
Toward a Common Infrastructure for
Multimedia-Networking Middleware

Steven McCanne, Eric Brewer, Randy Katz, Lawrence Rowe,
Elan Amir, Yatin Chawathe, Alan Coopersmith, Ketan Mayer-Patel, Suchitra Raman,

Angela Schuett, David Simpson, Andrew Swan, Teck-Lee Tung, David Wu
University of California, Berkeley

Brian Smith
Cornell University

Abstract
Real-time multimedia streams like audio and video are

now integral data types in modern programming environ-
ments. Although a great deal of research has investigated
effective and efficient programming support for manipulat-
ing such streams and although the design of digital media
“middleware” is fairly well understood, no widely avail-
able or commonly accepted programming model exists
within the research community. We believe this lack of
common practice impedes our collective progress because
it prevents disparate research groups from easily leverag-
ing each other’s work. In this paper, we propose a solution
to this problem that combines the best features of a num-
ber of existing multimedia toolkits — Berkeley’s Contin-
uous Media Toolkit, MIT’s VuSystem, and the LBL/UCB
MBone tools — into a fine-grained, extensible, and high-
performance toolkit. We describe the convergence of these
three toolkits into a common programming infrastructure
and argue that the availability and acceptance of our mid-
dleware could potentially facilitate and accelerate break-
throughs in multimedia networking.

1 Introduction
Ongoing improvements in workstation and PC perfor-

mance have steadily enriched the variety of compute-
intensive, real-time multimedia data types that can be pro-
cessed and “programmed” in standard software. In the
early eighties, we saw the emergence of high-resolution
graphical displays, in the the late eighties, digital audio be-
came standard on Unix workstations and PCs, and in the
early nineties, low-quality digital video hit the desktop.
Now, in the late nineties, we are witness to the develop-
ment of high-definition video and real-time rendering of
complex 3D virtual worlds.

To complement these technological developments, the
research community has experimented with and devel-

oped programming environments, toolkits, and protocols
for manipulating digital media within computer systems
and across communication networks. This work has led
to a solid understanding of many multimedia-system ab-
stractions like cross-media synchronization [10, 27], mod-
ular and extensible manipulation of streams [20, 24, 12, 3],
network bandwidth and delay adaptation [27], and scalable
multimedia-networking protocols [19, 4]

While the multimedia-networking research community
still faces significant challenges, we believe that research
on multimedia toolkits has matured to the degree that the
particular arrangement of multimedia-system components
into a “middleware architecture” is perhaps less of a re-
search problem and more of an “engineering art.” We
strongly believe that the most interesting research prob-
lems have to do with large-scale network protocols and
systems — how one combines together the components of
the toolkit into complex and scalable systems, not how one
defines the individual arrangement of API’s and object se-
mantics of the building blocks within the toolkit. Yet, no
such no widely accepted approach for structuring multime-
dia middleware exists within the research community.

This paper describes our approach to multimedia mid-
dleware not as a research result in its own right per se, but
rather as an opportunistic vehicle for enabling and accel-
erating research results within and across the community.
Much as Berkeley Unix and CMU Mach served as crucial
experimental platforms for extensive operating systems re-
search in the eighties, a common digital-media research
middleware could potentially enable rapid advances in
multimedia-systems and multimedia-networking research.
We foresee a common framework where experimentalists
can pick and choose building blocks from a comprehen-
sive “library” of media and protocol objects. This library
would be assembled incrementally as individual research
efforts each contribute to and extend the framework. In

particular, one could imagine the following wide array of
system building blocks at one’s fingertips:

� video compression modules like the layered video
work from Berkeley [18, 31, 30, 1];

� audio compression modules like the robust-audio
codec from UCL [6];

� reliable-multicast protocol modules, e.g., based on
SRM [4] that can be customized for the application
at hand e.g., shared whiteboards [15], webcast tools
[11], or floor-control applications [14];

� primitives for archive and playback of collaborative
sessions, e.g., modules from the MBone VCR [7];

� multicast address-allocation modules for dynamically
creating “lightweight sessions” [8];

� building blocks for session advertisement and explicit
session invitation protocols [5];

� building blocks for special-effects processing of
video, audio signal processing algorithms like echo
cancelation; and so forth.

Unfortunately, all of the above systems are currently im-
plemented in custom and often ad hoc environments with
little opportunity to make them interoperate. For example,
porting UCL’s robust audio codec [6] to the LBL vat appli-
cation [9] would require substantial code modifications.

Our programming framework builds on our six or so
years of collective experiences developing the Continuous
Media Toolkit (CMT) and the LBNL/UCB MBone tools
software architecture (as it appears in vic [17] and vat [9]).
In addition, we have closely examined and borrowed novel
architectural concepts and code from the VuSystem devel-
oped at MIT. By combining the best characteristics of these
three projects — CMT, VuSystem, and the MBone tools —
we have leveraged a large amount of existing code into a
flexible and extensible multimedia toolkit called mash. Al-
though this work does not directly advance the state of the
art in multimedia networking, the system represents an im-
portant enabling technology that forms the cornerstone of
our and hopefully other researchers’ agendas. This system
provides:

� an architecture for digital multimedia application de-
velopment that brings together the best features of
several existing and refined systems;

� a digital media programming kernel that is small and
simple and a hierarchical arrangement of multimedia
objects to provide multiple levels of abstraction to the
middleware user;

SinkSource Filter FilterSource ...

TCL

Filter Filter Sink

Figure 1: The “VuSystem Architecture”.

� a publicly available digital media toolkit that can
be leveraged across multiple research projects in the
multimedia networking research community thereby
unifying complementary but disparate efforts into a
cohesive system; and,

� a modular programming environment that supports a
“plug and play” abstraction for rapid prototyping and
dynamic loading.

