maintain the inverse relationship between
outputs and inputs. In addition, the problems of time
varying regions of interest in the presence of condi-
tional replenishment schemes and motion vectors are
sidestepped. One optimization that might be made
if processors are tightly coupled is to share decod-
ing results (e.g., maintain a shared cache of decoded
blocks).

4.2 Output Reconstruction

The problem of reconstructing the output from re-
sults produced by each FX Processor requires com-
municating these subregions to a central location.
The format of these intermediate results heavily im-
pacts the amount of work necessary to reconstruct
the output frame.

Traditional IV formats are badly suited to this
task. Each subregion must specify its own geometry
(i.e., width and height) as well as its relationship to
the larger geometry of the whole frame (i.e., vertical
and horizontal offset). M-JPEG, H.263, H.261, and
MPEG do not have mechanisms for communicating
this information. Extending RTP payload formats
for these video formats to include this information is
possible, but it makes the new payload syntax incom-
patible with existing software.

Our approach to this problem is to design our own
intermediate format specifically for the task of recon-
structing whole frames from subregions. This new
intermediate format is used only to communicate sub-
region results from the participating processors to one
particular processor that will reconstruct the frame
and transcode it into the target output format. RTP
is used as the transport protocol throughout our sys-
tem so we have defined a new payload type for this
intermediate format. Figure 4 illustrates the relation-
ship between different processes involved in exploit-
ing spatial parallelism in our cross-dissolve example.
Note that multicast is used to communicate the input
video streams to all processors involved and that the
intermediate subregions are transmitted to the recon-
structing process in our newly developed format.

5 Semicompressed
Video Format

This section discusses the issues encountered when
designing the intermediate format, justifies our de-
sign decisions, and provides details about the format
developed.

Region Size | Bitrate @ 30 fps
Dimensions | (kB) (Mb/s)

8x8 0.1 0.02
80x60 7.2 1.70
160x120 28.8 6.90
320x240 115.2 27.60
640x480 460.8 110.60
1280x720 | 1400.0 331.80

Table 1: Uncompressed Video Sizes and Bitrates

5.1 Design Issues

Three main issues were encountered when designing
the intermediate format:

1. Should compression be used? If so, how much
and in what form?

2. How will subregions be packetized?

3. What subregion geometries will be allowed?
How will they be specified?

The first question concerns compression. Because
the intermediate format is not the output target for-
mat, any compression used at this stage may have to
be undone at the final transcoding stage. Unfortu-
nately, raw formats are large. Table 5.1 shows the
size of a single frame of uncompressed video for var-
ious region sizes. Fach frame is represented by an
8-bit luminance plane and two subsampled chromi-
nance planes (i.e., two chrominance pixels for every
four luminance pixels). Also shown are the corre-
sponding bit rates required at 30 frames per second.

Exploiting spatial parallelism will make the most
sense as frame sizes grow and the portion of computa-
tion that can be effectively parallelized is large. Using
an uncompressed intermediate format limits the ap-
plicability of spatial parallelism by quickly exhaust-
ing network resources. The problem is exacerbated
by the fact that all intermediate results have to go to
one place for reconstruction and transcoding.

Our approach is to use a simple DCT block-based
compression scheme. There are several advantages to
this approach. First, DCT is at the base of many

widely used compression schemes (i.e., M-JPEG,
H.263, and MPEG). Thus, in the final transcoding
stage, the DCT coefficients can be used directly. Sec-
ond, if the intermediate results must be rate limited
due to network resource constraints, a DCT-based so-
lution provides a convenient representation to throw
away data that is perceptually less significant (i.e.,
high frequency coefficients).

The second design issue is how to deal with pack-
etization. Even though the intermediate format will
be used to describe subregions of a larger frame, we
may have to use more than one RTP packet to trans-
mit the data for the subregion. The application level
framing principle upon which RTP is built mandates
that each RTP packet be processed independent of
any other packet [3]. This principle led to two design
decisions. First, the entire subframe geometry and
its relationship to the larger geometry of the origi-
nal frame must be specified in each and every packet.
Second, the coding granularity must be small enough
to fill packets efficiently. The decision to use a DCT
based compression scheme led us to choose 8x8 blocks
of pixels as the smallest unit of coding.

