Fitting
Fitting: Motivation

• We’ve learned how to detect edges, corners, blobs. Now what?
• We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model.
Fitting

• Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Source: K. Grauman
Fitting

• Choose a parametric model to represent a set of features

• Membership criterion is not local
 • Can’t tell whether a point belongs to a given model just by looking at that point

• Three main questions:
 • What model represents this set of features best?
 • Which of several model instances gets which feature?
 • How many model instances are there?

• Computational complexity is important
 • It is infeasible to examine every possible set of parameters and every possible combination of features
Fitting: Issues

Case study: Line detection

- **Noise** in the measured feature locations
- **Extraneous data:** clutter (outliers), multiple lines
- **Missing data:** occlusions
Fitting: Issues

- If we know which points belong to the line, how do we find the “optimal” line parameters?
 - Least squares

- What if there are outliers?
 - Robust fitting, RANSAC

- What if there are many lines?
 - Voting methods: RANSAC, Hough transform

- What if we’re not even sure it’s a line?
 - Model selection
Least squares line fitting

Data: \((x_1, y_1), \ldots, (x_n, y_n)\)

Line equation: \(y_i = mx_i + b\)

Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]
Least squares line fitting

Data: \((x_1, y_1), \ldots, (x_n, y_n)\)

Line equation: \(y_i = mx_i + b\)

Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]

\[
E = \sum_{i=1}^{n} \left(y_i - [x_i, 1] \begin{bmatrix} m \\ b \end{bmatrix} \right)^2 = \left\| \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} \right\|^2 = \|Y - XB\|^2
\]

\[
= (Y - XB)^T (Y - XB) = Y^T Y - 2(XB)^T Y + (XB)^T (XB)
\]

\[
\frac{dE}{dB} = 2X^T XB - 2X^T Y = 0
\]

\[
X^T XB = X^T Y
\]

Normal equations: least squares solution to \(XB = Y\)
Problem with “vertical” least squares

- Not rotation-invariant
- Fails completely for vertical lines
Total least squares

Distance between point \((x_n, y_n)\) and line \(ax + by = d\) \((a^2 + b^2 = 1)\):
\[|ax + by - d|\]

Find \((a, b, d)\) to minimize the sum of squared perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i - d)^2
\]
Total least squares

Distance between point \((x_n, y_n)\) and line \(ax+by=d\) \((a^2+b^2=1)\): \(|ax + by - d|\)

Find \((a, b, d)\) to minimize the sum of squared perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i - d)^2
\]

\[
\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0
\]

\[
E = \sum_{i=1}^{n} \left(a(x_i - \bar{x}) + b(y_i - \bar{y})\right)^2 = \left[\begin{array}{cc}
 x_1 - \bar{x} & y_1 - \bar{y} \\
 \vdots & \vdots \\
 x_n - \bar{x} & y_n - \bar{y}
\end{array}\right] \left[\begin{array}{c}
 a \\
 b
\end{array}\right]^2 = (UN)^T (UN)
\]

\[
\frac{dE}{dN} = 2(U^T U)N = 0
\]

Solution to \((U^T U)N = 0\), subject to \(||N||^2 = 1\): eigenvector of \(U^T U\) associated with the smallest eigenvalue (least squares solution to homogeneous linear system \(UN = 0\))
Total least squares

\[U = \begin{bmatrix}
 x_1 - \bar{x} & y_1 - \bar{y} \\
 \vdots & \vdots \\
 x_n - \bar{x} & y_n - \bar{y}
\end{bmatrix} \quad U^T U = \begin{bmatrix}
 \sum_{i=1}^{n} (x_i - \bar{x})^2 & \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \\
 \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) & \sum_{i=1}^{n} (y_i - \bar{y})^2
\end{bmatrix} \]

second moment matrix
Total least squares

\[U = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \]

\[U^T U = \begin{bmatrix} \sum_{i=1}^{n} (x_i - \bar{x})^2 & \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \\ \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) & \sum_{i=1}^{n} (y_i - \bar{y})^2 \end{bmatrix} \]

second moment matrix

\[N = (a, b) \]

\[(x_i - \bar{x}, y_i - \bar{y}) \]
Least squares as likelihood maximization

- **Generative model**: line points are corrupted by Gaussian noise in the direction perpendicular to the line

\[
\begin{pmatrix}
 x \\
 y \\
\end{pmatrix} = \begin{pmatrix}
 u \\
 v \\
\end{pmatrix} + \mathcal{E} \begin{pmatrix}
 a \\
 b \\
\end{pmatrix}
\]

- Point on the line
- Noise: zero-mean Gaussian with std. dev. \(\sigma \)
- Normal direction
Least squares as likelihood maximization

- **Generative model**: line points are corrupted by Gaussian noise in the direction perpendicular to the line

\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} + \mathcal{E} \begin{pmatrix} a \\ b \end{pmatrix}
\]

