Fall 2009 COMP 875 Reading Materials
Reference Books
There will be no required textbook for the course. However, you may find the following books useful:
Tutorials, surveys, introductory papers
-
A Tutorial on Support Vector Machines for Pattern Recognition
C. Burges
Data Mining and Knowledge Discovery 2, 121-167, 1998
-
A Short Introduction to Boosting
Y. Freund and R. Schapire
Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999
-
A Tutorial on Energy-Based Learning
Y. LeCun, S. Chopra, R. Hadsell, M.A. Ranzato, F.J. Huang
In Predicting Structured Data, MIT Press, 2006
-
Semi-Supervised Learning Literature Survey
X. Zhu
University of Wisconsin Tech. Report, 2008
-
An Introduction to Graphical Models
K. Murphy
-
Graphical Models
M. I. Jordan
Statistical Science (Special Issue on Bayesian Statistics), 19, 140-155, 2004
- An Introduction to MCMC for Machine Learning
C. Andrieu, N. de Freitas, A. Doucet and M. Jordan
Machine Learning, 2002
Some Computer Vision Papers
- Sharing visual features for multiclass
and multiview object detection
A. Torralba, K. P. Murphy and W. T. Freeman
PAMI. vol. 29, no. 5, pp. 854-869, May 2007
-
Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid
International Journal of Computer Vision, vol. 73, no. 2, June 2007, pp. 213-238
-
Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification
A. Frome, Y. Singer, F. Sha, J. Malik
ICCV 2007
-
Fast Image Search for Learned Metrics
P. Jain, B. Kulis, and K. Grauman
CVPR 2008
-
Similarity Functions for Categorization: from Monolithic to Category Specific
B. Babenko, S. Branson, and S. Belongie
ICCV 2009
-
Small codes and large databases for recognition
A. Torralba, R. Fergus, Y. Weiss
CVPR 2008
-
Object Class Recognition by Unsupervised Scale-Invariant Learning
R. Fergus, P. Perona, and A. Zisserman
CVPR 2003
- A Discriminatively Trained, Multiscale,
Deformable Part Model
P. Felzenszwalb, D. McAllester, D. Ramanan
CVPR 2008
- Matching Words and Pictures
K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth, D. Blei and M. Jordan
Journal of Machine Learning Research 3 (2003) 1107-1135
- Learning Depth from Single Monocular Images
Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng
NIPS 2005
-
Dicriminative Random Fields
S. Kumar and M. Hebert
IJCV 2006
-
TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation
J. Shotton, J. Winn, C. Rother, A. Criminisi
ECCV 2006
- A Stochastic Grammar of Images
Song-Chun Zhu and David Mumford
Foundations and Trends in Computer Graphics and Vision Vol. 2, No 4. 2007
-
Towards Total Scene Understanding:Classification, Annotation and Segmentation in an Automatic Framework
L.-J. Li, R. Socher and L. Fei-Fei
CVPR 2009
-
Multi-Level Active Prediction of Useful Image Annotations for Recognition
S. Vijayanarasimhan and K. Grauman
NIPS 2008
-
Condensation -- Conditional density propagation for visual tracking
M. Isard and A. Blake
IJCV, 1998
Some Medical Imaging Papers
-
Discriminative learning for deformable shape segmentation: A comparative study
J. Zhang, S. Kevin Zhou, D. Comaniciu, and L. McMillan
ECCV 2008
-
A probabilistic, hierarchical, and discriminant (PHD) framework for rapid and accurate detection of deformable anatomic structure
S. Kevin Zhou, F. Guo, J.H. Park, G. Carneiro, J. Jackson, M. Brendel, C. Simopoulos, J. Otsuki, and D. Comaniciu
ICCV 2007
-
Automatic Fetal Face Detection From Ultrasound Volumes Via Learning 3D and 2D Information
S. Feng, S. Kevin Zhou, S. Good, and D. Comaniciu
CVPR 2009
-
Brain Anatomical Structure Segmentation by Hybrid Discriminative/Generative Models
Tu Z., Narr K.L., Dollar P., Dinov I., Thompson P.M., Toga A.W.
Transactions on Medical Imaging, April 2008
-
Auto-context and Its Application to High-level Vision Tasks and 3D Brain Image Segmentation
Z. Tu and X. Bai
PAMI, 2009
-
Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer's Disease through Automated Hippocampal Segmentation
Jonathan H. Morra, Zhuowen Tu, Liana G. Apostolova, Amity Green, Arthur W. Toga, and Paul M. Thompson
IEEE Trans. on Medical Imaging, 2009
-
Joint Sulcal Detection on Cortical Surfaces with Graphical Models and Boosted Priors
Y. Shi, Z. Tu, A. L. Reiss, R. Dutton, A. Lee, A.M. Galaburda, I. Dinov, P. Thompson, A. Toga
IEEE Trans. on Medical Imaging, 2009
-
Data-driven Population Analysis through Mixture-Modeling
M.R. Sabuncu, S.K. Balci, M.E. Shenton and P. Golland
IEEE Transactions on Medical Imaging, 2009
-
Discovering Structure in the Space of Activation Profiles in fMRI
D. Lashkari, E. Vul, N.G. Kanwisher, and P. Golland
MICCAI 2008
-
Classification of Tensors and Fiber Tracts Using Mercer-Kernels Encoding Soft Probabilistic Spatial and Diffusion Information
R. Neji, N. Paragios, G. Fleury, J-P. Thiran & G. Langs
CVPR 2009