Photographing Long Scenes with Multi-Viewpoint Panoramas

Agarwala, M. Agrawala, M. Cohen, D. Salesin, R. Szeliski

SIGGRAPH 2006

Presented by Xiaowei Li
Keywords in the Title

• Multi-Viewpoint
• Single-Viewpoint
• Panoramas
• Long Scenes
Single-Viewpoint

One “camera”, one shot; Unique perspective rule on one picture.
Single-Viewpoint

Ancient artists knew this.
Multi-Viewpoint

- Just many Single Viewpoint ...
- Inside one picture, different portion has different perspective rules.
- In this paper, many single-viewpoint photos rendered in one picture naturally.
Panoramas

• Strip Panoramas
• Single-Viewpoint Panoramas
• Multi-Viewpoint Panoramas
Panoramas

- Strip Panoramas
 - also known as “Slit Scan”.
 - pushbroom cameras/ 1D camera
 - satellite images.

- also can obtained by sampling normal 2D image sequences [Zheng2003, Levin2005]. Vertical pixel strips from each image in the sequence.
Panoramas

- Strip Panoramas by sampling image sequences [Zheng 2003]
Panoramas

- Strip Panoramas by sampling image sequences

Orthographic projection along horizontal axis; Perspective projection along vertical axis.

Main Problem
Different aspect ratio at different depth
- closer squashed; further stretched.
Panoramas

- Strip Panoramas by sampling image sequences

 Main Problem
 Different aspect ratio at different depth
 -> closer squashed; further stretched.

 many adaptive or interactive method to choose different width for pixel strip for objects at different depth. however, still open problem.
Panoramas

• Strip Panoramas by sampling image sequences

Main Problem
Different aspect ratio at different depth
-> closer squashed; further stretched.
Panoramas

• Strip Panoramas by sampling image sequences by different slit method [Roman 04, thesis 06]
Panoramas

• Strip Panoramas by sampling image sequences

Other problems
- Lose local perspective effects horizontally.
- Video cameras on cars: in general, lower resolution; shake, blurring; motion restricted as camera moving on a flat plane (ground).
Panoramas

• Single-Viewpoint Panoramas
 - most normal panoramas: wide angle cameras.
 - using images from pure rotating cameras [Szeliski 97]
 - using approximate rotating cameras [Lowe’s autostitch]

Hard for long scene ...
Panoramas

• Multi-Viewpoint Panoramas
 - by using multiple images
 - single cross-slits
 - multiple cross-slits

• This paper, totally different scheme.
Panoramas

- Multi-Viewpoint Panoramas Why?
 - A photograph with a wider field of view would cause distortion towards the edges of the image.
 - Far enough away from the scene we will lose the depth cues of the scene.
 - Such panoramas can be used to visually convey directions through a city,
 - or to visualize how proposed architecture would appear within the context of an existing street.
Long Scene Panorama
Applications

- Street View - really long [Roman 04, thesis 06]...
Long Scene Panorama
Applications

• Ancient Street View by royal artist Zhang Zeduan
 800-900 years ago
Long Scene Panorama

Applications

• Virtual Earth/Google Earth
 - really long in 2 directions
This work

• Multi-viewpoint panorama long roughly planar scenes (facades of the buildings along a city street).

• Significantly different from previous strip panoramas.

• After a small user interaction, the system will automatically compute a panorama with a MRF optimization.

• Users may exert additional control over the appearance of the result.
Quick Example
Quick Example
Quick Example
Quick Example
Previous Strip Panoramas

• Assumptions
 • Orthographic projection along the horizontal axis
 • Perspective projection along the vertical axis

• Shortcomings
 • Only objects at a certain depth from the camera plane can be shown with a correct aspect ratio.
 • Further objects appear horizontally stretched.
 • Closer objects appear squashed.
What is a Good Multi-Viewpoint Panorama

• Each object in the scene is rendered from a viewpoint roughly in front of it.
• The panoramas are composed of large regions of linear perspective.
• Local perspective effects are evident.
• The seams between these perspective regions do not draw attention.
System Overview

Source images → Pre-processing → Picture surface selection → Viewpoint selection → Interactive refinement → Multi-viewpoint panorama

User effort
A Key Observation

• Images projected onto the picture surface from their original 3D viewpoints will agree in areas depicting scene geometry lying on the dominant plane.
Data Capture

• Handheld camera
 - walk along street and take picture every meter.
 - manually control exposure.

• Fisheye lens for some scenes.
 - Cover more scene content in one picture to avoid frequent “viewpoint transition”.

Preprocessing

- **Image Correction**
 - For photos from fisheye lens, use PtLens to remove the radial distortion. Then treat them as normal images.
Preprocessing

- Recovering of the projection matrices of each camera using the structure-from-motion system
 - The one in *Photo Tourism*, which is now open source.
 - Pair-wise matching on SIFT features enforces strong constraints for optimization.

Camera 3D position

\[C_i = -R_i^T t_i \]
Preprocessing

• SfM result
 - Each image’s projection matrix and 3D point cloud for the scene structure.

Picture not from this project!!
Preprocessing

• Compensation of exposure variation
 • Brightness scale factor k_i for each image I_i
 • For pixels that depict the same geometry, asserting that $k_i * I_i = k_j * I_j$ for I_i, I_j
 • Each SIFT point match gives us three linear constraints of these form.
Picture Surface Selection

- Picture surface? A virtual 3D surface upon which the panorama will be formed.
- It should be roughly aligned to the dominant plane of the scene.

why? Good property 1.
Picture Surface Selection

• Two steps: 1 Find world coordinate. 2 Draw curve in xz plane.