The third design issue concerns subregion geome-
tries. Decisions made when dealing with the previous
two issues constrain our options. The use of DCT
block-based compression implies that subregion ge-
ometries must be rectilinear and in multiples of the
base 8x8 block size. The necessity of describing full
geometry information in every packet makes hierar-
chical geometry cumbersome. We decided to allow
only one level of subgeometry. The system may de-
compose a frame several times using spatial decompo-
sition. But if a subregion is further subdivided, each
piece retains only its own geometry and the original
frame geometry. In other words, the intermediate
subregion geometry is lost.

5.2 Format Details

This section describes the intermediate format we de-
veloped in detail and points out key features that fa-
cilitate the reconstruction of whole frames from sub-
regions. We will refer to our new format as the semi-
compressed format (SC).

The following assumptions are made about the sub-
region video data coded into the SC format:

1. The video data consists of three planes: a lu-
minance plane (Y) and two chrominance planes

(Cr, Cb).

2. The width and height of the Y plane are multi-
ples of 8.

3. The Cr and Cb planes are possibly subsampled.

4. If the Cr and Cb planes are subsampled, the sub-
sampled width and height are still multiples of
8 and both planes are subsampled to the same
degree.

The SC format allows for the description of any
subregion which is rectilinear along 8x8 block bound-
aries. The last assumption stated above may restrict
the subregion geometry to courser block boundaries
since the subregion dimensions must be multiples of
the subsampling factor as well. For example, if the
chrominance planes are subsampled by a factor of 2
horizontally and not subsampled at all vertically, sub-
region widths must be multiples of 16 while subregion
heights may be multiples of 8.

A subregion is described by one or more SC pack-
ets. Figure 5 shows the components of each SC
packet. Each packet is composed of an RTP header
followed by an SC header and the description of one
or more 8x8 blocks of pixels as DCT coefficients. Fig-
ures 6 and 7 show further details of the RTP and SC
headers. In the RTP header, the flags field is 8 bits
wide, the frame marker bit is a single bit, the type
field is 7 bits wide, and the sequence number is 16
bits wide.

The marker bit in the RTP header is set when the
SC packet is the last packet of a sequence of packets
describing the contents of the subregion for a par-
ticular timestamp. SC packet decoders should not
depend on this bit being set because the last packet
may be lost. The decoder should be able to detect
when all available SC packets for a subregion have
been received from the change in timestamp values
in the RTP header. The type field in the RTP header
identifies the rest of the packet as being in the SC
format.

Frame Marker Bit

RTP Header
12 bytes

SC Header
18 bytes

8x8 Encoded Block
variable length

8x8 Encoded Block
variable length

8x8 Encoded Block
variable length

Figure 5: SC Packet Format

Flags

Type

Sequence Number

Media Time Stamp

Synchronization Source ID

32 BitsWide

Figure 6: RTP Header

Width
Height

True Width

True Height

Horizontal Offset
Vertical Offset
Hor. Subsample Ver. Subsample
First Block Address

First Block Address (cont’ d)

16 Bits Wide

Figure 7: SC Header

The SC header consists of 9 fields:
width The width of the subregion in pixels.
height The height of the subregion in pixels.

true width The width of the original frame in pix-
els.

true height The height of the original frame in pix-
els.

horizontal offset The horizontal offset of the sub-
region in pixels.

vertical offset The vertical offset of the subregion
in pixels.

horizontal subsample The horizontal subsam-

pling factor of the chrominance planes.

vertical subsample The vertical subsampling fac-
tor of the chrominance planes.

first block address The address of the first block
of pixels described in this packet.

Each 8x8 block of pixels is given a “block address”
that uniquely determines both the position and plane
of the pixel values. The address is calculated relative

56:57:58:59:60:61:62: 63
Y-plane (64 x 64)

6465 6667 80 81 82:83
686970 71 84858687
72737475 888990 91
76 77: 78 19 92:93:94: 95

Cr-plane (32 x 32) Cb-plane (32 x 32)

Figure 8: Block Addressing

to the original parent geometry by enumerating the
8x8 blocks in row-order starting with the upper left
block of the Y-plane and continuing with the Cr- and
Cb-planes, respectively. Figure 8 shows this address-
ing scheme for a frame 64 pixels wide and 64 pixels
tall with 4:1:1 chrominance subsampling.

