Bag-of-features models

Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba
Overview: Bag-of-features models

• Origins and motivation
• Image representation
• Discriminative methods
 • Nearest-neighbor classification
 • Support vector machines
• Generative methods
 • Naïve Bayes
 • Probabilistic Latent Semantic Analysis
• Extensions: incorporating spatial information
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Origin 1: Texture recognition

Origin 2: Bag-of-words models

Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/
Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/
Origin 2: Bag-of-words models

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/
Bags of features for image classification

1. Extract features
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
4. Represent images by frequencies of “visual words”
1. Feature extraction

Regular grid

- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005
1. Feature extraction

Regular grid
- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

Interest point detector
- Csurka et al. 2004
- Fei-Fei & Perona, 2005
- Sivic et al. 2005
1. Feature extraction

Regular grid
- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

Interest point detector
- Csurka et al. 2004
- Fei-Fei & Perona, 2005
- Sivic et al. 2005

Other methods
- Random sampling (Vidal-Naquet & Ullman, 2002)
- Segmentation-based patches (Barnard et al. 2003)
1. Feature extraction

- Detect patches
 - [Mikojacyk and Schmid '02]
 - [Mata, Chum, Urban & Pajdla, '02]
 - [Sivic & Zisserman, '03]

- Normalize patch
 - Compute SIFT descriptor
 - [Lowe'99]

Slide credit: Josef Sivic
1. Feature extraction
2. Learning the visual vocabulary
2. Learning the visual vocabulary

Slide credit: Josef Sivic
2. Learning the visual vocabulary

Slide credit: Josef Sivic
K-means clustering

- Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X, M) = \sum_{\text{cluster } k} \sum_{\text{point } i \text{ in cluster } k} (x_i - m_k)^2$$

Algorithm:
- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it
From clustering to vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be “universal”

- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word
Example visual vocabulary

Fei-Fei et al. 2005
Image patch examples of visual words

Sivic et al. 2005
Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting

- Generative or discriminative learning?

- Computational efficiency
 - Vocabulary trees
 (Nister & Stewenius, 2006)
3. Image representation

![Image representation diagram]

- Frequency
- Codewords
Image classification

- Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?