• The system offers an automatic and an interactive approaches for choosing the coordinate system:
 • automatic approach -- PCA; largest variation is x-axis, least is y-axis. Because it’s facade scene.
 • interactive approach -- The cross product from two selected vectors along the y and x-axis forms the z-axis; the cross product of z and y forms the new x-axis.
Picture Surface Selection

- The user is asked to draw a polyline into the plan view (xz slice).
- The system sweeps the polyline up and down the y-axis.
 - Directly draw manually
 - Interactively draw -- select clusters of scene points; remove outliers; fit a third-degree polynomial $z(x)$ as a function of their x-coordinates; swept up this surface and down the y-axis.
Red: recovered camera trajectory.
Blue: user drawn polyline

directly

interactively
Sampling the Picture Surface

• The system samples the picture surface to form a regular 2D grid. This 2D grid will map to make the final panorama image space.

• \(S(i, j) \) refers the 3D location of the \((i,j)\) sample.
Sampling the Picture Surface

It's a 3D surface.
so (i,j) --> S(i, j)

This surface will form the final panorama after projected to 2D
Sampling the Picture Surface

• Project all $S(i, j)$ with each image’s projection matrix.

• Each sample $S(i, j)$ forms one pixel, if its projection is located inside that image.
 - so there will be black holes and edges highly distorted. (white board)
Sampling the Picture Surface

One Source Image

Its Sampled Image (after a circular crop)
Sampling the Picture Surface

- They also call this process as projecting source images onto picture surface.
Average Image

- Project all source images to picture surface by “sampling picture surface”.
- Produce an average image with all these projected images.
Average Image

- After all source images get projected to 3D surface and sampled.

Street not straight, due to Sfm drifting

Average with un-warping and cropping

Corrected by un-warping
Recall: image areas on dominant plane will be consistent after reprojected to picture surface.
We have now a series of n images I_i of equivalent dimension.

Image I_i represents the i'th viewpoint.

It’s necessary to choose one source image I_i for each pixel $p = (px, py)$.
Again, pixel labelling problem
Objective Function

• The MRF optimization computes a labeling $L(p)$, where $L(p) = i$ if pixel p of the panorama is assigned color $l_i(p)$.

• The objective function for choosing the viewpoint has three terms.
First Term

• The first term reflects the property that an object in the scene should be imaged from a viewpoint roughly in front of it.

• Assuming the cameras have roughly the same distance from the picture surface.

• It’s possible to find pixel \(p_i \) whose corresponding 3D Sample \(S(p_i) \) is closest to camera position \(C_i \).

• So, if pixel \(p \) chooses its color from \(I_i \), formulate this heuristic as:

\[
D(p, L(p)) = |p - p_{L(p)}|
\]
Second Term

• The second term encourages transitions between different regions of linear perspective to be natural and seamless.

\[V(p, L(p), q, L(q)) = |I_{L(p)}(p) - I_{L(q)}(p)|^2 + |I_{L(p)}(q) - I_{L(q)}(q)|^2 \]

For all neighboring pixels.
Third Term

- The third term encourages the panorama to resemble the average image in areas where the scene geometry intersects the picture surface.
- Recall: the key observation

Also, it’s used for many other variance, like motion blur, occlusion
Third Term

• A vector median filter is used to compute across the three color channels for a robust mean value.

• The median absolute deviation (MAD) is calculated as median L2 distance from the median color.
Third Term

• Assuming that image color channels vary from 0 to 255, it’s possible to define the cost function:

\[H(p, L(p)) = \begin{cases}
|M(p) - I_{L(p)}(p)| & \text{if } \sigma(p) < 10 \\
0 & \text{otherwise}
\end{cases} \]
- **Complete Cost Function**

 Pixels in image i to which the ith camera does not project are set as null -- > the black holes.

- $L(p) = i$ is not possible if $i(p) = \text{null}$.

\[
\sum_p (\alpha D(p, L(p)) + \beta H(p, L(p))) + \sum_{p,q} V(p, L(p), q, L(q))
\]

- Higher values for α encourage pixels from more straight-on views at the expense of more noticeable seams.

- Lower values of both α and β are more likely to remove objects off of the dominant plane.
Solve it as a MRF Optimization

- The panorama is computed at a lower resolution so that the MRF optimization can be computed in reasonable time.
- Using the hierarchical approach a higher-resolution is recreated.
- The final panorama is composited in the gradient domain to smooth the seams.
Interactive Refinement

• View selection
 - A certain viewpoint should be used for a certain region of the composite.

• Seam suppression
 - The user can indicate objects in a scene across which seams should never be placed.

• Inpainting (Similar to image completion)
 The user can draw strokes to indicate areas that should be filled with zero gradients during gradient-domain composition (to remove for example power lines)
Seam Suppression

• The MRF Optimization try to route seams around objects that lie off the dominant plane.
• However, such objects don’t always exist.
Seam Suppression

- Propagate the stroked pixels
 - assume the strokes are drawn on 3D planes.
 - transfer the pixels to other source images by a homography (2D/2D relationship)
Seam Suppression

• Constraints on these stroked pixels (on all images):
 for each pixel q adjacent to p that
 \(L(p) = i \), if and only if \(L(q) = i \).

--> keep that whole region as much as possible.
Full Example 1
Data
Average Image
Seams Found

Red lines are where the labeling changes-->Seams
Result

Automatically computed
Full Example 2
Data
Projected Source
Initial Result

Automatically computed
User wants to maintain perspective in these areas.
Seams

No seams pass the area covered by strokes.
Final Result

Before

After