The remainder of this paper describes the history of
mash, its architecture, and how it builds on the MBone
tools, CMT, and VuSystem. We detail the mechanisms
used to tie together an object-oriented scripting language
(OTcl) with an object-oriented compiled language (C++)
and how this architecture provides a highly flexible and
easily extensible programming substrate. Finally, we out-
line how the mash kernel is arranged into a set of exten-
sible objects, all linked into the Tool Command Language
Tcl [21], and how these objects are used to build arbitrarily
rich applications and environments.

2 Background
CMT, VuSystem, and the MBone tools, though each de-

veloped independently, all converged on the same basic ar-
chitecture, which is split into low-overhead control func-
tionality implemented in a scripting language like Tcl and
performance-critical data handling implemented in a com-
piled language like C or C++. Compiled objects provide
core, composable mechanisms that are arranged and con-
figured through the scripting language to effect arbitrary
application policies. This separation has proven quite use-
ful because it cleanly divides the burden of design, main-
tenance, extension, and debugging from the ultimate goal
— the actual research experiments — by providing the ap-
plication programmer with an easy to use, reconfigurable,
and programmable multimedia networking environment.
Moreover, this model forces the programmer to factor out
control and data abstractions into separate modules and
thereby encourages a programming style where objects are
free of built-in control policies and semantics and can thus
be easily reused.

Figure 1 illustrates the basic architecture. High-volume
multimedia data is typically generated by a source object

and piped through one or more filter objects. Eventually,
the media reaches a sink object and is consumed. The
source, for example, might be a video capture device, fil-
ters might be color space converters, compressors, pack-
etizers, and the like, while the sink might be a network
transmission protocol. Although CMT, the MBone tools,
and several other toolkits employ a similar programming
model, this architecture was first cleanly articulated in the
VuSystem literature and we thus call this approach the
VuSystem Architecture.

Given that each of these three systems implements the
VuSystem Architecture, it would seem counterproductive
to develop yet another toolkit based on the same model.
However, each toolkit has certain individual weaknesses;
to overcome these weakness, we set out to extract the best
features of each existing system and, in the end, obtain a
cleaner and more powerful framework. To justify this ap-
proach and establish context for our design, we now briefly
discuss the advantages and disadvantages of these existing
systems.

2.1 MBone tools
The architecture that evolved in the MBone tools orig-

inated in the first version of vat that one of us� developed
in 1990. Back then, Tcl/Tk did not exist and we instead
used the Interviews C++ structured graphics library [13] to
build the user-interface. In time, we developed the com-
panion video tool vic, and mirrored vat’s software archi-
tecture in vic, but we implemented the user-interface with
Tcl/Tk rather than Interviews. Although we initially used
Tcl exclusively for the user-interface, the convenience and
power of the split Tcl/C++ programming model gradually
became apparent. Over time, vic’s design looked more and
more like the VuSystem Architecture and eventually these
architectural improvements were “back ported” to vat. As
our understanding of the audio/video protocols matured
and we better understood how to factor our common pieces
of the architecture, the vic/vat implementations began to
share code and slowly migrated from independent, mono-
lithic applications to scripted tools built from a toolkit.

A principal shortcoming of this evolutionary design is
that many pieces of the system do not cleanly conform to
the architecture and are instead glued together with ad hoc
scaffolding. Hence, the Tcl scripts are often hard to man-
age and difficult to re-use. Another oversight was our ini-
tial perspective that the best level of design granularity was
that of “composable tools” coordinated across a multipoint
interprocess communication abstraction called a “Confer-
ence Bus” [17]. While a good building block, the Confer-
ence Bus is only part of the story. We now believe what
was obvious to many before us — that each composable

�McCanne in collaboration with Van Jacobson at the Lawrence Berke-
ley National Laboratory.

tool should additionally be implemented from a flexible,
reusable toolkit in the form of the VuSystem Architecture.

At the same time, a clear-cut advantage of the MBone
tools is that they are robust, widely deployed, readily avail-
able, and conform to widely-accepted Internet standards.
Consequently, our ultimate architecture should allow us to
integrate this existing code base.

2.2 Continuous Media Toolkit
The Berkeley Continuous Media Toolkit (CMT) [24,

29] project started on the same time frame as the Mbone
tools. CMT began as an architecture for playing pre-
recorded multimedia data over local area networks [26]. In
addition to the development of the core architecture, sev-
eral important technologies have been “spun-off” from the
CMT project. These include Tcl-DP [28, 22], an extension
to Tcl/Tk that facilitates distributed programming, and the
Berkeley MPEG player [25].

CMT adopted a VuSystem Architecture based on
Tcl/Tk early in its development, allowing objects to be
mixed and matched into arbitrary applications. CMT ob-
jects are implemented in C, and as described above, com-
posed with Tcl. CMT has a well-developed architecture,
thoroughly documented API’s, and a rich set of objects
and applications for multimedia authoring, video indexing,
video-on-demand, and so on. The CMT project is active
and its infrastructure continues to grow.

In addition to the basic set of objects, CMT provides a
framework for synchronizing and controlling several mul-
timedia streams. It also contains a mechanism for script-
ing actions when a specific event occurs during a multi-
media presentation. A CMT application can evaluate an
arbitrary fragment of Tcl code when an object event oc-
curs using the cmbind command much as window event
bindings are established using Tk’s bind command. Ex-
ample events include frame drops and receiving a network
packet. Events can be aggregated so that the application is
not overwhelmed with fine-grain events. Such callbacks,
when combined with Tcl-DP, facilitate the development of
novel feedback mechanisms to control skew, network flow,
and resource allocation.