Likelihood of points given line parameters \((a, b, d)\):

\[
P(x_1, \ldots, x_n \mid a, b, d) = \prod_{i=1}^{n} P(x_i \mid a, b, d) \propto \prod_{i=1}^{n} \exp \left(-\frac{(ax_i + by_i - d)^2}{2\sigma^2} \right)
\]

Log-likelihood:
\[
L(x_1, \ldots, x_n \mid a, b, d) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (ax_i + by_i - d)^2
\]
Least squares for general curves

We would like to minimize the sum of squared geometric distances between the data points and the curve.
Least squares for conics

- Equation of a general conic:
 \[C(\mathbf{a}, \mathbf{x}) = \mathbf{a} \cdot \mathbf{x} = ax^2 + bxy + cy^2 + dx + ey + f = 0, \]
 \[\mathbf{a} = [a, b, c, d, e, f], \]
 \[\mathbf{x} = [x^2, xy, y^2, x, y, 1] \]

- Minimizing the geometric distance is non-linear even for a conic

- **Algebraic distance**: \(C(\mathbf{a}, \mathbf{x}) \)

- Algebraic distance minimization by linear least squares:
 \[
 \begin{bmatrix}
 x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\
 x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 x_n^2 & x_ny_n & y_n^2 & x_n & y_n & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e \\
 f \\
 \end{bmatrix}
 = 0
 \]
Least squares for conics

• Least squares system: \(Da = 0 \)
• Need constraint on \(a \) to prevent trivial solution
• Discriminant: \(b^2 - 4ac \)
 • Negative: ellipse
 • Zero: parabola
 • Positive: hyperbola
• Minimizing squared algebraic distance subject to constraints leads to a generalized eigenvalue problem
 • Many variations possible
• For more information:
Least squares: Robustness to noise

Least squares fit to the red points:
Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Robust estimators

- General approach: minimize $\sum_i \rho(r_i(x_i, \theta); \sigma)$

$r_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters θ

ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u.
Choosing the scale: Just right

The effect of the outlier is eliminated
Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor
Choosing the scale: Too large

Behaves much the same as least squares
Robust estimation: Notes

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Adaptive choice of scale: "magic number" times median residual

\[\sigma^{(n)} = 1.4826 \, \text{median}_i \left| r_i^{(n)}(x_i; \theta^{(n-1)}) \right| \]
RANSAC

- Robust fitting can deal with a few outliers – what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers

Outline
- Choose a small subset uniformly at random
- Fit a model to that subset
- Find all remaining points that are “close” to the model and reject the rest as outliers
- Do this many times and choose the best model

RANSAC for line fitting

Repeat N times:

- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers
Choosing the parameters

• Initial number of points s
 • Typically minimum number needed to fit the model

• Distance threshold t
 • Choose t so probability for inlier is p (e.g. 0.95)
 • Zero-mean Gaussian noise with std. dev. σ: $t^2 = 3.84\sigma^2$

• Number of samples N
 • Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

Source: M. Pollefeys
Choosing the parameters

- **Initial number of points** s
 - Typically minimum number needed to fit the model

- **Distance threshold** t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: $t^2 = 3.84\sigma^2$

- **Number of samples** N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$
\left(1 - (1 - e)^s\right)^N = 1 - p
$$

$$
N = \log(1 - p) / \log(1 - (1 - e)^s)
$$

<table>
<thead>
<tr>
<th>s</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

Source: M. Pollefeys
Choosing the parameters

- **Initial number of points s**
 - Typically minimum number needed to fit the model
- **Distance threshold t**
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: $t^2 = 3.84\sigma^2$
- **Number of samples N**
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$\left(1-(1-e)^s\right)^N = 1 - p$$

$$N = \log(1-p) / \log(1-(1-e)^s)$$

Source: M. Pollefeys
Choosing the parameters

- **Initial number of points** \(s \)
 - Typically minimum number needed to fit the model

- **Distance threshold** \(t \)
 - Choose \(t \) so probability for inlier is \(p \) (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. \(\sigma \): \(t^2 = 3.84\sigma^2 \)

- **Number of samples** \(N \)
 - Choose \(N \) so that, with probability \(p \), at least one random sample is free from outliers (e.g. \(p = 0.99 \)) (outlier ratio: \(e \))

- **Consensus set size** \(d \)
 - Should match expected inlier ratio

Source: M. Pollefeys
Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield $e=0.2$

- Adaptive procedure:
 - $N=\infty$, \texttt{sample_count} =0
 - While $N > \texttt{sample_count}$
 - Choose a sample and count the number of inliers
 - Set $e = 1 - \text{(number of inliers)/(total number of points)}$
 - Recompute N from e:
 $$N = \log(1 - p)/\log(1 - (1 - e)^x)$$
 - Increment the \texttt{sample_count} by 1

Source: M. Pollefeys
RANSAC pros and cons

• Pros
 • Simple and general
 • Applicable to many different problems
 • Often works well in practice

• Cons
 • Lots of parameters to tune
 • Can’t always get a good initialization of the model based on
 the minimum number of samples
 • Sometimes too many iterations are required
 • Can fail for extremely low inlier ratios
 • We can often do better than brute-force sampling