The format of a block encoding is shown in Fig-
ure 9. Each block is made up of a DC coefficient,
zero or more AC coefficients, and a block address in-
crement. The coefficients have 12 bit precision and
are unscaled. The DC coefficient is coded with 16
bits. Each AC coefficient is coded with either 16 or
32 bits depending on the number of zero coefficients
that precede it. The block address increment deter-
mines the address of the next block described in this
packet. It is coded in either 16 or 32 bits depending
on its value.

The AC coefficients are encoded in row-major order

DC Coefficient
(16 bits)

AC Run Length and Cofficient
(16 or 32 hits)

AC Run Length and Cofficient
(16 or 32 bits)

Block Address Increment
(16 or 32 hits)

Figure 9: Block Encoding

using run length encoding to avoid coding coefficients
with a value of zero. Each AC coefficient is encoded
along with the number of zero coefficients that pre-
cede it (i.e., the run length). If the run length is less
than 15 (the most common case), 16 bits are used.
The top 4 bits encode the run length and the next
12 bits encode the coefficient value. If the run length
is greater than 15, the run length is encoded in 16
bits with the top 6 bits set to an escape code and
the next 10 bits encoding the run length. Following
the escaped run length are 16 bits indicating the co-
efficient value. When the run length is greater than
15, many bits are not efficiently used. We expect this
case to be rare.

The block address increment indicates that no
more AC coefficients are encoded for the current
block and determines the block address of the next
block described in this packet by encoding the dif-
ference between the block address of the next block
and the current block address. If this difference is
less than 1023, the block address increment can be
encoded into 16 bits. If greater than 1023, the block
address increment is encoded into 32 bits. In either

case, the first 6 bits are set to one of 2 escape codes
indicating the end of the AC coefficients for the cur-
rent block and determining the number of bits (10 or
26) used for the block address increment.

The description of a subregion need not include de-
scriptions of every block in the subregion. The order
of the blocks is also not strictly specified.

The SC format has two key features. First, if net-
work constraints demand that each processor rate
limit the resulting SC packet stream, several tech-
niques are easily applicable. Small coefficients that
may be quantized to zero by the eventual transcod-
ing process can be discarded. High frequency AC
coeflicients can be discarded to reduce the number of
coefficients encoded in each block. And, conditional
replenishment can be applied by not coding blocks
that have not changed since last being transmitted.

Second, reconstruction of the original frame can
be separated into two stages: transforming SC packet
streams describing subregions into a single SC packet
stream that describes the larger parent geometry and
transcoding this packet stream into the desired out-
put format. Since the block addressing scheme used
is relative to the original frame geometry and is in-
dependent of the subregion geometry, packets from
several different sources describing different subre-
gions can be easily transformed into what appears
to be a single stream of SC packets that describe the
larger, original geometry. This new stream of SC
packets can then be sent to a transcoder that pro-
duces the desired output frame. This transformation
simply changes the width and height fields of each SC
packet to be equal to the true width and true height
fields. Additionally, the RTP sequence number and
source id fields are changed to interleave the separate
streams into one valid stream of SC packets.

6 Measurements

This section reports measurements relating the size
of the SC format relative to M-JPEG and the per-
formance of the SC encoder and decoder. The SC
format size is of interest because trading off compres-
sion with ease of reconstruction is one of the reasons
we developed a new intermediate format. The perfor-

SC Frame Size (kB)

20 25
JPEG Frame Size (kB)

30

35

40

Figure 10: SC frame size vs. M-JPEG frame size.

mance of the SC encoders and decoders is of interest
because the cost of getting into and out of our inter-
mediate format will be integral to predicting the cost
of using spatial parallelism. Finally, end-to-end com-
parisons of video effects implemented using spatial
parallelism and effects implemented using temporal
parallelism are given.

6.1 SC Format Size

Figure 10 shows a scatter plot of the size of over
2000 frames in our SC format relative to the size of
the original M-JPEG frames. In these measurements
the frame dimensions were 320x240. Larger M-JPEG
frame sizes correlate to higher quality and more high
frequency information. In other words, more DCT
coefficients per block. No information was lost when
reencoding the frame into our format (i.e., all coeffi-
cients were coded). We can see that SC format frame
sizes range from 10kB to 70kB depending on the qual-
ity of the original M-JPEG frame. It appears that the
SC format size is a linear scale of the M-JPEG size,
but Figure 11 disproves this hypothesis.