But, like the MBone tools, CMT has some shortcom-
ings. The internal architecture is flat and does not exploit
object inheritance or a consistent object-oriented program-
ming model. Moreover, the RTP networking code is under-
developed compared to the MBone tools. Because CMT
did not use a traditional object-oriented language, com-
plexity is overloaded into monolithic objects rather than
decomposed into fine-grained objects. For example, the
decoder objects invoke dithering routines and manipulate
X windows rather than simply decoding video to uncom-
pressed form and passing the result to a generic down-
stream object.

2.3 VuSystem
The VuSystem is a similar multimedia toolkit built on

top of an object-oriented Tcl extension called OTcl [32].
C++ classes implement multimedia objects that produce,
consume, or filter real-time media streams and a Tcl
shadow object mirrors each C++ object. Methods invoked
on the Tcl shadow object are dispatched to the C++ ob-
ject. Like CMT, objects can be created, composed, and
configured from Tcl and the interconnections between ob-
jects rearranged while running. In addition to its elegant,
object-oriented architecture, the VuSystem is built around
a consistent and uniform fine-grained object model with
inheritance.

Unfortunately, the VuSystem also has limitations. Not
only is the project inactive, but its large, existing code base
is built on an early, underdevelopedversion of OTcl. More-
over, its custom user-interface is limited and does not reap
the benefits of the ongoing, large-scale development effort
that underlies the Tk toolkit. As well, the system has no
support for media compression, thus preventing its applica-
tion to heterogeneous environments where network band-
width is scarce. Finally, the VuSystem project goals were
more oriented toward system design issues compared to
network communication models, and consequently, its net-
work support is primitive; it does not, for example, support
RTP or multicast.
2.4 A Combined Architecture

Based on the introspection of our work and the analy-
sis of the VuSystem work, we arrived at a new architec-
ture, embodied in the mash toolkit, that exploits the best
attributes of each of the previous systems. Our design pro-
cess began and is evolving as follows:

(1) We built a preliminary toolkit prototype by arranging
the bulk of the C++ objects from the existing MBone
tools into a collection of fine-grained objects each
with an OTcl API. This prototype allows us to im-
mediately exploit MBone tools’ code base and robust
implementation.

(2) We retrofitted the VuSystem’s elegant object model
by adopting Wetherall’s “OTcl” package [32] and
built a number of high level abstractions called
“macro-objects” out of the fine-grained objects from
the prototype toolkit.

(3) Lastly, we plan to merge the mash and CMT toolk-
its into a single infrastructure by developing an OTcl
“scaffolding layer.” To this end, we developed an in-
cremental transition strategy to merge CMT’s most
powerful abstractions (e.g., the buffering model and
event prioritization scheme) into the mash kernel by
linking the mash kernel and CMT library into a sin-
gle interpreter that can execute either CMT or mash

scripts. Once we develop high-level OTcl API’s, ap-
plication developers will write to this API and the dis-
tinction between mash and CMT will evaporate.

The key abstraction in this “combined architecture” is how
we implement and split objects across C++ and OTcl. Con-
sequently, we now discuss in some detail the motivation
and design of our “split object” software model.

3 The Software Model: Split Objects
The implementation of a multimedia-networking toolkit

is naturally decomposed using object-oriented representa-
tions. Protocol modules and media codecs, for instance,
are all conveniently represented using class hierarchies and
inheritance. We might derive an H.261 video encoder from
a “video encoder” parent class, which is in turn derived
from a generic codec module. Likewise, network pro-
tocols and media codecs are naturally represented using
message passing among object instances since both these
functions typically involve a number of processing stages.
Because multimedia applications often generate highly dy-
namic flows where users come and go and the parameters
of media streams evolve in real-time, the programming
model must furthermore support easy and flexible recon-
figuration of object pipelines. Finally, object-oriented de-
sign is “good programming methodology” — it provides a
flexible framework and, assuming appropriately designed
objects and object API’s, supports efficient code re-use.

For these reasons, we adopted an object-oriented soft-
ware architecture for our multimedia middleware. Our ar-
chitecture builds on the MIT Object Tcl system, or OTcl.
OTcl provides an object-oriented extension to Tcl without
any modifications to the Tcl core, thereby making the code
independent of the ongoing Tcl development effort. It sup-
ports dynamic binding of the class hierarchy, multiple in-
heritance, and topological method combination along the
lines of the Common Lisp Object System.

Our approach elaborates the VuSystem Architecture de-
scribed above by bridging the gap, somewhat seamlessly,
between C++ and OTcl. We view an object as an abstract
entity whose methods can be implemented on either side of
the OTcl/C++ boundary. C++ code can invoke methods de-
fined in OTcl, while OTcl code can invoke methods defined
in C++. The common idiom whereby Tcl callbacks are in-
stalled in C data structures is replaced by a simple, clean
object method API. A callback is simply a self-referential
method invocation.

In our OTcl/C++ framework, fine-grained objects are
implemented in C++ and complex abstractions are built by
coalescing these fine-grained objects into “macro-objects”
using scripts to glue together components. To support a
clean and manageable programming model, the details of
a macro-object can be encapsulated in an OTcl object with

a uniform method API. In turn, macro-objects can be ar-
ranged into larger and richer macro-objects thereby giving
the toolkit programmer multiple levels of abstraction and
allowing her to choose the appropriate level of detail for a
given implementation.

A common objection to this approach is its complex-
ity. Why not implement an object-oriented application en-
tirely in C++? One can still use clean practices and sepa-
rate policy and mechanism within the confines of a single
programming language. We feel, however, that this ap-
proach requires unrealistic discipline from most program-
mers. Moreover, because policy and mechanism are so
semantically different, we believe they are most appropri-
ately implemented in separate languages: “mechanism” is
particularly suited for a low-level language like C++ where
run-time performance is often critical, while “policy” often
requires ad hoc and flexible rule systems that are more eas-
ily implemented in a high-level scripting language such as
OTcl. Finally, the OTcl/C++ split provides a number of
other tangible advantages:

� The model offers late binding. Objects can be created
on the fly and object type dependencies resolved at
runtime.

� Memory management is, for the most part, non-
existent at the scripting level. Data structures do
not become corrupt because of pointer bugs, while
programming errors can be gracefully caught, han-
dled, and possibly debugged with run-time exception
mechanisms.

� The compilation and link stages are eliminated from
the development cycle. Further, debugging is facili-
tated by the ability to program simple diagnostic con-
structs on the fly. Using the OTcl object hierarchy,
we can conveniently insert debugging hooks into the
base class implementations and thereby trap and trace
actions uniformly across all or selected objects.

� Finally, the OTcl/C++ architecture becomes a design
metaphor for the policy/mechanism split that, once
mastered by the mash programmer, becomes a boon
to code reuse and extensibility.

3.1 OTcl: A Brief Tour
In this section, we briefly outline the OTcl programming

model to provide a flavor for how our OTcl extensions are
ultimately applied to our multimedia toolkit.

OTcl objects appear simply as new procedures in the Tcl
interpreter — a method is invoked on an object by calling
the object as a procedure and passing the method name and
parameters together as arguments to the Tcl procedure. For
example, an object of class type is created and associated
with an object named “object” as follows:

type create object

Each object has its own set of instance variables that can
be manipulated using the following syntax:

object set var $value
set v [object set var]

A method foo is dispatched on an object as follows:

object foo $arg1 $arg2 ...

(The set command above is simply another method.) Fi-
nally, the object may be deleted with:

object destroy

Suppose we want to define an OTcl class called “VideoA-
gent” as the principal API to the underlying video sub-
system. A video stream can be created and manipulated
by invoking methods on the VideoAgent class and most of
these methods can be written in OTcl. For example, we
might create the class as follows and define a method to
build nodes using the OTcl instproc primitive�:

Class VideoAgent
VideoAgent instproc set-fps f f g f

$self instvar fps encoder
set fps $f
if [info exists encoder] f

$encoder set-fps $f
g

g

The instproc class method — the OTcl analog of the
Tcl proc command — defines a new instance procedure
or object method, while the instvar class method brings
an object instance variable into local scope. This scope
is defined by the implicit $self member variable that
is set to the object instance analagous to the C++ this
pointer. Thus, in the set-fps method above, we de-
clare encoder as an instance variable and if it exists, the
frame rate parameter is passed on to this object. This abil-
ity to attach instance variables to objects overcomes a key
shortcoming of Tcl — its lack of structured name spaces.
Without such extensions, Tcl provides only global and lo-
cal variable scope and thus the development and mainte-
nance of large-scale software projects all within the script-
ing language is cumbersome.

All OTcl methods are virtual; this leads to a key advan-
tage of our approach — the ability to easily create new vari-
ants of core mechanisms. Suppose we wanted to add sup-
port for special-effects processing to the VideoAgent mod-
ule. One approach is to extend the existing modules that
make up the VideoAgent class as well as the VideoAgent

�In our object-system, we append underscores to instance variables to
distinguish them from local or global variables.

with knowledge of effects processors and filtering mod-
ules, and to add configuration hooks to enable/disable dif-
ferent special-effects options. Instead, a better approach is
to exploit object class inheritance to override basic function
with new function only where absolutely necessary. For
example, we might create a variant of a VideoAgent that
constructs the encoding path in a slightly different fashion:

Class SpecialAgent -superclass VideoAgent
SpecialAgent instproc create-encoder fg f

...
g

Instead of overloading the generic VideoAgent with new
functionality, we can compose special-effects algorithms
from existing and perhaps new objects. We need not un-
necessarily complicate the generic case with effects primi-
tives that might otherwise introduce incompatibilities into
the already-working subsystem. The ease of such exten-
sions derive directly from the fact that a scripting language
is such a good match to policy and structure specification,
freeing the programmer from concerns about low-level is-
sues such as memory management.

3.2 OTcl and C++
Although OTcl exports an API for interfacing to C pro-

grams, it has no direct support for C++ and no explicit sup-
port for constructing objects split across OTcl and some
other language. To fill this void, we extended OTcl across
C++ using an abstraction called shadow objects. To sup-
port shadow objects, we added two new Tcl procedures:
new and delete. Whenever the programmer creates a
new OTcl object with new, the shadow-object layer cre-
ates a corresponding C++ shadow object and binds it to the
OTcl object. As a programming convenience, new also as-
signs each object a unique name so that the programmer
need not explicitly name every OTcl object.

The mechanism we use to intercept and create shadow
objects is relatively straightforward and exploits the ex-
isting OTcl class machinery through a new class called
“TclObject.” Every split object is derived from this base
class; thus, the TclObject constructor is called for every
new object and we can conveniently create the C++ shadow
object from this vantage point. Likewise, when the OTcl
object is destroyed, the TclObject destructor is invoked,
and we in turn delete the C++ shadow object.