Figure 11 shows the same data but now the ratio
of the SC frame size and the M-JPEG frame size is
plotted against the original M-JPEG frame size. We
can see that when M-JPEG sizes are small (around
3kB), the corresponding SC format is around 6 times

10

Ratio of SC and JPEG Sizes

35

10 15 20 25

JPEG Frame Size (kB)

30 40

Figure 11: Ratio of SC frame size to M-JPEG frame
size vs. M-JPEG frame size.

larger (around 18 kB), but as M-JPEG frame sizes
grow, the corresponding SC format approaches being
only twice as large. The decrease in the ratio hap-
pens because as the number of DCT coeflicients per
block increases, the effectiveness of M-JPEG entropy
coding decreases.

6.2 Encoder/Decoder Performance

To measure SC codec performance, we performed two
experiments. Both were conducted using an Ultra-
Sparcl workstation. In the first, encoding time was
measured as the size of the region encoded was var-
ied. This encoding time corresponds to the work be-
ing done by individual FX Processors as they encode
subregions to be sent for reconstruction and transcod-
ing. Figure 12 shows the time spent encoding a single
block as the total number of blocks (i.e., the subre-
gion size) increases. We can see that the encoding
time is constant on a per block basis. This result
shows that we can predict the required encoding time
for a given spatial subdivision. This property will be
important when building the FX Mapper.

In the second experiment, the time necessary to
transcode an SC frame into an M-JPEG frame was
measured. This time corresponds to the final recon-
struction and transcoding of the subregions into a

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

EER T
b R

Encoding Time Per Block (ms)

200

1 1 1 1
400 600 800 1000 1200
Region Size (# of blocks)

Figure 12: Encoding time of a single block in mil-
liseconds vs. the total number of blocks encoded (i.e.,
subregion size).

200
180
160
140
120
100

80

Transcoding Time (ms)

40
20

50

60

30 40
SC Frame Size (kB)

70

Figure 13: Reconstruction and transcoding time of
an SC frame into M-JPEG vs. the size of the SC
frame.

11

Frames/Second

1
4
Number of Processors

5

Figure 14: Performanace in frames per second for
temporal and spatial parallelism.

single frame of the desired output format. Figure 13
shows the time required to reconstruct and transcode
SC frames into M-JPEG frames as a function of the
original SC frame size. In this experiment, the frame
dimensions were 320x240. Clearly, the transcoding
time is related to the size of the SC frame (i.e., the
number of coefficients per block). This result indi-
cates that rate limiting the size of the subregions
can be used to reduce the cost of the final transcod-
ing. Unfortunately, the cost of transcoding appears
to be too high on this particular processor (i.e., Ultra-
Sparcl) to achieve full motion real-time frame rates
on a single processor even for small SC frame sizes.
To achieve real-time frame rates using spatial paral-
lelism, we will have to increase the performance of
the final transcoding step either through code opti-
mizations or by applying temporal parallelism (i.e.,
using more than one processor for the transcoding).

6.3 Comparison With
Temporal Parallelism

To compare spatial parallelism to temporal paral-
lelism we measured the end-to-end performance of
both approaches on a particular video effect. In our
experiment, the effect was a general affine transfor-
mation (i.e., any combination of scaling, rotation,

@

E

&

o}

B

-

& 150 | Yo - .

[4 - ': B

F 100t i AR ‘ I

E Rk

50 - -
0 1 1 1 1 1 1 1

3 4 5
Number of Processors

Figure 15: Per frame processing latency for temporal
and spatial parallelism.

and translation). The input video format was M-
JPEG and the output video format was our newly
developed SC format. In an actual application, the
output video would have to be further transcoded
into a more common and compact representation like
H.261. We used Ultra-Sparcl workstations connected
by a 10Mb/s switched Ethernet for the experiment.

Figure 14 shows the results of the experiment. The
temporal mechanisms are able to scale to larger num-
ber of processors much more effectively than the spa-
tial mechanisms. A direct consequence of the de-
sign decisions we made when dealing with the prob-
lem of input distribution is that each processor in-
volved in exploiting spatial parallelism must spend
some amount of time processing input video frames.
This cost establishes an upper bound on spatial par-
allelism performance because it is incurred on a per-
frame basis and is not related to the size of the output
region.