As a side effect of creating the C++ shadow, we arrange
for undefined OTcl method invocations to be dispatched to
C++. Fortunately, OTcl provides a convenient hook to do
this, through its unknown method. If the user invokes
a method on an object that is undefined, the OTcl dis-
patcher instead calls the method named unknown, which
by default, prints an error message and terminates the
program. Our TclObject class overrides the unknown
method; instead of printing an error, the TclObject version

unknown
TclObject

C1’ C1

C2’ C2

command()

C3C3’

TclObject

OTclC++

Figure 2: OTcl/C++ method invocation.

of unknown redirects the method to C++. Figure 2 illus-
trates how method invocations are passed up the OTcl in-
heritance chain (e.g., C1 to TclObject). If no method with
the given name can be found in the classes, the unknown
method is called. When this happens, the C++ command
method of the underlying C++ object gains control. Like
all Tcl command extensions, this function takes a C-style
string argument vector (a count of strings and their values)
and in turn interprets the method, performs the appropriate
action, and optionally returns a result.

As with OTcl, “method combination” is implemented
in C++, but unlike OTcl, it must be done using explicitly-
scoped names. If the leaf class of an object instance does
not recognize the method, it invokes the command method
of its parent C++ class. This new invocation then has the
opportunity to interpret the command, but again, if it too
does not recognize the command, control is transferred to
its parent. Eventually, some class along the path to the
TclObject base class recognizes the method, carries it out,
returns a value, and the call-stack unwinds eventually caus-
ing a value to be returned to and control to resume in
the Tcl interpreter. If, on the other hand, the command
is not recognized by any of the derived classes, then the
command method in the TclObject base class eventually
gains control and raises an error condition. By default, the
base class prints an error message and exits.

In addition to defining methods on either side of the
OTcl/C++ boundary, the programmer is free to define
and/or access instance variables from either C++ or OTcl.
A binding between an OTcl variable and its C++ counter-
part is established using the bind method of the TclOb-
ject class. Bind takes a pointer to the C++ variable and
the OTcl variable name and causes writes to the OTcl vari-

able to be reflected to the C++ shadow copy and likewise
reads from the OTcl variable to be computed from the cur-
rent C++ variable’s value. We implemented this abstrac-
tion with little effort since Tcl already includes an exten-
sive and flexible variable-tracing facility.

3.3 Class Extensions
While the TclObject class allows one to define object

instances that are split across C++ and OTcl, we still re-
quire a mechanism for declaring the OTcl Class that cre-
ates the given object instances. That is, there must be some
mechanism that allows the programmer to create support
for a new object type in C++ and export that new class
from C++ into OTcl, effectively extending the set of class
types that new understands. To do so, we introduced a new
C++ base class called TclClass. The TclClass construc-
tor takes its class name as an argument and has the side
effect of registering that new name as a newly supported
class type. Furthermore, the class name is hierarchical, so
that we can explicitly define class hierarchies using a path-
name syntax, e.g., the class A/B/C has parent A/B, which
in turn has parent A, which finally has the implicit parent
TclObject. The TclClass class contains a virtual method
called create, which is invoked whenever new is called
to make a instance of the corresponding class. The pro-
grammer implements create by writing code to create a
new object instance (i.e., a derived class of TclObject) and
return a pointer to the new object.

Using this class extension mechanism, we can statically
extend the OTcl interpreter with new class types simply
by linking in new object modules. We merely create a tem-
plate subclass of TclClass that specifies the new class name
and creates new objects via create. We define a static in-
stance of this object in a module and link that new module
into the OTcl interpreter. The side effect of creating the
statically declared object at load time will cause the new
class to be created in the OTcl interpreter. In short, no files
in the core mash source repository need be modified to add
support for a new OTcl object type.

3.4 An Example
Figure 3 illustrates how the TclClass and TclObject

classes are specialized to add a new object, say an H.261
video encoder, to the repertoire of multimedia objects. We
derive a subclass “H261Encoder” from an intermediary
subclass called Encoder, which is in turn, derived from a
TclObject. Presumably, there are many types of encod-
ing objects and all such objects share a number of com-
mon functions implemented in the Encoder subclass. As
part of specializing the H261Encoder class, we define its
command method to interpret the OTcl “set-quality,” “re-
size,” etc. object methods. Likewise, we define a tem-
plate class, called H261EncoderClass, for creating new
H261Encoder objects and we define its create method

command()

TclObject

Encoder

H261Encoder H261EncoderClass

$self flush...
$self resize
$self set-quality

TclClass

create()

Figure 3: Defining a Tcl object.

to simply return a new H261Encoder. The entire C++ class
definition is given in Figure 4. The new class is automati-
cally created as a side-effect of defining the static instance
class h261 enc.

Because the programmer might want to interrogate
and/or manipulate C++ variables from OTcl, any number
of “interesting” C++ variables can be exported into OTcl
from the C++ constructor. For example, the H261Encoder
constructor exports an instance variables as follows:

H261Encoder::H261Encoder()
f

bind("quantizer ", &quantizer);
quantizer = 10;
...

g

Recall that bind establishes a correspondence between a
C++ instance variable and an OTcl instance variable. Thus,
if we create a new object from OTcl as follows:

set encoder [new Encoder/H261]

we can set its associated quantizer variable (stored in the
C++ object) using an OTcl method invoked on the new ob-
ject:

$encoder set quantizer 2

As a programming convenience, the initial value for an
instance variable that has an associated OTcl binding is
copied from the class variable with the same name. For
example, we might set the default audio encoding buffer
size to 160 samples across all object instances simply by
setting the corresponding OTcl class variable:

Encoder/Audio set bufferSize 160

static class H261EncoderClass : public TclClass f
public:

H261EncoderClass() : TclClass("Encoder/H261") fg
TclObject* H261EncoderClass::create(int argc, const char*const* argv) f

return (new H261Encoder());
g

g class h261 enc;

Figure 4: C++ template for a new object.

Then whenever we create a new instance of an audio en-
coder object, or a subclass thereof, its bufferSize in-
stance variable is initialized to 160.

Finally, we might want to extend the H261Encoder class
with new methods that need not be implemented in C++
but instead can be easily prototyped in OTcl. For example,
we might implement the method that maps a generic video
quality parameter (say that ranges from 1 to 100) into an
H.261 quantizer (that varies from 1 to 31) as follows:

Encoder/H261 instproc set-quality q f
$self instvar quantizer
set quantizer

[expr ($q-1)*31/100+1]
g

Even though the original encoder object is implemented
in C++, the object can be extended with methods defined
completely in OTcl.

4 MASH Kernel
Now that we have described the software model for ex-

tending Tcl with object-oriented extensions using OTcl and
for reflecting the OTcl programming model into C++, we
can describe the multimedia kernel that implements the
core middleware primitives built on top of the OTcl/C++
object system. This discussion reflects our initial attempt
at an evolving design. In particular, as we make additional
progress on the CMT integration, the objects and APIs are
likely to be refined and improved.

The core set of mash objects consists of compiled ob-
jects that produce or consume data buffers, which may be
packet data, audio data, video data and so forth. In the cur-
rent version of mash, objects are not typed and there are no
run-time checks to verify that objects are linked together
in a legal or consistent manner. For example, if we attach
an object that produces packet buffers directly to an object
that accepts video buffers, the system will likely abort be-
cause of an illegal memory reference. One solution to this
problem is to modify the toolkit API by adding type checks
to each buffer transaction. But a better approach is to im-
plement type checking all at the OTcl level. By maintain-
ing a table that maps object names to types, we can simply
add an “attachment time” check to verify the integrity of

the interconnect, i.e., that the types of each named object
argument is type safe.

The mash programming model is event driven. Events
are dispatched to objects either from the Tk event dis-
patcher or from via method invocation from OTcl. The
objects are arranged into a data flow graph and data gen-
erated by events (e.g., an I/O read event) is typically pro-
cessed and passed on to the downstream object.

Many events in the system are driven off timers and
whether the corresponding handlers are implemented in
C++ or OTcl is typically determined by their expected fre-
quency. Coarse grained timers, for instance, are almost
always carried out by OTcl classes. For example, net-
work transmission statistics might be displayed in the user
interface every second or so. To do this, an OTcl class
would schedule an appropriate timer, interrogate the un-
derlying objects, and update the user interface. Real-time
video frames, on the other hand, require finer grained tim-
ing. Here, a 25 or 30Hz timer runs in the C++ side of the
implementation to trigger video frame captures (or the cap-
ture process might be driven off I/O completion events also
scheduled in C++).

The mash project is dedicated to supporting a wide
range of building blocks within this framework. Our toolkit
contains a large and growing number of fine-grained build-
ing blocks including: RTP packet recorders, RTP packet
players, audio/video device interface modules, audio/video
software-based codecs, simple video effects processors,
support for the LBL Conference Bus [17], a set of objects
that orchestrate the Scalable Reliable Multicast protocol
framework [4], many and varied user interface elements,
network and encryption objects, RTP session objects a
packet buffer model, a class interface to the “ghostscript”
postscript interpreter, video and image rendering/dithering
objects, Netscape plugin modules, and so forth.

Although these objects all taken together provide a rich
infrastructure, they each export low-level API and build-
ing full-blown applications out of such fine-grained ob-
jects would require a large implementation effort. To
raise the level of abstraction, we arrange sub-collections
of these fine-grained objects into the “macro-objects” de-
scribed earlier. Once a macro-object is implemented and its

VideoApp

RTPSession

VideoSession

Session

RTPSource

VicUI

Network

Network

VideoAgent

Source

Figure 5: Abstraction hierarchy.

interface defined, it can be re-used in an arbitrary config-
urations. If the underlying implementation changes, then
only those objects affected by the changes, which are typ-
ically internal to the class, need to be updated. Finally,
the macro-objects are arranged into additional hierarchical
structure offering the mash programmer multiple levels of
programming abstraction.

4.1 Multiple levels of abstraction
Figure 5 depicts our model for multiple levels of ab-

straction with an example of a video application. At the
lowest level, one must create bare network objects to send
and receive packets over the network. In common multi-
media protocols, the communication is divided into a net-
work channel and a control channel and it is convenient to
encapsulate this decomposition behind a suitable abstrac-
tion (e.g., the session object shown in the diagram). Ses-
sions can come in different flavors (e.g., RTP or SRM) and
RTP sessions are either audio or video (in this case video).
This functionality can be nested in a single macro-object
called a VideoSession. Now, within a video session me-
dia sources come and go and their streams must be con-
sequently managed by creating objects pipelines to decode
and possibly display the media in its proper format. Once
we implement code to orchestrate streams in this fashion,
we can further encapsulate this function in the VideoAgent
class.

These video streams are not useful unless we do some-
thing with their decoded output. In a “video gateway” [2],
we might re-encode the output in another format at a dif-
ferent rate for bandwidth adaptation, whereas in a con-
ferencing application [17], we must display the decoded
streams to the user. Another example is a bank of objects
connected to timers selecting channels from a broadband
cable. The gateway and cable objects may not have a GUI
because they are operated and controlled by a broadcast
management system whereas the conference application

AudioAgent

AudioUI
vat vic

VideoAgent

VideoUI

Figure 6: MBone Tools split.

include a GUI for the local user. Hence, we should allow
the VideoAgent to be embedded in multiple environments.
Figure 5 shows a vic-like configuration where we create a
“VicUI” object and attach it to the VideoAgent via a well-
defined API. Finally, all of this function can be embedded
in a VideoApp class to allow the programmer to easily cre-
ate an entire video application from a script in a few lines
of code.