The advantage of using spatial parallelism is lower
processing latency. The time required for an input
frame to be processed using temporal parallelism is
relatively constant regardless of the number of pro-
cessors involved. The temporal mechanisms achieve
higher frame rates by overlapping the processing
costs of different frames. The spatial mechanisms,
however, achieve higher frame rates by reducing the

12

per frame latency. Figure 15 shows the per frame
processing latency in milliseconds for our experiment.
The processing latency experienced by frames using
temporal parallelism with 7 processors was about 340
milliseconds and only 70 milliseconds using spatial
parallelism.

7 Summary

This paper explored issues related to exploiting spa-
tial parallelism for video effects processing. In par-
ticular, an intermediate video format designed for
exploiting spatial parallelism was described and per-
formance measurments were reported. Key features
of the intermediate format were the ability to spec-
ify subgeometry and a block addressing scheme that
optimized reconstruction. Frames encoded in the
new format are 2 to 6 times larger than the corre-
sponding M-JPEG frames. The size penalty of the
intermediate format decreases as video quality in-
creases. Transcoding from the intermediate format
to M-JPEG is related to the size of the intermediate
format encoding and is not currently within real-time
speeds for low-end single processors.

We plan on exploring the use of spatial parallelism
further by constructing feedback mechanisms to dy-
namically adapt subregion assignments among pro-
Cessors.

Acknowledgments

This work was supported by National Science Foun-
dation grant #CDA-9512332 and equipment donated
by Intel Corporation.

References

[1] V. M. Bove, Jr. and J. A. Watlington. Cheops:
A reconfigurable data-flow system for video pro-
cessing. IEEE Transactions on Circuits and Sys-
tems for Video Processing, 5(2):140-149, April
1995.

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

D. Chin, J. Passe, F. Bernard, H. Taylor, and
S. Knight. The Princeton Engine: A real-time
video system simulator. IEEE Transactions on
Consumer Electronics, 32(2):285-297, 1988.

D.D. Clark and D.L. Tennenhouse. Architec-
tural considerations for a new generation of pro-
tocols. Proceedings of ACM SIGCOMM ’90
Symposium, 20(4):200-208, 1990.

D. A. Epstein et al. The IBM POWER Visual-
ization System: A digital post-production suite
in a box. 136th SMPTE Technical Conference,
pages 136-198, 1994.

Sally Floyd, Van Jacobson, Ching-Gung Liu,
Steven McCanne, and Lixia Zhang. A reli-
able multicast framework for light-weight ses-
sions and application level framing. IEEE/ACM
Transactions on Networking, December 1997.

T. Tkedo. A scalable high-performance graphics
processor: GVIP. Visual Computer, 11(3):121-
33, 1995.

R. M. Lougheed and D. L. McCubbrey. The cy-
tocomputer: a practical pipelined image proces-
sor. Conference Proceedings of the 7th Annual

Symposium on Computer Architecture, pages
271-278, 1980.

Ketan Mayer-Patel and Lawrence A. Rowe. Ez-
ploiting Temporal Parallelism for Software-Only
Video Effects Processing. To appear in Proceed-
ings of ACM Multimedia 1998.

Steven McCanne. Scalable Compression and
Transmission of Internet Multicast Video. PhD
thesis, University of California Berkeley, Decem-
ber 1996.

Steven McCanne et al. Toward a common infras-
tructure for multimedia-networking middleware.
Proceedings of the Tth Intl. Workshop on Net-
work and Operating Systems Support for Digital
Audio and Video (NOSSDAV), 1997.

G. Millerson. The Technique of Television Pro-
duction. Focal Press, Oxford, England, 1990.

13

[12]

[13]

[14]

[15]

[16]

Anup Rao and Rob Lanphier. RTSP: Real Time
Streaming Protocol, February 1998. Internet
Proposed Standard, work in progress.

Shigeru Sasaki, Tatsuya Satoh, and Masumi
Yoshida. IDATEN: Reconfigurable video-rate
image processing system. FUJITSU Sci. Tech.
Journal, 23(4):391-400, December 1987.

Henning Schulzrinne, Stephen Casner, Ron
Frederick, and Van Jacobson. RFC 1889, RTP:
A Transport Protocol for Real-Time Applica-
tions, January 1996.

B. C. Smith. Dali: High-Performance Video
Processing Primitives. Cornell University. Un-
published work in progress.

J.A. Watlington and V.M. Bove, Jr. A system
for parallel media processing. Parallel Comput-
ing, 23(12):1793-1809, December 1997.