5 Applications
Even though the mash toolkit is of very recent vintage,

we have already developed a number of applications that
exploit the system. As depicted in Figure 6, one of our first
tasks was to factor each of the MBone tools into two sepa-
rate pieces: a policy component that implements a variant
of the original user interface and a mechanism component
that implements bare, media processing.

To do this, we imposed our split-objects programming
model onto the original code and reorganized the MBone
tools’ Tcl scripts as a hierarchical collection of OTcl
classes (with small changes to the C++ API to support the
new programming model). Additionally, we moved all ob-
ject create and deletion into OTcl to simplify and unify the
management of object instances. The end result is quite
powerful, as it is now quite easy to “throw together” new
applications by composing toolkit building blocks. For ex-
ample, a vic-like application can be more or less built with
the following OTcl script:

set agent [new VideoAgent ...]
set ui [new VideoUI ...]
$agent attach $ui

Even more convincing, certain new functionality that
would have previously been quite difficult to implement is
now more or less trivial. For example, once vic and vat had
individually become stable and mature, we planned to de-
velop a new tool that combined their function into a single
user-interface. However, this plan never materialized be-
cause the old code base complicated the task. With mash,
on the other hand, a combined A/V tool is trivially imple-
mented as follows:

set audio [new AudioAgent ...]
set video [new VideoAgent ...]
set ui [new AudioVideoUI ...]
$audio attach $ui
$video attach $ui

The only non-trivial challenge here was to implement the
AudioVideoUI class. By exploiting the existing OTcl class
hierarchy, i.e., by re-using pieces of the audio and video UI
objects, the AudioVideoUI was implemented quite easily
in an afternoon.

We close our discussion of mash applications with a
brief outline of some of the tools we are developing as part
of our research in scalable and heterogeneous multimedia
networking. First off, we are building a next-generation
whiteboard called mediaboard [23] to further explore re-
liable multicast protocol issues and to develop an “active
objects” architecture for large-scale multipoint networked
animations. We continue to refine audio and video com-
pression algorithms and protocols and are implementing
layered codecs in combination with the Receiver-driven
Layered Multicast (RLM) protocol [19] to deliver real-
time video streams to heterogenous receivers. Because
RLM operates on coarse time scales, we implemented it
entirely in OTcl. And further, because our network sim-
ulator ns [16] and mash share the same OTcl/C++ frame-
work, the RLM code can move seamlessly from its sim-
ulation environment into production use. We have also
developed video gateways or “proxies” [2], which carry
out rate-adaptation as an alternative approach for dealing
with receiver bandwidth heterogeneity. Another area that
we are tackling is the design of scalable multicast con-
trol protocols. We drive this design process with real ap-
plications and application-level protocols for collaborative
floor-control and adaptive, intra-session distributed band-
width allocation. We are designing information dissemi-
nation models and building webcast-like applications [11].
Finally, our archive system ties all the pieces of the archi-
tecture together in a comprehensive and large-scale stor-
aging and indexing system that will facilitate multimedia
content authoring, cross-referencing, and playback both at
high-quality in the local environment as well as at adaptive-
quality across the wide-area Internet.

6 Summary
Multimedia applications are often large and complex

pieces of software. We described a systematic approach —
through object hierarchies and a split OTcl/C++ program-
ming model — for taming this complexity. By simplifying
each primitive component, we built a system that is easy
to reason about, and by deferring the composition of sim-
ple objects to a scripted language like OTcl, we moved the
burden of debugging and verifying the complex interaction
of consituent components out of the compiled language,
which now only implements mechanism, into an easy-to-
use, high-level, scripting language that is more suited for
this task. In summary, our object-oriented digital media
middleware, the mash toolkit:

� is compatible with MBone tools because we largely
exploited this code base in our framework,

� is currently operational for several apps (vic, vat, A/V
combo),

� promotes easy and flexible code reuse, and

� provides multiple levels of abstraction for developer.

Ultimately, we hope that the availability and acceptance of
a digital-media middleware like ours will facilitate and ac-
celerate research that leads to breakthroughs in multimedia
networking.

7 Acknowledgments
The mash architecture benefited substantially from our

experience developing the LBNL MBone tools in collab-
oration with Van Jacobson. Our work is supported by
DARPA contract N66001-96-C-8508 and grants from Fuji
Xerox, IBM, Intel, Microsoft, and Philips.

References
[1] AMIR, E., MCCANNE, S., AND VETTERLI, M. A layered

DCT coder for Internet video. In Proceedings of the IEEE
International Conference on Image Processing (Lausanne,
Switzerland, Sept. 1996), pp. 13–16.

[2] AMIR, E., MCCANNE, S., AND ZHANG, H. An
application-level video gateway. In Proceedings of ACM
Multimedia ’95 (San Francisco, CA, Nov. 1995), ACM,
pp. 255–265.

[3] CRAIGHILL, E., FONG, M., SKINNER, K., LANG, R.,
AND GRUENEFELDT, K. SCOOT: An object-oriented
toolkit for multimedia collaboration. In Proceedings of
ACM Multimedia ’94 (Oct. 1994), ACM, pp. 41–49.

[4] FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C.-G.,
AND ZHANG, L. A reliable multicast framework for light-
weight sessions and application level framing. In Proceed-
ings of SIGCOMM ’95 (Boston, MA, Sept. 1995), ACM,
pp. 342–356.

[5] HANDLEY, M., AND JACOBSON, V. SDP: Session descrip-
tion protocol, Nov. 1995. Internet Draft (work in progress).

[6] HARDMAN, V., SASSE, M. A., HANDLEY, M., AND WAT-
SON, A. Reliable audio for use over the Internet. In Pro-
ceedings of INET ’95 (Honolulu, Hawaii, June 1995).

[7] HOLFELDER, W. MBone VCR - video conference record-
ing on the MBone. In Proceedings of ACM Multimedia ’95
(San Francisco, CA, Nov. 1995), ACM, pp. 237–238,545–
546.

[8] JACOBSON, V. SIGCOMM ’94 Tutorial: Multimedia con-
ferencing on the Internet, Aug. 1994.

[9] JACOBSON, V., AND MCCANNE, S. Visual Audio Tool.
Lawrence Berkeley Laboratory. Software on-line�.

�ftp://ftp.ee.lbl.gov/conferencing/vat

[10] KOUVELAS, I., HARDMAN, V., AND WATSON, A. Lip
synchronisation for use over the Internet: Analysis and im-
plementation. In Proceedings of GLOBECOM ’96 (London,
UK, Nov. 1996).

[11] LIAO, T. WebCanal: a multicast Web application. In Pro-
ceedings of the 6th International WWW Conference (Santa
Clara, CA, Apr. 1997).

[12] LINDBLAD, C. J., AND TENNENHOUSE, D. L. The
VuSystem: A programming system for compute-intensive
multimedia. IEEE Journal on Selected Areas in Communi-
cations 14, 7 (Sept. 1996), 1298–1313.

[13] LINTON, M., CALDER, P. R., AND VLISSIDES, J. M. In-
terViews: A C++ graphical interface toolkit. Tech. Rep.
CSL-TR-88-358, Stanford University, Palo Alto, CA, July
1988.

[14] MALPANI, R. Floor control for large-scale Mbone semi-
nars. Computer science department, University of Califor-
nia, Berkeley, May 1997.

[15] MCCANNE, S. A distributed whiteboard for network con-
ferencing, May 1992. U.C. Berkeley CS268 Computer Net-
works term project and paper.

[16] MCCANNE, S., AND FLOYD, S. The LBNL Network Sim-
ulator. Lawrence Berkeley Laboratory. Software on-line� .

[17] MCCANNE, S., AND JACOBSON, V. vic: a flexible frame-
work for packet video. In Proceedings of ACM Multimedia
’95 (San Francisco, CA, Nov. 1995), ACM, pp. 511–522.

[18] MCCANNE, S., VETTERLI, M., AND JACOBSON, V. Low-
complexity video coding for receiver-driven layered multi-
cast. Accepted for publication in IEEE Journal on Selected
Areas in Communications (1997).

[19] MCCANNE, S. R. Scalable Compression and Transmis-
sion of Internet Multicast Video. PhD thesis, University of
California, Berkeley, Dec. 1996.

[20] MINES, R. F., FRIESEN, J. A., AND YANG, C. L. DAVE:
A plug and play model for distributed multimedia applica-
tion development. In Proceedings of ACM Multimedia ’94
(Oct. 1994), ACM, pp. 59–66.

[21] OUSTERHOUT, J. K. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[22] PERHAM, M., SMITH, B. C., JANOSI, T., AND LAM, I.
Redesigning Tcl-DP. In Proceedings of the Tcl/Tk Work-
shop (Boston, MA, July 1997).

[23] RAMAN, S., AND TUNG, T.-L. Mediaboard using the Scal-
able, Reliable Multicast toolkit, Dec. 1996. U.C. Berkeley
term project and paper.

[24] ROWE, L., ET AL. Continuous Media Toolkit (CMT). Uni-
versity of California, Berkeley. Software on-line� .

[25] ROWE, L. A., PATEL, K. D., SMITH, B. C., AND LIU, K.
MPEG video in software: Representation, transmission, and

�http://www-nrg.ee.lbl.gov/ns/
�http://www.bmrc.berkeley.edu/cmt/

playback. In High Speed Network and Multimedia Comput-
ing, Symp. on Elec. Imaging Sci. & Tech. (San Jose, CA,
Feb. 1994).

[26] ROWE, L. A., AND SMITH, B. C. A continuous media
player. In Proceedings of the Third International Workshop
on Network and OS Support for Digital Audio and Video
(San Diego, CA, Nov. 1992), ACM.

[27] SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND

JACOBSON, V. RTP: A Transport Protocol for Real-Time
Applications. Internet Engineering Task Force, Audio-
Video Transport Working Group, Jan. 1996. RFC-1889.

[28] SMITH, B., ROWE, L. A., AND YEN, S. Tcl distributed
programming. In Proceedings of the Tcl/Tk Workshop
(Berkeley, CA, June 1993).

[29] SMITH, B. C. Implementation Techniques for Continuous
Media Systems and Applications. PhD thesis, University of
California, Berkeley, Dec. 1994.

[30] TAN, W., CHANG, E., AND ZAKHOR, A. Real time soft-
ware implementation of scalable video codec. In Proceed-
ings of the IEEE International Conference on Image Pro-
cessing (Lausanne, Switzerland, Sept. 1996).

[31] TAUBMAN, D., AND ZAKHOR, A. Multi-rate 3-D subband
coding of video. IEEE Transactions on Image Processing
3, 5 (Sept. 1994), 572–588.

[32] WETHERALL, D., AND LINDBLAD, C. J. Extending Tcl
for dynamic object-oriented programming. In Proceedings
of the Tcl/Tk Workshop (Ontario, Canada, July 1995).

